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Preface

As mathematics developed through the ages, its users came to accept a series of �new
innovations� that were at �rst scorned by many. The natural or counting numbers
gave way to the integers with the addition of the strange concept of negative numbers
and indeed, zero. In turn the integers gave way to the rational numbers or fractions,
including the exclusion of division by zero. Next came the concept of irrational num-
bers, numbers like

√
2 gained acceptance long before transcendental numbers like π

and e but eventually all mathematicians came to accept the utility of these kinds of
numbers in progressing the science of mathematics itself. The totality of the reals
was accepted.
But then came the complex numbers and that strange symbol i, for imaginary num-
bers, even stranger its de�nition as

√
−1. Yet all mathematicians now accept the

utility of proving theorems are true for complex numbers and therefore for real num-
bers which are just a subset of the complex ones.
Algebra seemed to be fully resolved in terms of how to �nd the solutions of polyno-
mial equations and how to prove theorems previously regarded as unreachable such as
Fermat's Last, the Prime Number theorem and a host of others, all by using complex
or imaginary numbers and not real numbers.
So is that it? The natural numbers have been absorbed into the integers, the integers
have been absorbed into the rationals, the rationals have been absorbed into the reals,
the reals into the complex numbers. The fundamental theorem of algebra has proved
that that's it for number sets, the complex numbers are all we need.
Really? In an e�ort to describe how all the real numbers can be derived from the
rational numbers we are told the real numbers have been constructed from the ratio-
nals by using the absolute value function, ∣.∣, to measure distances of numbers apart
and by the use of particular sequences of the rationals.
But is this the only way to extend the rational numbers? Even if we accept the need
to use the same particular sequences? Can we measure the distance between numbers
in another way - not by the absolute value function?
Let's read on! Mathematics has not yet �nished in diverging along paths even stranger
than imaginary ones.
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Chapter 1

The completion of Q to form R.

1.1 The real number line

As we learn mathematics we meet sets of numbers in this order:

Natural numbers: N = {1,2,3,⋯}
Integers: Z = {0,±1,±2,⋯}

Rationals: Q = {a
b
∣a, b ∈ Z, b ≠ 0}

All of these numbers can be placed on a number line called the Real number line,
often designated simply as R.

−17/6 −2 −1 0 1 15/7 4.1

We can begin to �ll in the gaps between any two numbers a and b on the number

line by simply inserting
a + b
2

but no matter how much we �ll it in with elements of

Q there will still be gaps. Simplistically the completion of Q means adding in all the
irrational numbers like

√
2 and π, and we call the completion R, the set of all real

numbers.
We need to be able to measure the distance between numbers on the number line

and we do this by de�ning a norm on Q which leads to a distance function. But �rst
let's generalize the properties of Q.

1.2 Field

Q itself is the simplest example of a mathematical structure called a Field.

De�nition 1. A �eld, F, is a set with two mathematical binary operations usually
called addition and multiplication, which satisfy:

1



2 Chapter 1. The completion of Q to form R.

1. Commutativity: For all a, b ∈ F, a + b = b + a and ab = ba

2. Associativity: For all a, b, c ∈ F, a + (b + c) = (a + b) + c and a(bc) = (ab)c.

3. Existence of identities: For all a ∈ F there exists 0 and 1 in F such that a+0 = a
and a.1 = a

4. Existence of inverses: For all a ∈ F there exists (−a), a−1 in F such that
a + (−a) = 0 and a.a−1 = 1

5. Distributivity: For all a, b, c ∈ F we have a(b + c) = ab + ac

1.3 Norm

De�nition 2. We de�ne the absolute value function ∣.∣ acting on x ∈ Q by,

∣x∣ =
⎧⎪⎪⎨⎪⎪⎩

x if x ≥ 0

−x if x < 0

We call the absolute value function, ∣.∣, a norm or, speci�cally, the Euclidean norm
of dimension 1. It satis�es these three criteria.
For all x, y ∈ Q ∶

1. ∣x∣ = 0 if and only if x = 0. This is true by de�nition of ∣x∣.

2. ∣xy∣ = ∣x∣∣y∣ This is true since the numbers on both sides are made positive.

3. ∣x + y∣ ≤ ∣x∣ + ∣y∣ This is called the triangle inequality and is proved as follows.

Proof. We �rst note:

∣x∣2 = x2 (both sides are positive) (1.3.1)

xy ≤ ∣x∣∣y∣ (left side may be negative but the right side is positive.) (1.3.2)

Accordingly,

∣x + y∣2 = (x + y)(x + y) by (1.3.1)

= x2 + 2xy + y2

= ∣x∣2 + 2xy + ∣y∣2 by (1.3.1)

≤ ∣x∣2 + 2∣x∣∣y∣ + ∣y∣2 by (1.3.2)

= (∣x∣ + ∣y∣)2

⇒ ∣x + y∣ ≤ ∣x∣ + ∣y∣ by taking the square root.



1.4. Distance Function or Metric 3

De�nition 3. Prompted by the above three criteria for the norm on Q we de�ne a
norm ∣∣.∣∣ on a general �eld F by, for all x, y ∈ F,

1. ||x||=0 if and only if x=0

2. ||x.y||=||x||.||y||

3. ||x+y||≤ ||x||+||y||

1.4 Distance Function or Metric

De�nition 4. We de�ne the distance function for all x, y ∈ Q by:

d(x, y) = ∣x − y∣

We call d a metric on Q.
We call Q a metric space, that is, a space with a distance measure.
Then d(x, y) satis�es these three conditions:

1. d(x, y) = 0 if and only if x = 0. This is true by the �rst criteria for the norm,
that ∣x − y∣ = 0 if and only if x = y.

2. d(x, y) = d(y, x) This is true since ∣x − y∣ = ∣y − x∣

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ Q

Proof.

∣x − y∣ = ∣x − z + z − y∣
= ∣(x − z) + (z − y)∣
≤ ∣x − z∣ + ∣z − y∣ by the triangle inequality.

De�nition 5. Prompted by the de�nition of the distance function d(x, y) on the �eld
Q we de�ne a distance function or metric on a set X containing elements x, y and
having norm ∣∣.∣∣, by,

d(x, y) = ∣∣x − y∣∣ for all x, y ∈X
and accordingly we have,

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈X.
The proofs of these three criteria are the same as those for the distance function in
Q as above with ∣.∣ replaced by ∣∣.∣∣.



Chapter 2

Sequences and Cauchy Sequences

2.1 Sequences

De�nition 6. A sequence is an ordered list of numbers.

For example {1,3,5,9} is a sequence.

Notation 1. We use the symbol {an}n=3n=0 to mean the sequence {a0, a1, a2, a3}. For
brevity, we often just use {an} for an in�nite sequence {an}n=∞n=0 .

A sequence may be generated by a function thus:

f(n) = an, f(x) = x2, x ∈ N

This in�nite sequence is {1,4,9,16,⋯}
We are interested in in�nite sequences but they will be sequences that are �heading
somewhere,� unlike {1,4,9,16, . . .} which is just getting larger and larger or �diverging
to in�nity.�

For example the sequence generated by f(n) = 1

n
is {1, 1

2
,
1

3
, . . .} and it is heading

towards 0 or in mathematical language it has a �nal value or limit of 0.

We write lim
n→∞

1

n
= 0.

Of course
1

n
is never actually zero but that is where it is heading. Thus the di�erence

between it and 0 can be made as small as we like,
1

1,000,000
,

1

100,000,000
and so on.

We say the sequence converges to 0. Here is our de�nition.

De�nition 7. A sequence is convergent or has a limit a ∈ R if lim
n→∞ ∣an − a∣ = 0. That

is, for all ε > 0 there exists an N ∈ N such that for all n > N we have ∣an − a∣ < ε.

4
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For example the sequence {an} with an = 1

n
has the limit a = 0. We choose any

ε > 0 and N = 1

ε
. Then for any n > N we have n > 1

ε
giving,

∣an − 0∣ = ∣an∣ =
1

n
< ε.

A particular case is given by ε = 10−6, N = 1

10−6
so if n > N then n > 106 and,

∣an − 0∣ = ∣ 1
n
∣ < 10−6 = ε

2.2 Cauchy sequences

Again considering the sequence { 1
n
} = {1, 1

2
,
1

3
, . . .} we observe that the distance

between succesive terms is getting smaller and smaller as n increases. Thus,

1

10
− 1

11
= 1

110
> 1

20
− 1

21
= 1

420

If we call two terms an and am then their di�erence ∣an −am∣ can be made as small as
we like. So we say for all ε > 0 that we can �nd terms an and am such that ∣an−am∣ < ε.
There will be some number N ∈ N such that if n and m are greater that N then it will
always be true that ∣an − am∣ < ε. This gives us our de�nition of a Cauchy sequence.

De�nition 8. A sequence {an} is a Cauchy sequence if for every ε > 0 there exists
an N ∈ N such that if n,m > N then,

∣an − am∣ < ε

We could also write,
lim

m,n→∞ ∣an − am∣ = 0.

For example, again consider the sequence {an} where an = 1

n
. Choose any ε > 0

say ε = 10−12. Then if n,m are chosen to be greater than N = 1012 we would have
∣an − am∣ < ε. For instance, let's take n = 1013 and m = 1014 and then

∣an − am∣ = ∣ 1

1013
− 1

1014
∣ < ∣ 1

1013
∣ = 10−13 < ε

But we can choose any ε > 0, say ε = 10−101 and we have an N = 1/ε = 10101 such that
for n,m > N, say n = 10202 and m = 10507, we have,

∣an − am∣ = ∣ 1

10202
− 1

10507
∣ < ∣ 1

10202
∣ = 10−202 < ε.

Here is the general proof.
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Lemma 1.

The sequence {an} with an =
1

n
is a Cauchy sequence.

Proof. Let ε > 0. Choose N = 2

ε
. Then for all n,m > N, we have,

∣ 1
n
− 1

m
∣ ≤ 1

n
+ 1

m

< 1

N
+ 1

N
since n,m > N

< ε
2
+ ε
2
= ε

2.3 Importance of Cauchy sequences

It is often not possible to �nd the actual limit of a sequence and, indeed, it may
not be necessary to �nd the limit, only that the limit exists, or, in other words, that
the sequence converges. Hence the importance of the next theorem. We �rst need a
lemma.

Lemma 2.

All Cauchy sequences are bounded, that is all the terms of the sequence are less that
some M.

Proof. Let {an} be a Cauchy sequence.
Set ε = 1.
Then there exists an N ∈ N such that for all m,n > N we have ∣am − an∣p < 1.
Set m = N + 1 > N. Then for all n > N we have,

∣an∣ = ∣an − am + am∣
≤ ∣an − am∣ + ∣am∣
≤ 1 + ∣am∣
= 1 + ∣aN+1∣

So ∣an∣ ≤ 1+ ∣aN+1∣ for all n > N and there are only a �nite number of terms an, n ≤ N.
Set M =max (∣a1∣, ∣a2∣.⋯, ∣aN ∣, ∣1 + aN+1∣)
Then for all n ∈ N we have ∣an∣ ≤M so the sequence {an} is bounded.

Theorem 3.

A sequence {an} converges to a limit if and only if it is Cauchy.
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Proof. Assume {an} has a limit A. Select any ε > 0.

By de�nition of a limit, there is an N ∈ N such that if n ≥ N then ∣an −A∣ < ε
2
.

If m,n > N then,

∣an − am∣ = ∣an −A +A − am∣
≤ ∣an −A∣ + ∣A − am∣
< ε
2
+ ε
2

= ε

Thus {an} is a Cauchy sequence.

****

Conversely suppose {an} is Cauchy.
By the Bolzano-Weierstrasse theorem (which we will not prove), {an} has a subse-
quence {ank

} converging to a limit A.
Let us prove {an}→ A. We need to prove that for all ε > 0 there is a N ∈ N such that
for all k ≥ N that ∣ak −A∣ < ε.
Let

ε

2
be given.

As ank
→ A then there is an N ∈ N such that for all nk ≥ N we have,

∣ak − ank
∣ < ε

2

As {an} is Cauchy we also have an M such that for all k,m ≥M that,

∣ank
−A∣ < ε

2

Put K =max(N,M). Then for all k,nk,m >K we have,

∣ak −A∣ = ∣(ak − ank
) + (ank

−A)∣
≤ ∣ak − ank

∣ + ∣ank
−A∣

≤ ε
2
+ ε
2
= ε

So {ak} converges to a limit A.



Chapter 3

The real numbers R

De�nition 9. We de�ne the real numbers R as the completion of Q with respect to
the distance function d(x, y) = ∣x−y∣ de�ned on Q. By completion we mean that every
Cauchy sequence with terms in Q has a limit in R.

Let's identify various real numbers.

1. All rational numbers are in R since any rational number
a

b
can generate a

constant sequence,

a0 =
a

b
, a1 =

a

b
, a2 =

a

b
,⋯

and clearly this sequence is Cauchy since for all ε > 0 we can choose any N ∈ N
and any n,m > N since,

∣an − am∣ = ∣a
b
− a
b
∣ = 0 < ε

Finally the sequence has the limit
a

b
since for all ε > 0,

lim
n→∞ ∣an −

a

b
∣ = ∣a

b
− a
b
∣ = 0 < ε

2. Irrationals that are square roots, cube roots, etc are in R. Let's take
√
2 for

example. We begin with 12 < 2 < 22 and use a calculator or spreadsheet to set
up the calculations,

12 < 2 < 22

1.42 < 2 < 1.52

1.412 < 2 < 1.422

1.4142 < 2 < 1.4152

⋯

8
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We calculate
√
2 = 1.414213⋯ and set up the sequence,

a0 = 1, a1 = 1.4, a2 = 1.41, a3 = 1.414, a4 = 1.4142, a5 = 1.41421, a6 = 1.414213,⋯

This sequence is Cauchy since for any ε > 0 we can choose an N ∈ N such that
10−N < ε and if, say, n,m > N with n >m then,

∣an − am∣ = b.10−m, 0 < b ≤ 9

< 10−N

< ε

For example, if, say, ε = 0.0004, then choose N = 4 and with n = 5,m = 6 we
have

∣a6 − a5∣ = 0.000003 < 0.0004 = ε
We de�ne

√
2 to be the limit of this Cauchy sequence since for all ε > 0, there

is an N ∈ N such that if n ≥ N then ∣an −
√
2∣ < ε.

3. Numbers like π and e are called transcendental numbers since, unlike square
roots, cube roots, etc, they are not the solution of an algebraic equation,
x2 = 2, x3 = 4, etc. But again we can calculate π = 3.14159265358979323846264⋯
and e = 2.7182818284590452353602874713527⋯ to as many decimal places as we
like using in�nite series developed through calculus. We then set up an in�nite
sequence as above for

√
2 and de�ne π and e to be the respective limits of their

Cauchy sequences. So they are real numbers.

4. In an advanced algebra course we �nd there are many more numbers on the
real number line called algebraic numbers de�ned as the solutions of polynomial
equations of degree n,

anx
n + an−1xn−1 +⋯ + a1x + a0 = 0

Many of these equations can be solved, thus:

x6 − 3x4 + x2 − 3 = 0⇒ (x2 − 3)(x4 − 1)⇒ x = ±
√
3,±1

All quadratic equations, ax2+bx+c = 0, can be solved by the quadratic formula,

x = −b ±
√
b2 − 4ac

2a
, and there are similar formulas involving radicals for cubic

and quartic equations or polynomials of degree 3 and 4. However, there is a
famous theorem in algebra which proves there are no such formulas for poly-
nomial equations of degree 5 or higher. In other words we cannot �nd explicit
solutions to all polynomial equations of degree 5 or more.
For example, x5 − 4x + 2 = 0 cannot be solved for x, yet its graph below shows
there are three real roots α,β, γ in these intervals,

−2 < α < −1, 0 < β < 1, 1 < γ < 2
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x5 − 4x + 2

−2 −1 1 2

−40
−32
−24
−16
−8

8

16

24

32

40

Again we can set up in�nite Cauchy sequences using a calculator or spreadsheet
which have the limits α,β and γ. For α we have this sequence:

α x5 − 4x + 2

− 1 5

− 1.5 0.406

− 1.51 0.19

− 1.518 0.112

− 1.5185 0.000274

The sequence of numbers in the α column is clearly Cauchy and we de�ne its
limit to be a root of the polynomial equation x5 −4x+2 = 0. Similarly for β and
γ. We have identi�ed three more real numbers.

3.0.1 The way ahead

We started with a norm ∣.∣ acting on elements of Q and used the norm to complete Q
as a metric space in which all Cauchy sequences have a limit. We called this space R,
the set of all real numbers. The obvious question is whether there is another norm
which can act on the elements of Q and be used to complete Q as a metric space in
which all Cauchy sequences employing this norm converge to a limit. The answer is
Yes and we call this new metric space the �eld of p-adic numbers.



Chapter 4

Introduction to p-adic numbers

4.1 Positive integers in p-adic form

We get our inspiration for p-adic numbers from fractions like
1

3
.

The rational number
1

3
= 0.3333⋯ can also be written as:

1

3
= 0 + 3 ⋅ 10−1 + 3 ⋅ 10−2 + 3 ⋅ 10−3 +⋯ =

∞
∑
n=0

3.10−n

We could call
∞
∑
n=0

3.10−n the 10-adic expansion of
1

3
.

But from now on, the �p� in p-adic stands for �prime� and for any given prime p,
positive integers can be written in p-adic form, for example,

p = 3 ∶ 73 = 1 ⋅ 30 + 0 ⋅ 31 + 2 ⋅ 32 + 2 ⋅ 33

p = 5 ∶ 73 = 3 ⋅ 50 + 4 ⋅ 51 + 2 ⋅ 52

In general for a prime p and a positive integer m, we have the p-adic expansion of m
thus:

m = a0p0 + a1p1 + a2p2 +⋯ + anpn =
n

∑
k=0

akp
k

with ai ∈ Z, 0 ≤ ai ≤ p − 1. We call
n

∑
k=0
akpk a p-adic number.

Note 1. It is instructive to �nd the p-adic expansions of several positive integers by
hand but it quickly becomes tedious. If you google �G-Pari� you can download a super-
calculator by that name and also a user manual. When you open the calculator the
prompt is gp >. If, for example, you type 173+O(5� 3) where the �O� means order,
then the calculator will return the 5-adic expansion of 173 up to the power of 53.

11
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4.2 Negative integers in p-adic form

Given the p-adic expansion of a positive integer it is then easy to write down the
p-adic expansions of negative integers, since, for example, we have 73+ (−73) = 0. For
p = 3 we need to ��ll in� this addition so that when we add the missing term in the
-73 line to the corresponding term in the 73 line we need to get 0.

73 = 1 ⋅ 30 + 0 ⋅ 31 + 2 ⋅ 32 + 2 ⋅ 33

−73 =
0 = 0 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 0 ⋅ 33⋯

In the �rst column on the right side, the 30 term of 73 is 1.30 so the 30 term in
-73 must be 2.30 so that the addition is 1.30 + 2.30 = 3.30 = 31 leaving a 0 in the 30

column but bringing forward a 1 into the 31 column.
In the second column the 31 term of 73 is 0.31 but we have brought forward 1.31

from the �rst column, so we need the -73 term to be 2.31 to give a total of 3.31 = 32

leaving the addition in the 31 column equal to zero but bringing forward 32 into the
third column.

And so we continue, but we �nd the p-adic expansion of -73 has an in�nite number
of terms.

−73 = 2 ⋅ 30 + 2 ⋅ 31 + 0 ⋅ 32 + 0 ⋅ 33 + 2 ⋅ 34 + 2.35 +⋯

Note 2. The obvious question is that the left side is -73 but the right side does not
appear to be convergent according to our �normal� de�nition of convergence. Somehow
we left the real world, we say we are in the world of p-adic numbers. How did we enter
it? When we added 73 and -73 we generated an in�nite string of 0's on the right side
of 0 = ⋯. But is this really 0? Let's study p−adic numbers some more before we seek
an answer to that question.

Notation 2. If we omit the symbols for 30, 31⋯ then we write the 3-adic expansions
of 73 and -73 thus:

73 = 1022

−73 = 230022222⋯ = 23002

where, as for repeating decimals, 2 means the repetition of the number or numbers
under the overline, in this case 2.

4.3 Rational numbers in p-adic form

Let p be a �xed prime number.

Consider the rational number
a

b
.

Now a = pkc1 and b = pjd1 where gcd(p, c1) = 1, gcd(p, d1) = 1
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So that
a

b
= pn c1

d1
, n = k − j.

Note n may be negative. Let,

c1
d1

= a0 + a1p1 + a2p2 +⋯ (4.3.1)

Take mod p of both sides.

c1d
−1
1 ≡ a0 + a1p + a2p2 +⋯(mod p)

⇒ c1d
−1
1 ≡ a0(mod p) (4.3.2)

Solving (4.3.2) by inspection gives the value of a0. Consider from (4.3.1),

c1d
−1
1 − a0 = a1p1 + a2p2 + a3p3 +⋯

= p(a1 + a2p1 + a3p2 +⋯)
= p c2

d2

where c2d−12 = a1 + a2p1 + a3p2 +⋯ Taking modulus p of both sides gives,

c2d
−1
2 ≡ a1(mod p) (4.3.3)

Solving (4.3.3) by inspection gives the value of a1. If we continue in this way we have
the general equations,

ckd
−1
k ≡ ak−1(mod p) (4.3.4)

ckd
−1
k − ak−1 = pck+1d−1k+1 (4.3.5)

For each value of k we solve (4.3.4) by inspection and then move on to (4.3.5).

Note 3. If p divides a and/or b, we write a rational number in the form
a

b
= pn c

d
where c and d are not divisible by p, then �nd the p-adic expansion of

c

d
and �nally

multiply each term in its expansion by pn. Let's do an example.

Example 1. Find the 5-adic expansion of
2

15

Now
2

15
= 5−1

2

3
so we will �nd the 5−adic expansion of

2

3
and then multiply it by 5−1

From (4.3.4) with k = 1, c1 = 2, d1 = 3, we have,

2

3
≡ a0(mod 5)⇒ 2 ≡ 3a0(mod 5)⇒ a0 = 4

By (4.3.5) with k = 1 we have,

2

3
− 4 = −10

3
= 5.

−2
3
⇒ c2 = −2, d2 = 3
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By (4.3.4) with k = 2 we have,

−2
3
≡ a1(mod 5)⇒ 3a1 + 2 ≡ 0(mod 5)⇒ a1 = 1

By (4.3.5) with k = 2 we have,

−2
3
− 1 = −5

3
= 5 ⋅ −1

3
⇒ c3 = −1, d3 = 3

By (4.3.4) with k = 3 we have,

−1
3
≡ a2(mod 5)⇒ 3a2 + 1 ≡ 0(mod 5)⇒ a2 = 3

and so on.
We �nd,

2

3
= 4 ⋅ 50 + 1 ⋅ 51 + 3 ⋅ 52 + 1 ⋅ 53 + 3 ⋅ 54 +⋯

so that

2

15
= 5−1(4 ⋅ 50 + 1 ⋅ 51 + 3 ⋅ 52 + 1 ⋅ 53 + 3 ⋅ 54 +⋯)

= 4 ⋅ 5−1 + 1 ⋅ 50 + 3 ⋅ 51 + 1 ⋅ 52 + 3 ⋅ 53 +⋯
Notation 3. In the compact form of a p-adic number we introduce a decimal point
to separate the negative powers of p from the non-negative powers. Thus we would
write,

2

15
= 4.1313⋯ = 4.13

We extend the de�nition of the expansion of a p-dic number as follows.

De�nition 10. If N is a rational number, its p-adic expansion has the form,

N = a−mp−m + a−m+1p−m+1 +⋯ + a0 + a1p1 + a2p2 +⋯

=
∞
∑
n=−m

anp
n

= a−ma−m+1⋯.a0a1a2⋯ (Note the decimal before a0.)

and we call
∞
∑

n=−m
anpn a p−adic number.

4.4 Mathematical Operations on p-adic numbers

4.4.1 Addition

Let p = 5. Let's add:

2

3
= 4 ⋅ 50 + 1 ⋅ 51 + 3 ⋅ 52 +⋯ = .4131313⋯

5

6
= 0 ⋅ 50 + 1 ⋅ 51 + 4 ⋅ 52 +⋯ = .0140404⋯
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We add digits from left to right, each time applying mod 5 to the sum and carrying
a 1 forward if the sum exceeds p − 1.

2

3
= .413131313⋯

5

6
= .014040404⋯

3

2
= .422222222⋯

4.4.2 Subtraction

Example 2. Let p = 5. Asked,for example, to �nd
2

3
− 5
6
, we calculate the sum

2

3
+(−5

6
)

Using 0 = 5

6
+ (−5

6
) we need to �ll in the second row of:

5

6
= .0140404040⋯

−5
6
=

0 = .0000000000⋯

Then,

−5
6
= .0404040400⋯

and

2

3
= .4131313131⋯

+−5
6

= .0404040404⋯

⇒ −1
6
= .4040404040 = .40

4.4.3 Multiplication

We work left to right and carry forward after applying mod p to each sum.
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Example 3. Let p = 5.

2

3
=.4 1 3 1 3 1 3 1⋯

×5
6
=.0 1 4 0 4 0 4 0⋯

0⋯
4 1 3 1 3 1 3⋯

1 2 3 1 3 1⋯
0⋯
1 2 3 1⋯

0⋯
1 2⋯

5

9
= .0 4 2 0 1 2 4 3⋯

4.4.4 Division

Example 4. Consider

24

17
= 0 ⋅ 30 + 2 ⋅ 31 + 2 ⋅ 32
2 ⋅ 30 + 2 ⋅ 31 + 1 ⋅ 32 =

.022

.221

Let,
24

17
= a030 + a131 + a232 + a333 +⋯

So, 24 = 17(a030 + a131 + a232 + a333 +⋯)
Then in 3-adics,

0 ⋅ 30 + 2 ⋅ 31 + 2 ⋅ 32 = (2 ⋅ 30 + 2 ⋅ 31 + 1 ⋅ 32)(a030 + a131 + a232 + a333 +⋯)

We compare powers of 3 in this equation.

30 ∶ 0 = 2a0⇒ a0 = 0

31 ∶ 2 = 2a1 + 2a0⇒ a1 = 1

32 ∶ 2 = 2a2 + 2a1 + a0⇒ a2 = 0

33 ∶ 0 = 2a3 + 2a2 + a1 = 2a3 + 1⇒ a3 = 1

We have brought forward a 34 term since the coe�cient of 33 is 3.

34 ∶ 0 = 2a4 + 2a3 + a2 + 1 = 2a4 + 3⇒ a4 = 0

We have brought forward a 1.35 term since the coe�cient of 34 is 3.

35 ∶ 0 = 2a5 + 2a4 + a3 + 1 = 2a4 + 2⇒ a5 = 2

We have brought forward a 2.36 term since the coe�cient of 35 must be 6.

36 ∶ 0 = 2a6 + 2a5 + a4 + 2 = 2a6 + 6⇒ a6 = 0
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We have brought forward a 2.37 term since the coe�cient of 36 is 6.

37 ∶ 0 = 2a7 + 2a6 + a5 + 2 = 2a7 + 4⇒ a7 = 1

We have brought forward a 2.38 term since the coe�cient of 37 is 6.

38 ∶ 0 = 2a8 + 2a7 + a5 + 2 = 2a8 + 4⇒ a8 = 1

We have brought forward a 2.39 term since the coe�cient of 38 is 6.

39 ∶ 0 = 2a9 + 2a8 + a7 + 2 = 2a9 + 5⇒ a9 = 2

We have brought forward a 1 ⋅ 311 term since the coe�cient of 39 is 9.

We conclude,

24

17
= 1 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 0 ⋅ 24 + 2 ⋅ 35 + 0 ⋅ 26 + 1 ⋅ 37 + 1 ⋅ 38 + 2 ⋅ 39 +⋯



Chapter 5

The p-adic completion of Q

5.1 p-adic numbers and Cauchy sequences

The norm we used to complete Q into R was the absolute value norm, ∣x∣, and its
associated distance function d(x, y) = ∣x− y∣. Now all of the p-adic numbers we found
in Chapter 4 can be written as the limiting values of a Cauchy sequence. Thus,

24

17
= 1 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 0 ⋅ 34 + 2 ⋅ 35 + 0 ⋅ 36 + 1 ⋅ 37 + 1 ⋅ 38 + 2 ⋅ 39 +⋯

can be set up as a sequence of partial sums,

1 ⋅ 30

1 ⋅ 30 + 0 ⋅ 31

1 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32

1 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33

1 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 0 ⋅ 34

...

1 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 0 ⋅ 34 + 2 ⋅ 35 + 0 ⋅ 36 + 1 ⋅ 37 + 1 ⋅ 38 + 2 ⋅ 39

...

which converge to
24

17
. But this sequence is not Cauchy if we use the absolute value

norm since ∣an − am∣ is some number b.3n, b ∈ {1,2} and this will never be less than ε
for ALL ε > 0 and speci�cally for ε = 3n−1.
The question is whether there is another norm besides the absolute value norm that
will give us convergence of p-adic numbers. We would then be able to have the
completion of Q into some other �eld that is not R. We would call this Qp, the �eld
of p-adic numbers, since all of them would be the limits of Cauchy sequences in Q.

18
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5.2 p-adic norm

We seek a completion of Q in which all p−adic numbers have a limit. Let's de�ne a
di�erent norm on Q.

De�nition 11. For any prime p we de�ne the p-adic norm ∣.∣p by,

∣x∣p =
⎧⎪⎪⎨⎪⎪⎩

p−ordpx if x /= 0

0 if x = 0

where ordpx is the highest power of p that divides x.
We call ordpx the p-adic valuation of x.

Example 5.

∣125∣5 = ∣53∣5 = 5−3

∣28∣7 = ∣4 × 71∣7 = 7−1

∣192∣2 = ∣3 × 64∣2 = ∣3 × 26∣2 = 2−6

Note 4. Note ∣x∣p = ∣y∣p if and only if ordpx = ordpy.

We claim ∣x∣p is a norm, obeying the same three conditions as set out in the general
de�nition of a norm ∣∣x∣∣ in De�nition 3 on page 3, namely.
(1.) ∣x∣p = 0 if and only if x = 0. This is true by the de�nition of ∣x∣p.
(2.) ∣xy∣p = ∣x∣p∣y∣p.

Proof. If x = pαa
b
, p /∣ a, b and y = pβ c

d
, p /∣ c, d, then,

∣xy∣p = ∣pα+β a
b
⋅ c
d
∣
p

= p−α−β

and,

∣x∣p∣y∣p = ∣pαa
b
∣
p

∣pβ c
d
∣
p

= p−αp−β = ∣xy∣p

(3.) ∣x + y∣p < ∣x∣p + ∣y∣p

Proof. Let x = pr a
b
, y = ps c

d
, p /∣ a, b, c or d,and a, b, c, d, r, s ∈ Z.

Case 1: r = s

x + y = pr (ad + bc
bd

)

⇒ ordp(x + y) ≥ r since p /∣ bd but p may divide ad + bc.
=min(ordpx, ordpy)
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Then,

∣x + y∣p = p−ordp(x+y)

≤max(p−ordpx, p−ordpy)
=max(∣x∣p, ∣y∣p)
≤ ∣x∣p + ∣y∣p

Case 2: r /= s, say s > r

x + y = pr (a
b
+ ps−r c

d
)

= pr (ad + p
s−rbc

bd
)

Now since s − r > 0 and p /∣ bd, p /∣ ad then,

ordp(x + y) = r =min(ordpx, ordpy)

Then,

∣x + y∣p = p−ordp(x+y)

≤max(p−ordpx, p−ordpy)
=max(∣x∣p, ∣y∣p) (5.2.1)

≤ ∣x∣p + ∣y∣p

De�nition 12. A norm ∣∣.∣∣ is called non-Archimedean is it satis�es the condition,

∣∣xy∣∣ ≤max(∣∣x∣∣, ∣∣y∣∣)

otherwise it is called Archimedean.

Hence since

∣x + y∣p ≤max(∣x∣p + ∣y∣p) by (5.2.1)

∣.∣p is a non-Archimedean norm whereas the ordinary absolute value norm, ∣.∣ is an
Archimedean norm.

5.3 p-adic distance function

We claim d(x, y) = ∣x − y∣p is a distance function on Q obeying the conditions set out
in the de�nition of a general distance function in De�nition 4 on page 3, namely, for
all x, y in Q,
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1. d(x, y) = 0 if and only if x = y. This is true since d(x, y) = 0⇒ ∣x − y∣p = 0 and,
by de�nition of the norm, ∣x − y∣ = 0 if and only if, x − y = 0⇒ x = y.

2. d(x, y) = d(y, x). This is true since, by the second criteria of the norm, ∣x∣p,

d(x, y) = ∣x − y∣p = ∣y − x∣p = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ Q. This is true since,

d(x, y) = ∣x − y∣p
= ∣x − z + z − y∣p
≤ ∣x − z∣p + ∣z − x∣p by Criteria 3 of the norm

= d(x, z) + d(z, y)

De�nition 13. The metric induced by a non-Archimedean norm is called an ultra-
metric. Hence d(x, y) = ∣x − y∣p is an ultra-metric and it satis�es,

d(x, y) ≤max(∣x − y∣p, ∣y − z∣p) by (5.2.1),

We also call ∣x − z∣p ≤max(∣x − y∣p, ∣y − z∣p) the strong triangle inequality.

5.4 Cauchy sequences using p-adic norms

We �rst rede�ne Cauchy sequences using p-adic norms.

De�nition 14. Using the p-adic norm, ∣x∣p, a sequence {an} in Q is a p-adic Cauchy
sequence if for all ε > 0 there exists an N ∈ N such that if m,n > N then ∣an −am∣p > ε.

Example 6.

In 3-adics we saw,
73 = 1.30 + 0.31 + 2.32 + 2.33

The �nite sequence of partial sums,

1.30

1.30 + 0.31

1.30 + 0.31 + 2.32

1.30 + 0.31 + 2.32 + 2.33

can be made in�nite thus,

1.30 + 0.31 + 2.32 + 2.33 + 0.34

1.30 + 0.31 + 2.32 + 2.33 + 0.34 + 0.35

⋯
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where all the other terms of powers of 3 more than 3 have coe�cient 0.
Then for all ε > 0 and for any m,n > N = 3, with say n >m, we have,

∣an − am∣3 = ∣0 ⋅ 3m+1 + 0 ⋅ 3m+2 +⋯∣3 = ∣0∣3 = 0 < ε.

This is therefore a Cauchy sequence.

5.5 Another de�nition of p-adic Cauchy sequences

Theorem 4.

A sequence {an} in Qp is a Cauchy sequence if and only if

lim
n→∞ ∣an+1 − an∣p = 0.

Proof. Given {an} is Cauchy we have,

lim
m,n→∞ ∣am − an∣p = 0

Let m = n + 1. Then,

lim
n→∞ ∣an+1 − an∣p = 0.

Conversely, assume lim
n→∞ ∣an+1 − an∣p = 0. This means that for any ε > 0 there exists an

N ∈ N such that for n > N we have,

∣an+1 − an∣p < ε.

Then for any m > n > N, using the strong triangle inequality, we have,

∣am − an∣p = ∣am − am−1 + am−1 − am−2 +⋯ − an∣p
≤max(∣am − am−1∣p,⋯∣an+1 − an∣p) < ε

which completes the proof.

5.6 Equivalence classes of Cauchy sequences

De�nition 15. There may be several Cauchy sequences with the same limit. This
would occur if the beginning terms in the sequences {an} and {bn} were di�erent but
the in�nite �tail� of each sequence is the same, each heading to the same limit. We
would have,

∣ai − bi∣p → 0 as i→∞.

We say these two Cauchy sequences are equivalent or belong to the same equivalence
class.
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For example we could have a term in {an} of the form,

2.50 + 3.51 + 0.52 +⋯ + 4.5k + 3.5k+1 +⋯

and for the same value of n, a term in {bn} of the form,

3.50 + 1.51 + 3.52 +⋯ + 4.5k + 3.5k+1 +⋯

where beginning with the term in 5k, the two sequences are the same. In this case,
we say {an} and {bn} belong to the same equivalence class of Cauchy sequences.

5.7 Qp, a completion of Q.
De�nition 16. We de�ne Qp, the �eld of p-adic numbers, to be the completion of
Q with respect to the p−adic norm ∣x∣p. By completion we mean that every Cauchy
sequence with terms in Q has a limit in Qp.

5.8 Elements of Qp

By de�nition every p-adic number is of the form,

∞
∑
n=−m

anp
n = a−mp−m + a−m+1p−m+1 + . . . + a0 + a1p1 + a2p2 + . . .

= a−ma−m+1⋯.a0a1a2 . . .

We can form a sequence {bn} from a p-adic number thus,

b0 = a−mp−m

b1 = a−mp−m + a−m+1p−m+1

⋯
bn = a−mp−m + a−m+1p−m+1 +⋯ + akpk

bn+1 = a−mp−m + a−m+1p−m+1 +⋯ + akpk + ak+1pk+1

Since k →∞ as n→∞, we have,

lim
n→∞ ∣bn+1 − bn∣p = lim

k→∞
∣ak+1pk+1∣p

= lim
k→∞

p−(k+1)

= 0

then by Theorem 4, {bn} is a Cauchy sequence. We therefore conclude every p-adic
number is an element of Qp.
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We will see they are the only elements. That is we claim all the elements of Qp are,
according to De�nition 10 on page 14, of the form,

∞
∑
n=−m

anp
n = a−mp−m + a−m+1p−m+1 + . . . + a0 + a1p1 + a2p2 + . . .

= a−ma−m+1⋯.a0a1a2 . . .

We begin with a lemma and a reminder from elementary number theory that if a, b ∈ Z
and the gcd(a, b) = 1, then there are integers x, y such that ax + by = 1.

Lemma 5.

If x ∈ Q and ∣x∣p ≤ 1 then for any i there exists an integer α such that ∣α − x∣p ≤ p−i.
The integer α can be chosen in the the set {0,1,2,⋯, pi−1} and is unique if chosen in
this range.

Proof. Let x = a
b
be written in lowest terms and ∣x∣p ≤ 1.

Since ∣x∣p = ∣a
b
∣
p

≤ 1 then p /∣ b otherwise b = pb′ and we have ∣x∣p = ∣ a
pb′

∣
p

= p1 > 1.

Hence b and pi are relatively prime. So, as we recalled, we can �nd integers m,n such
that mb + npi = 1.
Let α = am. Then,

∣α − x∣p = ∣am − a
b
∣
p

= ∣a
b
∣
p

∣mb − 1∣p

≤ ∣mb − 1∣p since p may divide a

= ∣npi∣p
= ∣n∣pp−i

≤ p−i since p may divide n

Finally, using ∣x + y∣p ≤ max(∣x∣p, ∣y∣p), we can add a multiple of pi to α to get an
integer between 0 and pi for which ∣α − x∣p ≤ p−i still holds.

We now have the key theorem.

Theorem 6.

Every equivalence class a in Q for which ∣a∣p ≤ 1 has exactly one representative Cauchy
sequence of the form {ai} for which,
(1) 0 ≤ ai < pi for i = 1,2,3, . . .
(2) ai ≡ ai+1(mod pi) for i = 1,2,3, . . .

Proof.
We �rst prove uniqueness. If {bi} is a di�erent sequence satisfying,
(1) 0 ≤ bi < pi for i = 1,2,3, . . .
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(2) bi ≡ bi+1(mod pi) for i = 1,2,3, . . . then for one or more values of k, we have
ak /= bk. and then ak /≡ bk(mod pk) because by (1) both are less then pk so pk cannot
divide their di�erence.
But then for all i ≥ k we have both,

pk∣ai − ak ⇒ ai ≡ ak(mod pk)
pk∣bi − bk ⇒ bi ≡ bk(mod pk)

But then since ak /= bk we have ai /= bi for all i ≥ k. So, lim
i→∞

∣ai − bi∣p /= 0 so {bi} is not

in the same equivalence class as {ai}.

*****

Let {bi} be a Cauchy sequence representing a.We want to �nd an equivalent sequence
{ai} satifying (1) and (2).
Since a is the limit of the sequence {bi} or ∣bi∣p → ∣a∣p as i→∞ then ∣bi∣p ≤ 1 for all i.
Now the sequence {bi} is Cauchy so for every j ∈ N let N(j) be a positive integer
such that,

∣bi − bj ∣p ≤ p−j for all i, j > N(j). (5.8.1)

Again, since {bi} is Cauchy with the gap between successive terms becoming smaller
and smaller, we may take the sequence N(j) to be strictly increasing with j.
From Lemma 5 we can �nd integers aj, 0 ≤ aj < pj such that

∣aj − bN(j)∣p ≤
1

pj
(5.8.2)

Let us show aj ≡ aj+1(mod pj) and that the sequences {ai} and {bi} are in the same
equivalence class. Now,

∣aj+1 − bN(j)+1∣p ≤
1

pj+1
by (5.8.2) and

1

pj+1
< 1

pj

∣bN(j)+1 − bN(j)∣p ≤
1

pj
by Theorem 4 since {bn} is Cauchy

∣aj − bN(j)∣p ≤
1

pj
by (5.8.2)

Then, using the strong triangle inequality,

∣aj+1 − aj ∣p = ∣aj+1 − bN(j)+1 + bN(j)+1 − bN(j) − (aj − bN(j)∣p
≤max(∣aj+1 − bN(j)+1∣p, ∣bN(j)+1 − bN(j)∣p, ∣(aj − bN(j)∣p)

≤max( 1
pj
,
1

pj
,
1

pj
)

= 1

pj
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so pj ∣(aj+1 − aj) and we have shown aj ≡ aj+1(mod pj)

Also, choose any j. We have,

∣aj − bN(j)∣p ≤
1

pj
by (5.8.2)

∣bi − bN(j)∣p ≤
1

pj
since {bi} is Cauchy

∣ai − aj ∣p ≤
1

pj

since ai < pj and aj < pj and hence pj /∣ ai − aj and ∣ai − aj ∣p ≤ ∣pj ∣p =
1

pj
.

Accordingly, for i ≥ N(j) we have,

∣ai − bi∣p = ∣ai − aj + aj − bN(j) − (bi − bN(j))∣p
≤max(∣ai − aj ∣p, ∣aj − bN(j)∣p, ∣(bi − bN(j))∣p

≤max( 1
pj
,
1

pj
,
1

pj
)

= 1

pj

Hence, ∣ai − bi∣p → 0 as i→∞, making {bi} and {ai} equivalent sequences.

****

We can now identify the elements of Qp.
If a ∈ Qp with ∣a∣p ≤ 1, meaning p /∣ a, and {ai} is the representative Cauchy sequence
with limit a as i →∞ then since ai is such that 0 ≤ ai < pi, we can write for integers
di with 0 ≤ di ≤ p − 1,

0 < a1 < p1⇒ a1 = d0
0 < a2 < p2⇒ a2 = d0 + d1p1

0 < a3 < p3⇒ a3 = d0 + d1p1 + d2p2

⋯

So,

ai = d0 + d1p1 +⋯ + di−1pi−1, 0 ≤ di ≤ p − 1, di ∈ Z

Further, the condition ai ≡ ai+1(mod pi) for i = 1,2,3, . . . means that

ai+1 = d0 + d1p1 +⋯ + di−1pi−1 + dipi,
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since ai+1 − ai = dipi ≡ 0(mod pi), where all the �p-adic digits� d0 through di−1 are all
the same as for ai. Thus a is represented by the convergent series,

a =
∞
∑
n=0

dnp
n

Finally, if ∣a∣p > 1, meaning some power of p, say pm, is a factor in the denominator
of the rational number a then we can multiply a by that power of p, so as to get a
p-adic number apm that satis�es ∣b∣p = 1. Then we can write,

a =
∞
∑
n=−m

dnp
n

where d−m /= 0 and dn ∈ {0,1,2,3,⋯, p − 1}.
This representation of a is called the canonical p-adic expression of a. It has �nitely
many digits before the point and in�nitely many after the point. As we saw, for
example,

24

17
= 1.30 + 0.31 + 0.32 + 1.33 + 0.24 + 2.35 + 0.26 + 1.37 + 1.38 + 2.39 + . . .

= 4.1313 . . .

We have shown every element of Qp is of the form,

a =
∞
∑
n=−m

dnp
n

where dn ∈ {0,1,2,3,⋯, p − 1}
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More on p-adic numbers

6.1 Convergence Test for p-adic sequences

Lemma 7.

Let {ak} be a sequence in Qp. Then {ak} converges in Qp if and only if lim
k→∞

∣ak∣p = 0.

Proof. Suppose {ak} converges in Qp to the limit α. Then,

an =
n

∑
k=0
ak −

n−1
∑
k=0

ak → α − α = 0

This is true in both R and Qp.

Conversely, suppose ak → 0 as k →∞.
Let αn have the p-adic expansion αn =

n

∑
k=0

ak.

Then for all m,n with 0 <m < n, we have,

∣αn − αm∣p = ∣
n

∑
k=0

ak −
m

∑
k=0

ak∣p

= ∣
n

∑
k=m+1

ak∣p

≤max(∣am+1∣p,⋯, ∣an∣p)
→ 0 as m,n →∞

So the partial sums αn form a Cauchy sequence of elements of Q and hence, by
de�nition of Qp, must converge to a limit in Qp.

Note 5. Lemma 7 also tells us that every p-adic number converges in Qp since,

lim
n→∞ ∣anpn∣p = lim

n→∞
1

pn
= 0.

28
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6.2 The p-adic expansion of -1

6.2.1 First method

Let p be a prime number. Let S∞ = 1 + p + p2 + p3 + . . . Then we have,

S∞ = 1 + p + p2 + p3 + . . .
pS∞ = p + p2 + p3 + . . .

pS∞ − S∞ = −1

S∞ = −1
p − 1

−1
p − 1

= 1 + p + p2 + p3 + . . .

−1 = (p − 1) + (p − 1)p + (p − 1)p2 + (p − 1)p3 + . . .

For example,
−1 = 4 + 4.5 + 4.52 + 4.53 + . . .

6.2.2 Second Method

We �ll in the second line of the sum,

1 = 1 ⋅ p0 + 0 ⋅ p1 + 0 ⋅ p2 + 0 ⋅ p3 + . . .
−1 = a0 + a1p1 + a2p2 + a3p3 + . . .
0 = 0 ⋅ p0 + 0 ⋅ p1 + 0 ⋅ p2 + 0 ⋅ p3 + . . .

We must have a0 = p − 1 to have a 0 in the �rst column, That gives a sum of p so we
bring 1 ⋅p forward into the second column. To have a 0 in the second column we then
need a1 = p − 1 which results in carrying 1 ⋅ p2 into the third column nd so on.

6.3 x and −x in general

In general we generate the p-adic expansion of a negative number from the expansion
of its additive inverse as shown,

x = a0p0 + a1p1 + a2p2 + . . .
−x = b0p0 + b1p1 + b2p2 + . . .
0 = 0 ⋅ p0 + 0 ⋅ p1 + 0 ⋅ p2 + . . .

We need b0 = p − a0 so that the p0 column adds to p which we carry forward into the
p1 column. We then need b1 = p − a1 − 1 which gives 0 ⋅ p1 in the p1 column and we
bring forward 1 ⋅ p2 into the p2 column. All the other bi coe�cients will similarly be
bi = p − ai − 1. We �nd,

−x = (p − a0)p0 + (p − a1 − 1)p1 + (p − a2 − 1)p2 + . . .
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For example, we have 59 = 2 ⋅ 30 + 1 ⋅ 31 + 0 ⋅ 32 + 2 ⋅ 33 so that,

−59 = (3 − 2)30 + (3 − 1 − 1)31 + (3 − 0 − 1)32 + (3 − 2 − 1)33 + (3 − 1)34 + . . .
= 1 ⋅ 30 + 1 ⋅ 31 + 2 ⋅ 32 + 0 ⋅ 33 + 2 ⋅ 34 + . . .

We note that while a positive integer has a �nite number of terms in its p-adic
expansion, all negative integers, as well as rationals with a denominator greater than
1, have an in�nite number of terms in their expansion. This is most easily seen for
negative integers by multiplying the in�nite p-adic expansion of −1 by the p-adic
expansion of any positive integer.

6.4 The p-adic expansions of Square Roots

We �rst observe that not all square roots have p-adic expansions in all primes. In
general if, √

x = a0p0 + a1p1 + a2p2 + . . .
then, squaring, x ≡ a20(mod p)
Solutions of such equivalences are studied in number theory in a topic called quadratic
residues and the equivalence is normally written x2 ≡ a(mod p). If the equivalence
has a solution, we say a is a quadratic residue of p.

To �nd the quadratic residues of any prime p we square 1,2,3, . . . ,
p − 1

2
and take

modulus p to see if we have an x and an a such that x2 ≡ a(mod p).
Let's take p = 11. We have,

12 ≡ 1(mod 11)
22 ≡ 4(mod 11)
32 ≡ 9(mod 11)
42 ≡ 5(mod 11)
52 ≡ 3(mod 11)

The values of a such that there is an x such that x2 ≡ a(mod 11) are 1,4,9,5, and 3.

This means, for numbers less than 11, we can �nd the 11-adic expansions of only
the square roots of 1,4,9,5,3. Of course, there are an in�nitely many other values
since (11k + 1)2 ≡ 1(mod 11), (11k + 2)2 ≡ 4(mod 11), etc.
Example 7. Let's �nd the 7-adic expansion of

√
2. Note 2 is a quadratic residue of

7 since 32 ≡ 2(mod 7). In each step we operate mod 7k, k = 1,2,3, . . . . Let,

√
2 = a0 + a1 ⋅ 7 + a2 ⋅ 72 + . . .

Square: 2 ≡ a20(mod 7)
⇒ a0 = 3,4
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re�ecting the fact that if x2 = 2 then x = ±
√
2. Let's take a0 = 3.

√
2 = 3 + a ⋅ 7 +⋯

Square: 2 = 9 + 6 ⋅ 7a1(mod 72)
7 + 42a1 ≡ 0(mod 72)

a1 = 1

We now have, (where we replace 2 ⋅ 3 with 7 − 1)

√
2 = 3 + 1 ⋅ 7 + a2 ⋅ 72 +⋯

Square: 2 = 9 + 1 ⋅ 72 + 2 ⋅ 3 ⋅ 7 + 2 ⋅ 3 ⋅ a2 ⋅ 72(mod 73)
7 + 72 + 72 − 7 − a2 ⋅ 72 ≡ 0(mod 73)

(2 − a2).72 ≡ 0(mod 73)
a2 = 2

Then,

√
2 = 3 + 1.7 + 2 ⋅ 72 + a3 ⋅ 73 +⋯
. . .

a3 = 6

We then have, √
2 = 3 + 1 ⋅ 71 + 2 ⋅ 72 + 6 ⋅ 73 + . . .

6.5 The p-adic expansions of Complex Numbers

The complex numbers are de�ned by,

C = {a + bi ∣ a, b ∈ R, i =
√
−1}

We know how to �nd the p-adic expansions of a, b ∈ R, so let's address i =
√
−1. We

choose p = 5. Let,

√
−1 =

√
4 + 4 ⋅ 51 + 4 ⋅ 52 + 4 ⋅ 53 +⋯ = d0 + d1 ⋅ 51 + d2 ⋅ 52 + d3 ⋅ 53 +⋯

Squaring,
4 + 4 ⋅ 51 + 4 ⋅ 52 + 4 ⋅ 53 +⋯ = d20 + 2 ⋅ d0 ⋅ d1.51 +⋯

So d20 = 4 and d0 = ±2 and we choose d0 = 2 to have,

4 + 4 ⋅ 51 +⋯ = 4 + 4d1 ⋅ 5 +⋯

so we must have d1 = 1 to give,
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4 + 4 ⋅ 51 + 4 ⋅ 52 +⋯ = (2 + 1 ⋅ 51 + d2 ⋅ 52 +⋯)2

= 4 + 4 ⋅ 51 + (4d2 + 1) ⋅ 52 +⋯

which gives d2 = 2 to give,

(4d2 + 1) ⋅ 52 = 9 ⋅ 52 = 4.52 + 1 ⋅ 53.

Continuing in this fashion we �nd the 5-adic expansion of i =
√
−1 is,

i = 0.2121342303220413240 . . .

****

The p-adic expansion of −1 in Qp requires being able to solve,

√
−1 =

√
(p − 1) + (p − 1)p1 + (p − 1)p2 + . . .

By putting,

√
(p − 1) + (p − 1)p1 + (p − 1)p2 + . . . = d0 + d1p1 + d2p2 + . . .

Squaring, we need to �nd d0 from,

(p − 1) + (p − 1)p1 + (p − 1)p2 + . . . = d20 + 2d0d1p
1 +⋯

Therefore p − 1 must be a square, namely, p = 5,17,37, . . . so that p − 1 = 4,16,36, . . .
and d0 = 2,4,6, . . . .
This is really interesting since C is all we need to �nd roots of ploynomials with
coe�cients in C, which includes R, and yet C is contained in an in�nite number of
�elds, Qp.
Mathematicians initially resisted the concept of imaginary numbers but then found
them to be enormously useful in proving theorems, yet now along comes these p-adic
numbers and their �elds, Qp, many of which include C. Will they also prove to be
useful? Can some theorems that have for years, even centuries, resisted solutions
using N,Z,R,C, be proved using Qp?
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p-adic expansions of rationals -
revisited

7.1 Key Theorem

De�nition 17. A real rational number has a purely periodic decimal expansion if it

consists of only a repeated pattern of digits like
1

3
= 0.3.3.3. . . . = 3. A similar de�nition

applies to p-adics, so
24

17
= 4.13 is not purely periodic, but −1 = p − 1 is.

Note 6. A purely periodic number such as d0d1d2 expands as,

d0p
0 + d1p1 + d2p2d0p3 + d1p4 + d2p5 + d0p6 + d1p7 +⋯

= (d0p0 + d1p1 + d2p2) + p3(d0p0 + d1p1 + d2p2) + p6(d0p0 + d1p1 + d2p2) +⋯
= (d0p0 + d1p1 + d2p2)(1 + p3 + p6 +⋯)

where (1 + p3 + p6 +⋯) is an in�nite geometric series.

In Section 4.3 we showed a method of �nding the p-adic expansions of rational
numbers. The following describes another method.
We focus �rst on numbers with p-adic absolute value 1, which are p-adic expansions
of the form b0 + b1 ⋅ p1 + b2 ⋅ p2 + . . . ,0 ≤ bi ≤ p − 1, b0 /= 0.

Theorem 8.

A rational number with p-adic absolute value 1 has a purely periodic expansion if and
only if it lies in the real interval [−1,0).

Proof. A purely periodic p-adic expansion having p-adic absolute value 1 with a re-
peating block of k digits looks like n0n1 . . . nk−1 where 0 ≤ ni ≤ p − 1 and n0 /= 0.

33
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We can evaluate this as a fraction by summing a geometric series (see Note 6).

n0n1 . . . nk−1 = 1(n0n1 . . . nk−1) + pk(n0n1 . . . nk−1) + p2k(n0n1 . . . nk−1) + . . .)
= (n0n1 . . . nk−1)(1 + pk + p2k + . . .)
= n0n1 . . . nk−1

1 − pk . (7.1.1)

The numerator of (7.1.1) is the p-adic expansion of a positive integer between 1 and
pk−1 and is not 0 since n /= 0. We are dividing it by −(pk − 1) so the purely periodic
expansion n0n1 . . . nk−1 is a rational number lying in the interval [−1,0).

Conversely, let r be a rational number with p-adic absolute value 1 that lies in the
interval [−1,0). We will show r has the form (7.1.1) and then the calculations that
led to (7.1.1) can be read in reverse to see r has a purely periodic p-adic expansion.

Since ∣r∣p = 1 and r < 0 we can write r = a
b
with numerator a < 0 and denominator

b ≥ 1 that are both not divisible by p. Since p and b are relatively prime, from
elementary number theory we have pk ≡ 1(mod b) for some k ≥ 1. Thus pk = 1+ bc for
some positive integer c. So,

r = a
b
= ac
bc

= −ac
1 − pk

Put N = −ac. Since a < 0 then N ∈ N. From −1 ≤ r < 0 we get −1 ≤ N

1 − pk < 0, so

0 < N ≤ pk − 1. Thus the p-adic expansion of N has at most k digits or

N = n0 + n1p + n2p
2 + . . . + nk−1pk−1

where the digits ni are between 0 and p − 1. Hence r = N

1 − pk has the form (7.1.1).

Since a and c are not divisible by p, ∣N ∣p = ∣ − ac∣p = 1 so n0 /= 0.

We can now �nd the p-adic expansions of rationals in the interval [−1,0).

7.2 Examples

Notation 4. If we write a p-adic number as 20011 we need to state the value of p.
Hence we add that value as a subscript. For example,

200113 = 2 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34

7.2.1 p-adic expansion of negative rationals in [−1,0)

We start with − 5

11
with p = 3. Its 3-adic absolute value ∣− 5

11
∣
3

= 1.

From the proof of Theorem 4 if a rational number r lying in the interval [−1,0) has



7.2. Examples 35

the form r = a
b
then there is a k for which pk ≡ 1(mod b). So we solve 3k ≡ 1(mod 11)

to �nd k = 5 and then 35 − 1 = 11 ⋅ 22, so we have,

− 5

11
= − 5

11
⋅ 22
22

= 110

1 − 35

Now 110 = 2 ⋅ 30 + 0 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + . . . = 200113 so, by reversing (7.1.1)
of the theorem,

− 5

11
= 200113

1 − 35
= 20011

7.2.2 p-adic expansion of positive rationals in (0,1]
We can �nd the p-adic expansion of r = a

b
∈ (0,1] by negating the expansion of

a

b
∈ [−1,0). Consider 2

5
and p = 3.

We solve 3k ≡ 1(mod 3) to �nd k = 4. Then 34 − 1 = 80 = 5 ⋅ 16. So,

−2
5
= −2

5
⋅ 16
16

= 32

1 − 34
= 21013
1 − 34

= 21013

Then we negate using −x = (p − a0)p0 + (p − a1 − 1)p1 + . . . as we found in Section 6.3
to �nd

2

5
= 1 ⋅ 30 + 1 ⋅ 31 + 2 ⋅ 32 + 1 ⋅ 33 + 0 ⋅ 34 + . . . = 112103

7.2.3 p-adic expansion of all rationals

We can �nd the p-adic expansion of rationals r /∈ [−1,0) by separating o� an integer,
doing the calculation for an r ∈ [−1,0) and then adding back in the p-adic expansion
of the integer.

Consider r = 18

5
= 4 − 2

5
where p = 3. We have from the previous example,

−2
5
= 21013 and we also have,

4 = 1 ⋅ 30 + 1 ⋅ 31 = 113

Thus, 4 − 2

5
= 21012101 . . .

+ 11

⇒ 18

5
= 001121013

7.2.4 Case: p divides the denominator

Consider r = 79

18
and p = 3.

Now r = 79

18
= 5 − 11

18
so we �nd the 3-adic expansion of −11

18
and add 5 = 2 ⋅ 30 + 1 ⋅ 31.
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But 3∣18 so we cannot solve 3k ≡ 1(mod 3) for k.
We write,

−11
18

= 1

9
(−11

2
) = 1

9
⋅ (−5 − 1

2
)

We proceed as follows.

(1) Find the 3-adic expansion of −1
2
.

−1
2
= 2−1(−1)

= 2−1(2 ⋅ 30 + 2 ⋅ 31 + 2 ⋅ 32 + . . .)
= 1 + 1 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + . . .

(2) Find the 3-adic expansion of -5.

−5 = 5(−1) = 5(2 ⋅ 30 + 2 ⋅ 31 + 2 ⋅ 32 + . . .)
= 10 ⋅ 30 + 10 ⋅ 31 + 10 ⋅ 32 + 10 ⋅ 33 + . . .
= (1 + 32)(1.30 + 1 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + 1 ⋅ 35 + . . .
= 1.30 + 1 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + 1 ⋅ 35 + . . .

+ 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + 1 ⋅ 35 + . . .
= 1 ⋅ 30 + 1 ⋅ 31 + 2 ⋅ 32 + 2 ⋅ 33 + 2 ⋅ 34 + . . .

(3) Calculate 3-adic expansion of −5 − 1

2

−1
2
= 1 + 1 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + . . .

−5 = 1 ⋅ 30 + 1 ⋅ 31 + 2 ⋅ 32 + 2 ⋅ 33 + 2 ⋅ 34 + . . .

−5 − 1

2
= 2 ⋅ 30 + 2 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + . . .

(4) Multiply last result by
1

9
= 3−2

1

9
(−5 − 1

2
) = 3−2(2 ⋅ 30 + 2 ⋅ 31 + 0 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + . . .)

= 2 ⋅ 3−2 + 2 ⋅ 3−1 + 0 ⋅ 30 + 1 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + . . .

(5) Add 5 = 2 ⋅ 30 + 1.31 to previous result.

79

18
= 2 ⋅ 3−2 + 2 ⋅ 3−1 + 0 ⋅ 30 + 1 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34 + . . .

+ 2 ⋅ 30 + 1 ⋅ 31

= 2 ⋅ 3−2 + 2 ⋅ 3−1 + 2 ⋅ 30 + 2 ⋅ 31 + 1 ⋅ 32 + 1 ⋅ 33 + 1 ⋅ 34

= 22.221 . . .
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Hensel's Lemma

We study the solutions modulus p of polynomial equations f(x) =
n

∑
j=0
cjxj = 0, cj ∈ Z,

where f(x) has derivative f ′(x) =
n

∑
j=1
jcjxj−1.

Lemma 9. (Hensel)
Given a prime p and a polynomial f(x) with integer coe�cients, if a is a solution to

f(x) ≡ 0(mod pn−1), n ≥ 2

then if gcd(p, f ′(a)) = 1, there is a solution to

f(x) ≡ 0(mod pn)

of the form b = a + kpn−1 where k satis�es,

f(a)
pn−1

+ kf ′(a) ≡ 0(mod p)

Proof. We need to show there is a b = a + kpn−1 such that f(b) ≡ 0(mod pn) where k
satis�es,

f(a)
pn−1

+ kf ′(a) ≡ 0(mod p)

Since f(a) ≡ 0(mod pn−1) then pn−1∣f(a) so f(a)
pn−1

∈ Z.
Consider the linear congruence,

f ′(a)y ≡ −f(a)
pn−1

(mod p)

Since gcd(f ′(a), p) = 1, this has a unique solution for y which we shall call k. Then,

f ′(a)k ≡ −f(a)
pn−1

(mod p)

37
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We have,

f(a) ≡ 0(mod pn−1) (given). (8.0.1)

f ′(a)k ≡ −f(a)
pn−1

(mod p) (8.0.2)

Let b = a + kpn−1 and f(x) =
n

∑
i=0
cixi, so f ′(x) =

n

∑
i=1
icixi−1. Then,

f(b) = f(a + kpn−1)

=
n

∑
i=0
ci(a + kpn−1)i

=
n

∑
i=0
ci(ai + iai−1kpn−1 + (i

2
)ai−2k2p2(n−1) + . . .)

where we used the binomial theorem. Now all the remaining terms as well as the one
in ai−2 are 0(mod pn), giving,

f(b) ≡
n

∑
i=0
cia

i + kpn−1
n

∑
i=1
iai−1 (mod pn) (8.0.3)

⇒ f(b) ≡ f(a) + kpn−1f ′(a)(mod pn) (8.0.4)

By Equation (8.0.2),

kf ′(a) ≡ −f(a)
pn−1

(mod p)

⇒ pn−1(kf ′(a)) ≡ −f(a)(mod pn), so by equation (8.0.4),

f(b) ≡ f(a) − f(a)(mod pn) giving
f(b) ≡ 0(mod pn)

An equivalent statement of the Lemma is easily obtained from the above. The
statement

f(a) ≡ 0(mod pn−1)⇒ there is a b such that f(b) ≡ 0(mod pn)

gives,

f(a0) ≡ 0(mod p)⇒ there is an a1 such that f(a1) ≡ 0(mod p2)
f(a2) ≡ 0(mod p2)⇒ there is an a2 such that f(a2) ≡ 0(mod p3)
etc.

So we have a sequence {an} such that f(an) ≡ 0(mod pn+1).
Also, b = a+kpn−1⇒ b ≡ a(mod pn−1) identi�es the sequence as an+1 ≡ an(mod pn+1).



39

We can therefore restate the theorem as:
Given a polynomial f(x) with integer coe�cients and,

f(a) ≡ 0(mod p) and f ′(a) /≡ 0(mod p),

were a ∈ Z and p is a prime number, then we have solutions mod pn+1 for all n ≥ 0,
namely,

f(an) ≡ 0(mod pn+1) (8.0.5)

an+1 ≡ an(mod pn+1) (8.0.6)

In other words we have a sequence {an} = {a0 = a, a1, a2, . . .} with each element of the
sequence unique mod pn+1.

Example 8. Consider the polynomial f(x) = x2 + 1 which has integer coe�cients. It
has two solutions 2,3(mod 5) that is f(2) ≡ 4 + 1(mod 5) ≡ 0(mod5) and similarly,
f(3) ≡ 0(mod5). Further f ′(x) = 2x so neither f ′(2) = 4 nor f ′(3) = 6 are divisible
by 5. Then we can apply Hensel's Lemma.
Take a = 2. Then we can start our sequence thus: (a = 2, a1, a2, . . .)
Now, by (8.0.6) a1 ≡ 2(mod 5)⇒ a1 = 2 + 5t. Then, f(2 + 5t) = (2 + 5t)2 + 1,gives,

4 + 20t + 52t + 1 ≡ 0(mod 52) by (8.0.5)

⇒ 5 + 20t ≡ 0(mod 52)
⇒ t = 1

⇒ a1 = 2 + 5 ⋅ 1 = 7

We repeat the cycle.

a2 ≡ a1(mod 52) by (8.0.6)

⇒ a2 = 7 + 25t

⇒ f(a2) = (7 + 25t)2 + 1 ≡ 0(mod 53) by (8.0.5)

⇒ t = 2

⇒ a2 = 7 + 25 ⋅ 2 = 57

We can continue in this way for as long as we like. We have the sequence beginning
(2,7,57, . . .). But,

2 = 2

7 = 2 + 1 ⋅ 51

57 = 2 + 1 ⋅ 5 + 2 ⋅ 52

The roots of f(x) = x2 + 1 = 0 are ±
√
−1 = ±i. We have produced the 5-adic expansion

of √
−1 = 2 + 1 ⋅ 51 + 2 ⋅ 52 + . . . .
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Note that any element of the sequence of partial sums of this expansion is a root of
f(x) = x2 + 1 modulo 5.
We could repeat the above analysis for a = 3 and that would give us the 5-adic expan-
sion of −

√
−1 = −i.

We begin to see the power of Hensel's Lemma. Provided we have an a such that
f(a) ≡ 0(mod p) for a polynomial f(x) with integer coe�cients and provided the
value of the derivative f ′(a) /≡ 0(mod p) then we can produce an in�nite number of
other roots and their sequence will be the partial sums of the p-adic expansion of the
root or roots of the equation. Let's do another example,

Example 9. Consider f(x) = x2 − 2, which has two solutions ±3(mod 7).
We note f ′(x) = 2x so both 3 and -3 satisfy f ′(a) /≡ 0(mod 7).
One sequence starts (3, a1, a2, . . .). Now a1 ≡ 3(mod 7) ⇒ a1 = 3 + 7t. Then, using
(8.0.5) and (8.0.6),

(3 + 7t)2 − 2 ≡ 0(mod72)
⇒ t = 1

⇒ a1 = 3 + 7 ⋅ 1 = 10

⇒ a2 ≡ a1(mod72)
⇒ a2 = 10 + 49t

⇒ (10 + 49t)2 − 2 ≡ 0(mod 73)
⇒ t = 2)
⇒ a2 = 10 + 49 ⋅ 2 = 108

This sequence is (3,10,108,⋯) and we have the partial sums,

a = 3

a1 = 10 = 3 + 1 ⋅ 7
a2 = 108 = 3 + 1 ⋅ 7 + 2 ⋅ 72

giving the 7-adic expansion of
√
2 as,

√
2 = 3 + 1 ⋅ 7 + 2 ⋅ 72 + . . . .

Example 10. Consider f(x) = 2x + 1, with p = 3.
Then f(1) ≡ 3(mod 3) = 0.
We note f ′(x) = 2 so 1 satis�es f ′(a) /≡ 0(mod 3).
The sequence starts (1, a1, a2, . . .). Now a1 ≡ 1(mod 3) ⇒ a1 = 1 + 3t. Then, using
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(8.0.5) and (8.0.6),

2(1 + 3t) + 1 ≡ 0(mod 32)
⇒ t = 1

⇒ a1 = 1 + 3 ⋅ 1 = 4.

⇒ a2 ≡ a1(mod 32)
⇒ a2 = 4 + 9t

⇒ 2(4 + 9t) + 1 ≡ 0(mod 33)
⇒ t = 1

⇒ a2 = 4 + 9 ⋅ 1 = 13

This sequence is (1,4,13,⋯) and we have the partial sums,

a = 1

a1 = 4 = 1 + 1 ⋅ 3
a2 = 13 = 1 + 1 ⋅ 3 + 1 ⋅ 32

giving the 3-adic expansion of −1
2
as,

−1
2
= 1 + 1 ⋅ 3 + 1 ⋅ 32 + . . . .

Example 11. Solve x2 + 3x + 17 ≡ 0(mod 315).
Note 315 = 32 ⋅ 5 ⋅ 7.
We choose the highest power of the prime factors of 315 and proceed as follows to
solve x2 + 3x + 17 ≡ 0(mod 9).
Now Hensel's Lemma gives us �lifts� from solutions of such equivalences at modulus
pn−1 to solutions modulus pn.
So we �rst consider,

x2 + 3x + 17 ≡ 0(mod 3)
⇒ x2 + 2 ≡ 0(mod 3)
⇒ x0 = 1, x0 = 2.

We start with x0 = 1 and check f ′(x) = 2x + 3⇒ f ′(1) = 5 so gcd(3,5) = 1.
Again using (8.0.5) and (8.0.6), we solve,

kf ′(1) ≡ −f(1)
3

(mod 3)

5k ≡ −7(mod 3)
5k ≡ 2(mod 3)
k = 1

x = x0 + 3k = 4
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So x = 4 is one solution to x2 + 3x + 17 ≡ 0(mod 9).
Now we put x0 = 2, the other solution to x2 + 3x + 17 ≡ 0(mod 3), and repeat the
�lifting� process.
We check gcd(3, f ′(2)) = 1 is true and then solve,

kf ′(2) ≡ −f(2)
3

(mod 3)

7k ≡ −27
3

(mod 3)

k = 0

so x = x0 + 3k = 2.
We do not need to continue the lifting process but if, say, instead of a factor of 32 we
had a factor of 33 then we would perform another �lift�. We move on to the factors 5
and 7.

x2 + 3x + 17 ≡ 0(mod 5)
⇒ x2 + 3x + 2 ≡ 0(mod 5)

⇒ x = 3,4

and

x2 + 3x + 17 ≡ 0(mod 7)
⇒ x2 + 3x + 3 ≡ 0(mod 7)

⇒ x = 1,3

We need to solve the 8 combinations of,

x ≡ 2,3(mod 9), x ≡ 3,4(mod 5), x ≡ 1,3(mod 7).

We use the Chinese Remainder Theorem which shows us how to solve systems of
linear congruences.

Theorem 10. Chinese Remainder Theorem

Let m1,m2, . . . ,mr be positive integers that are relatively prime in pairs, that is
gcd(mi,mj) = 1 if mi ≠mj for all mi,mj ∈ {m1,m2, . . . ,mr}.
Then for any integers a1, a2, . . . , ar the r simultaneous congruences,

x ≡ ai(mod mi), i = 1,2, . . . , r

have a common solution and any two solutions are congruent modulo the product,

m =
r

∏
i=1
mi =m1m2⋯mr
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The in�nite number of solutions is given by,

x0 = ( m
m1

) b1a1 + ( m
m2

) b2a2 + . . . + ( m
mr

) brar

where each bi is the solution of the linear congruence

(m
mi

) bi ≡ 1(mod mi)

Let's just solve x ≡ 2(mod 9), x ≡ 3(mod5), x ≡ 1(mod7) and leave the rest to
you! We also leave to you �nding the other values of bi by inspection. The �rst one

for ( m
m1

) b1 ≡ 1(mod m1) is,

35b1 ≡ 1(mod 9)
8b1 ≡ 1(mod 9)
b1 = 8

Using the notation of the theorem,

m = 315,m1 = 9,m2 = 5,m3 = 9
m

m1

= 35,
m

m2

= 63,
m

m3

= 45,m = 315

a1 = 2, a2 = 3, a3 = 1

b1 = 8, b2 = 2, b3 = 5

x0 =
3

∑
i=1

m

mi

biai

x0 ≡ 8 ⋅ 35 ⋅ 2 + 2 ⋅ 63 ⋅ 3 + 5 ⋅ 45 ⋅ 7(mod 315)
≡ 1163(mod 315)
≡ 218(mod315)

Other solutions are 29, 38, 94, 148, 274, 283, all mod 315.
For instance with x=29,

x2 + 3x + 17 = 292 + 3 ⋅ 29 + 17 = 945 = 3 ⋅ 315 ≡ 0(mod 315)


