GCE AS MARKING SCHEME

SUMMER 2016

CHEMISTRY - NEW AS UNIT 1
2410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE CHEMISTRY
 SUMMER 2016 MARK SCHEME
 AS UNIT 1 THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS
 MARK SCHEME
 GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.
Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
$\begin{array}{ll}\text { cao } & =\text { correct answer only } \\ \text { ecf } & =\quad \text { error carried forward }\end{array}$
bod = benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8.	(a)			$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \text { (1) }$ Any of the following for (1) - During this process the iron(III) ions (in $\mathrm{Fe}_{2} \mathrm{O}_{3}$) gain electrons (to produce iron); reduction is a process of electron gain - The oxidation number of iron is reduced from +3 to $0 ; a$ reduction in (positive) oxidation number is reduction - Carbon monoxide loses electrons; oxidation is a process of electron loss - The oxidation number of carbon is increased from +2 to +4 ; an increase in (positive) oxidation number is oxidation - $\mathrm{Fe}_{2} \mathrm{O}_{3}$ loses oxygen and CO gains oxygen	2			2		
	(b)		$\begin{align*} & 350 \text { tonnes of which } 0.02 \% \text { is sulfur } \\ & \therefore \text { Mass of sulfur }=\frac{350 \times 0.02}{100}=0.07 \text { tonnes } \tag{1}\\ & M \mathrm{Mg}+\mathrm{S} \rightarrow \mathrm{MgS} \end{align*}$	2			2	1		
	(c)		Cubic structure shows alternating different ions (1) Ions labelled as Mg^{2+} and S^{2-} (1)		2		2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9.	(a)	(i)		$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathbf{1 8 [O]} \rightarrow \mathbf{6}(\mathrm{COOH})_{2}+5 \mathrm{H}_{2} \mathrm{O}$	1			1		
		(ii)	Mass of the anhydrous acid $=4.05 \mathrm{~g}$ \therefore Moles of the anhydrous acid $=4.05 / 90=0.045$ (1) Mass of the water lost $=1.62 \mathrm{~g}$ \therefore Moles of water $=1.62 / 18.02=0.090$ (1) Mole ratio acid : water is $1: 2$ Value of x is 2 (1) If no working is shown award (1) for the correct answer		3		3	2		
	(b)		Sample of potassium methanoate not pure / not all HCOOK reacted (1) Inadequate heating / not heated for long enough / not heated at a high enough temperature (1)			2	2		2	
	(c)	(i)	Allow to settle / test the filtrate (1) Add a few drops of calcium chloride solution and see if a precipitate forms / cloudiness (1)			2	2		2	
		(ii)	Moles of calcium oxalate $=2.49 / 128=0.0195$ (1) \therefore Number of moles of potassium oxalate is also 0.0195 Mass of potassium oxalate is $0.0195 \times 166=3.24 \mathrm{~g}$ (1) $\therefore \%$ of potassium oxalate in mixture $=3.24 \times 100 / 4.69$ $=69.1$ (to 3 sig. figs.) (1) (accept values from 68.9 to 69.1 depending on use of significant figures during the calculation) ecf possible		3		3	1		
			Question 9 total	1	6	4	11	3	4	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10.	(a)			$\begin{align*} & \text { Total percentage of }{ }^{29} \mathrm{Si} \text { and }{ }^{30} \mathrm{Si} \text { is } 100-92.2=7.8 \\ & \% \text { of }{ }^{29} \mathrm{Si}=\frac{2 \times 7.8}{3}=5.2 \text { and } \% \text { of }{ }^{30} \mathrm{Si}=\frac{1 \times 7.8}{3}=2.6 \tag{1}\\ & \therefore \mathrm{~A}_{r}=\frac{(28 \times 92.2)+(29 \times 5.2)+(30 \times 2.6)}{100}(1) \tag{1}\\ & \therefore \mathrm{A}_{r}=\frac{2582+151+78}{100}=\frac{2811}{100}=28.1(1) \tag{1} \end{align*}$ Answer only - no mark ecf possible		2	1	3	1	
	(b)	(i)	Tetrahedral	1			1			
		(ii)	There are no free electrons or ions to carry the charge	1			1			
		(iii)	Any of the following - There are no electronegativity differences in the $\mathrm{Si}-\mathrm{Si}$ bond - All the bonding electrons are shared equally between the four Si atoms - Si cannot lose or gain 4 electrons			1	1			

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
10.	(c)			$M_{\mathrm{r}} \mathrm{HF}$ is 20.01 Solution contains 500 g HF in 1000 g solution (using $V=m / D$) 1000 g of the solution has a volume of $855 \mathrm{~cm}^{3}$ or Number of moles of HF in $1000 \mathrm{~g} / 855 \mathrm{~cm}^{3}$ solution is $\begin{equation*} \frac{500}{20.01}=24.98 \tag{1} \end{equation*}$ $855 \mathrm{~cm}^{3}$ contain 24.98 mol \therefore Concentration of HF $=29.2 \mathrm{~mol} \mathrm{dm}^{-3}$ ecf possible		2		2	2	
	(d)	(i)	(There are 6 bonding pairs of electrons and no lone pairs -) position of minimum repulsion taken up (1) Drawing shows clear octahedral shape Bond angle is 90° equatorial / equatorial or 90° equatorial / vertical (accept 180° if vertical bonds only considered) (1)	1	2		3			

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
11.	(a)				Diagram should show: Polarisation of $\mathrm{N}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ bonds in 2-aminoethanol (1) Lone pairs of electrons used in hydrogen bonding to nitrogen or oxygen atoms (1) Polarisation of water molecules (1) Hydrogen bonds indicated between 2-aminoethanol and water molecules using relevant nitrogen / oxygen and hydrogen atoms If no water then 3 marks maximum	2	2		4		
	(b)			The forces of attraction between molecules of 2-aminoethanol are stronger than the attractive forces between molecules of 1,2-diaminoethane (as the former has a higher boiling temperature) (1) This suggests that intermolecular hydrogen bonding between / involving O and H is stronger than the hydrogen bonding between N and H (1) This is (probably) due to a greater electronegativity difference between O and H than between N and $\mathrm{H} /$ O more electronegative than $\mathrm{N} /$ size considerations (1)		1	2	3			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12.	(b)						2	2	2	
	(c)		As the group is descended the bond energies decrease and the wavelengths increase / astatine is below iodine in the Periodic Table $/ \lambda_{\text {max }}>400 \mathrm{~nm}$ (1) coloured gas linked with the visible region			2	2			
			Question 12 total	1	7	5	13	3	4	

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
1. to 7.	9	1	0	10	2	0
8.	9	7	0	16	2	2
9.	1	6	4	11	3	4
10.	3	9	5	17	8	0
11.	1	7	2	13	0	6
12.	36	16	80	13	4	
Totals					16	

WJEC GCE Chemistry AS Unit 1 MS/Summer 2016

