CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 22 MARK SCHEME

Section A

Question Number	Correct Answer	Mark
1(a)	A	1
Question Number	Correct Answer	Mark
1(b)	C	1
Question Number	Correct Answer	Mark
2	B	1
Question Number	Correct Answer	Mark
3	D	1
Question Number	Correct Answer	Mark
4	D	1
Question Number	Correct Answer	Mark
5	B	1
Question Number	Correct Answer	Mark
6(a)	C	1
Question Number	Correct Answer	Mark
6(b)	B	1
Question Number	Correct Answer	Mark
6(c)	D	1
Question Number	Correct Answer	Mark
7	A	1
Question Number	Correct Answer	Mark
8	C	1
Question Number	Correct Answer	Mark
9	B	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 22 MARK SCHEME

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	C	$\mathbf{1}$

Question 11: N/A

Question 12: N/A

Question 13: N/A

Question 14: N/A

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (a)}$	(It has) three (moles of) COOH groups /three (moles of) carboxylic acid groups / three (moles of) protons /three (moles of) H^{+}/it is tribasic / three acid groups/ three (moles of) replaceable hydrogens/triprotic	'carbonyl'/'carboxylate'	$\mathbf{1}$
	ALLOW Three acid groups		

Question Number	Acceptable Answers	Reject	Mark
15(b)(i)	FIRST, CHECK THE FINAL ANSWER IF answer $=+546\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ award 2 marks " 546 " ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) scores (1) as sign omitted) $\begin{align*} &\left(\Delta \mathrm{S}_{\text {system }}^{\ominus}=\right.)[200.5+(3 \times 213.6)+(3 \\ &\times 69.9)] \\ &-[199.9+(3 \times 101.7)] \\ &= {[+1051]-[+505] } \tag{1}\\ &=+546\left(1 \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{align*}$ Allow $\boldsymbol{+} 0.546 \mathbf{k J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{\mathbf{1}}$ 2nd mark is CQ on entropy values used for example EITHER Omission of factor of $x 3$ for some or all substances in the equation OR The use of one incorrect entropy value(s) from the data book OR One missing value Note If two or more of the above three errors are made together, (0) awarded. IGNORE sf except 1 sf	Incorrect units (no 2nd mark)	2

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Acceptable Answers \& Reject \& Mark

\hline 15(b)(ii) \& \begin{tabular}{l}
First mark

Gas formed (from solid)

OR

Liquid formed (from solid)

OR

Gas and liquid formed (from solid)

Second mark

EITHER

More moles of product than reactants / more moles formed

OR

4 mol (of reactants) to 7 mol (of products)

OR

4 'molecules' to 7 'molecules'

NOTE:

If specific numbers are stated, these must be correct (ie $4 \rightarrow 7$)

OR

Increase in disorder / increase in ways of arranging particles

IGNORE `entropy increases'

NOTE:

Both points may be made in the same sentence

 \&

Just 'more product' / 'more particles formed'

2 substances going to 3 substances
\end{tabular} \& 2

\hline
\end{tabular}

Question Number	Acceptable Answers	Reject	Mark
15(b)(iii)	$\begin{align*} \left(\Delta S_{\text {surroundings }}^{\theta}\right. & =) \frac{-\Delta H}{T} O R \frac{-70000}{298} \\ & =-234.8993289 \tag{1}\\ & =-235 \mathbf{J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{\mathbf{- 1}} \tag{1} \end{align*}$ OR $\left(\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=\right) \frac{-\Delta \mathrm{H}}{\mathrm{~T}} \text { OR } \frac{-70}{298}$ $\begin{equation*} =-0.235 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \tag{1} \end{equation*}$ IGNORE sf except 1 sf NOTE: Correct units are required for the award of the second mark +235 with units scores	Incorrect rounding (e.g. -234 / -234.89) no 2nd mark +235 with no units (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
15(b)(iv)	$\begin{aligned} &\left(\Delta \mathrm{S}_{\text {total }}^{\ominus}\right.\left.=\Delta \mathrm{S}_{\text {system }}^{\ominus}+\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}\right) \\ &=(+546)+(-235) \\ &=(+) 311\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & \text { OR }=(+) 0.311 \mathbf{~ k J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{-\mathbf{1}} \\ & \mathrm{CQ} \text { on (i) } \end{aligned}$ IGNORE sf except 1 sf	Incorrect units	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5 (b) (v)}$	Positive so feasible / spontaneous / will occur / reaction goes / reacts (at 298 K)		1
	NOTE: LOOK BACK at answer to (b)(iv) IF answer to (b)(iv) has a positive sign (the + sign can be stated or implied) THEN ALLOW JUST feasible / spontaneous / will occur / reaction goes / reacts (at 298 K) Mark CQ on sign of answer to (iv)		

(Total 9 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6 (a) (i)}$	$\mathrm{K}_{\mathrm{w}} \quad=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$ Inclusion of $\left[\mathrm{H}_{2} \mathrm{O}\right]$	$\mathbf{1}$	
$\mathrm{OR}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right]$			
$\mathrm{K}_{\mathrm{w}} \quad$State symbols are not required IGNORE any incorrect state symbols			

Question Number	Acceptable Answers	Reject	Mark
16(a)(ii)	FIRST, CHECK THE FINAL ANSWER IF answer $\mathrm{pH}=11.875 / 11.88 /$ 11.9/12 award 2 marks IGNORE sf except 1 sf $\begin{align*} {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} } & =\frac{1.00 \times 10^{-14}}{0.00750} \\ & =1.3333 \times 10^{-12} \\ & =1.33 \times 10^{-12} \tag{1}\\ & \left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{align*}$ ALLOW first mark for just $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\left[\mathrm{K}_{\underline{\underline{w}}}\right.} \\ & \left.\quad \begin{array}{rl} \mathrm{K} \end{array}\right] \\ & \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=11.875 \tag{1}\\ & \end{align*}$ OR $\begin{align*} & \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=2.12 \tag{1}\\ & \mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH} \\ & \mathrm{pH}=11.88 / 11.9 \tag{1} \end{align*}$ Second mark only awarded CQ if pH between 8 and 14		2

Question Number	Acceptable Answers	Reject	Mark
16(c)(i)	(Weak) dissociates / ionizes to a small extent OR dissociate / ionizes partially OR dissociates / ionizes incompletely OR does not fully dissociate / ionize OR forms an equilibrium when reacted with water (Acid) proton donor ALLOW 'proton donator' OR produces / releases H^{+}ions OR produces / releases $\mathrm{H}_{3} \mathrm{O}^{+}$ions Ignore reference to typical acid reactions	'not easily dissociated'	2

Question Number	Acceptable Answers	Reject	Mark
16(c)(ii)	$\left(\mathrm{K}_{\mathrm{a}}=\right) \frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]}$ State symbols are NOT required IGNORE any incorrect state symbols	$\begin{gathered} \left(\mathrm{K}_{\mathrm{a}}=\right) \frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]} \\ \text { Inclusion of }\left[\mathrm{H}_{2} \mathrm{O}\right] \end{gathered}$	1

Question Number	Acceptable Answers	Reject	Mark
16(c)(iii)	IGNORE sf except 1 sf THROUGHOUT FIRST, CHECK THE FINAL ANSWER IF answer $K_{a}=1.59 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ award the first two 2 marks $\begin{align*} & {\left[\mathrm{H}^{+}\right]\left(=10^{-\mathrm{pH}}=10^{-3.01}\right)} \\ & \quad=9.77 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ $\mathrm{K}_{\mathrm{a}} \quad=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$ $K_{a} \quad=\frac{\left(9.77 \times 10^{-4}\right)^{2}}{6.00 \times 10^{-3}}$ $\begin{equation*} =1.59 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ Assumption 1 $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR no H^{+}from the (ionization of) water OR H^{+}only from the acid Assumption 2 Ionization of the (weak) acid is negligible / very small / insignificant OR $[\mathrm{HCOOH}]_{\text {initial }}-\mathrm{x}=[\mathrm{HCOOH}]_{\text {eqm }}$ OR $[\mathrm{HCOOH}]_{\text {eqm }}=[\mathrm{HCOOH}]_{\text {initial }}$ OR $[\mathrm{HCOOH}]_{\text {eqm }}=6.00 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ OR $\begin{equation*} \left[\mathrm{H}^{+}\right] \ll[\mathrm{HA}] \tag{1} \end{equation*}$ Assumptions can be in either order	If incorrect units max 1 Just 'partial' / 'incomplete' Or ' no dissociation'	4

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 22 MARK SCHEME

16(c)(iii) cont'd	OR Assumption $\begin{equation*} \left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right] \tag{1} \end{equation*}$ OR no $\left[\mathrm{H}^{+}\right]$from the (ionization of) water OR H^{+}only from the acid Ignore references to constant temperature

(Total 12 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (i)}$	$\left(\mathrm{K}_{\mathrm{C}}=\right)\left[\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$		$\mathbf{1}$
	ALLOW $\mathrm{CH}_{3} \mathrm{COOH}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ State symbols are not required IGNORE any incorrect state symbols		

Question	Acceptable Answers			Reject		Mark
17(a)(ii)						2
	Component	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})$	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{I})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	
	Equilibrium amount / mol	(0.20)	0.10	0.20	0.35	
	0.10 and 0.20 scores first mark Allow 0.1 and 0.2 0.35 scores second mark					

Question Number	Acceptable Answers	Reject	Mark
17(a)(iii)	Units cancel OR same number of moles/same number of molecules on each side OR volume / V cancels Ignore statements such as 'concentrations cancel' 'products and reactants cancel' 'same number of products as reactants'	Concentrations are the same	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a) (\text { iv) }}$	$\mathrm{K}_{\mathrm{c}}=\frac{(0.20) / \mathrm{V} \times(0.35) / \mathrm{V}}{(0.20) / \mathrm{V} \times(0.10) / \mathrm{V}}$ $=3.5 / 3.50$ Correct answer with or without working scores 1 Ignore omission of V TE from values in (ii) table	$\mathrm{K}_{\mathrm{c}}=4$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b)}$	•No effect on (position of) equilibrium		$\mathbf{2}$
	(1) •Rate (of attainment of equilibrium) is faster / equilibrium reached sooner (1)		

Question Number	Acceptable Answers	Reject	Mark
17(c)(i)	Bonds Broken $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ Ignore where these bonds are broken in the acid and alcohol molecules. ALLOW $\mathrm{C}-\mathrm{OH}$ for $\mathrm{C}-\mathrm{O}$ $\mathrm{CO}-\mathrm{H}$ for $\mathrm{O}-\mathrm{H}$ Bonds Made $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ Ignore where these bonds are made in the ester and water molecules. ALLOW C-OC for $\mathrm{C}-\mathrm{O}$ $\mathrm{H}-\mathrm{OH}$ for $\mathrm{O}-\mathrm{H}$ Marks can be awarded by annotating displayed or structural formulae. Comment: Max 1 if any other bonds mentioned	Two $\mathrm{O}-\mathrm{H}$ bonds formed in $\mathrm{H}_{2} \mathrm{O}$ molecule ONLY C-O bond broken and made scores (0) overall	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c) (i i)}$	(C-O and O-H) bond enthalpies differ in: different environments /different molecules /different compounds OR Bond enthalpies/bond energies are average values	'Heat loss'	$\mathbf{1}$
ALLOw Bonds being broken and made are attached to different atoms			

Question Number	Acceptable Answers	Reject	Mark
17(d)(i)	$\Delta \mathrm{S}_{\text {total }}=\mathrm{R} \operatorname{lnK}$ Allow $\Delta \mathrm{S}_{\text {total }}$ is proportional to $\ln \mathrm{K}$ ALLOW K_{c} or K_{p} instead of K	\log instead of \ln $\Delta \mathrm{S}_{\text {total }}$ is proportional to K / $\Delta S_{\text {total }}$ increases as K increases	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e) (i)}$	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}$	$\mathrm{CH}_{3} \mathrm{CClO} / \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$	$\mathbf{1}$
	Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ ${\mathrm{Allow} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \text { for }}^{\mathrm{CH} \mathrm{COOCH}_{2} \mathrm{CH}_{3}}$ IGNORE missing or incorrect state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e) (i i)}$	O		$\mathbf{1}$
	IGNORE Bond angles and length of the lines.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e) (i i i)}$	In	NH or CH_{3}	$\mathbf{1}$
	IGNORE Other products of the reaction if the above structure has been correctly drawn.		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (f) (i)}$	$\left(\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{NaOH} \rightarrow\right)$ $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$ for ethanol	$\mathbf{1}$
	Allow ionic representations of the sodium salt $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$ IGNORE missing or incorrect state symbols		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (f) (i i)}$	Reaction with sodium hydroxide is) not an equilibrium / not reversible / goes to completion OR Reverse argument for acid hydrolysis		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18(a)(i)	- In experiments 1 and 2, $\left[\mathrm{H}^{+}\right]$ doubles (whilst keeping other concentrations constant) and the rate quadruples / rate increases x 4 - Second order (with respect to H^{+}) - In experiments 1 and $3,\left[\mathrm{Br}^{-}\right.$] doubles and $\left[\mathrm{BrO}_{3}{ }^{-}\right]$triples (with $\left[\mathrm{H}^{+}\right.$] constant) - Rate increases by 3×2 / rate increases $\times 6 /$ rate increases to 5.04×10^{-5} (then to 1.01×10^{-4} stated or implied) - First order with respect to Br^{-} OR - In experiments 2 and $3,\left[\mathrm{Br}^{-}\right]$ doubles and $\left[\mathrm{BrO}_{3}^{-}\right]$triples and [H^{+}] halves - Rate increases by $3 \times 0.25 \times 2 /$ rate increases x 1.5 - First order with respect to Br^{-} Penalise OMISSION of Experiment Numbers once only Mark each point independently		5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a) (i i)}$	Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$		$\mathbf{1}$
	Mark CQ on (a)(i) Allow "r" or "R" for "rate" in the rate equation. IGNORE If k appears to be in upper case.		

Question Number	Acceptable Answers	Reject	Mark
18(a)(iii)	IGNORE sf except 1 sf THROUGHOUT FIRST, CHECK THE FINAL ANSWER IF answer $\mathrm{k}=1.49 \times 10^{-2} \mathbf{d m}^{9} \mathbf{~ m o l}^{-3} \mathbf{s}^{-1}$ award (3) marks $\begin{align*} \mathrm{k} & =\frac{\text { rate }}{\left[\mathrm{BrO}^{-}{ }_{3}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}} \\ & =\frac{1.68 \times 10^{-5}}{0.05 \times 0.25 \times(0.30)^{2}} \\ & =0.014933333 \tag{1}\\ & =0.0149 \\ & \mathbf{d m}^{\mathbf{9}} \mathbf{~ m o l}^{-\mathbf{3}} \mathbf{s}^{-1} / \mathbf{~ m o l}^{-\mathbf{3}} \mathbf{~ d m}^{\mathbf{9}} \mathbf{s}^{\mathbf{1}} \tag{1} \end{align*}$ IGNORE sf except 1 sf Mark CQ from (a)(ii) or, if no rate equation in (a)(ii), then any rate equation stated in (a)(iii) NOTE: IF the rate equation in (a)(ii) is given as Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$ $\begin{equation*} \mathrm{CQ} \mathrm{k}=3.73 \times 10^{-3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \tag{3} \end{equation*}$ scores IF $\left[\mathrm{H}^{+}\right]$is not squared in the correct rate equation: $\mathrm{k}=4.48 \times 10^{-3} \mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}$ OR $\begin{equation*} \mathrm{k}=4.48 \times 10^{-3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \text { scores } \tag{2} \end{equation*}$ ALLOW Correct answers derived from the data in the table for Experiment 2 or Experiment 3		3

Question Number	Acceptable Answers	Reject	Mark
18(b)	The number(s) (of particles) in the rate equation / rate-determining step do not match those in the equation for the reaction OR The chance of (simultaneous) collision of 12 particles is unlikely OR The chance of (simultaneous) collision of 4 particles is unlikely OR The chance of (simultaneous) collision of 3 reactants is unlikely ALLOW 'molecules' / 'substances' for 'particles' NOTE ALLOW AS A CQ from (a)(ii) Br^{-}ions not in rate equation / Br^{-}ions not in rate-determining step / Zero order with respect to Br^{-}/ (Only) two reactants in the ratedetermining step / (only) two reactants in the rate-equation/ particles are in the equation (for the reaction) that are not in the rate equation		1

Question Number	Acceptable Answers	Reject	Mark
18(c)	REMEMBER TO SCROLL DOWN BELOW THE SPACE LEFT FOR A SKETCH-GRAPH TO SEE WHAT CANDIDATE HAS WRITTEN ON THE DOTTED LINES - (Calculate) gradient (of tangent) ALLOW 'slope' for 'gradient' - At $\mathrm{t}=0 /$ at the start / at the beginning / when reaction is at its fastest / at the origin Each mark is stand-alone NOTE: Answer may be annotated on a suitable sketch-graph IGNORE any sketch-graph that shows an increase in concentration with time MAX (1) if sketch-graph shows a decrease in the concentration of a reactant / Br_{2}	Answers relating to half-life score (0) overall If sketch-graph or comments suggest that gradient is measured at other than $t=0$ or at several values of t then max (1)	2

(Total 12 marks)

Question Number	Correct Answer	Mark
19	\mathbf{C}	$\mathbf{1}$
Question Number Correct Answer Mark 20 A $\mathbf{1}$		

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1}$			
(a)(i)	$5.7 \times 10^{-5} / 5.71 \times 10^{-5} / 5.714 \times 10^{-5} / 0.000057$		$\mathbf{1}$
	IGNORE SF except 1 (ie don't accept 6×10^{-5})		

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$: first order / 1 (1) (going from first to second experiment) rate doubles when concentration / number of moles doubles (and [OH-] constant)/ rate and concentration increase in proportion (1) ALLOW 'time halves' instead of 'rate doubles' OH'$^{-}$: zero order / 0 and (going from second to third expt) as increase in concentration does not affect rate (and [C4H9Br] constant) (1)	$\mathbf{3}$	
ALLOW ' doubling in concentration of OH' instead of 'increase in concentration'	ALLOW time increases by the same factor as increase in hydroxide concentration (5/3) May refer to experiment number rather than concentrations		

Question Number	Acceptable Answers	Rej ect	Mark
(a)(iii)	Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]$ OR Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{1}\left[\mathrm{OH}^{-}\right]^{0}$ ALLOW k in lower or upper case Rate equation must be consistent with orders in (a)(ii) If no order is given for hydroxide in (ii) mark cannot be given		1

Question Number	Acceptable Answers	Rej ect	Mark
(a)(iv)	$\begin{aligned} & \mathrm{k}=\frac{2.9 \times 10^{-5}}{0.017} \\ & =1.7 \times 10^{-3} / 1.71 \times 10^{-3} / 1.706 \times 10^{-3} \mathrm{~s}^{-1} \\ & \text { ALLOW } \mathrm{k}=1.68 \times 10^{-3} \\ & \text { (value obtained from experiment } 2 \text { or } 3 \text {) } \end{aligned}$ value of k (1) units (1) stand alone mark ALLOW TE from (a)(iii) IGNORE SF except 1 Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{2}$ gives $\mathrm{k}=0.10036 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$gives $\mathrm{k}=1.42 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ALLOW $\mathrm{k}=1.39 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ (value obtained from experiment 2 or 3) Rate $=k\left[\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]^{2}$ gives $\mathrm{k}=1184.6$ $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ Rate $=\mathrm{k}\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{2}\left[\mathrm{OH}^{-}\right]$gives $\mathrm{k}=83.62$ $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$		2

Question Number	Acceptable Answers	Reject	Mark
(b)	$\left[\mathrm{OH}^{-}\right]$is (in chemical equation but) not in rate equation / not in rate determining step (so is in a step other than rate determining step) OR Only $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ is in rate equation / rate determining step (so OH rate determining step)	$\mathbf{1}$	

Question Number	Acceptable Answers	Mark
(c)	First mark Choice of bromoalkane must be consistent with rate equation in (a)(iii). If $\left[\mathrm{OH}^{-}\right]$is not in rate equation, secondary/ tertiary bromoalkane. If $\left[\mathrm{OH}^{-}\right]$is in rate equation, primary/ secondary bromoalkane. (1) Second and third marks Either SN1 or SN2 mechanism can score $\mathbf{2}$ marks regardless of choice of bromoalkane. Lone pairs not required Curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to Br (making Br^{-}) (1) Curly arrow from anywhere on $\mathrm{OH}^{-} / \mathrm{HO}^{-}$to C^{+}in correct intermediate (making alcohol) (1) OR Both curly arrows from OH^{-}and from $\mathrm{C}-\mathrm{Br}$ bond to Br (may both be shown at start) (1) Transition state including minus charge (and product) (1) Do not penalise if $\mathrm{C}_{2} \mathrm{H}_{5}$ shown instead of $\mathrm{C}_{3} \mathrm{H}_{7}$. Bonds in transition state can be dotted. Do not penalise the missing H atoms in alkyl groups in mechanism.	3

Question Number	Acceptable Answers	Reject	Mark
(d) QWC	(Primary and tertiary) carbocation intermediates have different stabilities (1) as (inductive effects of) alkyl groups stabilise tertiary carbocation (1) OR Steric hindrance differs for attack on primary and tertiary carbon (in the molecule) / less space available for attack by OH^{-}on tertiary carbon / more space for attack by OH^{-}on primary carbon (1) as bulky / three alkyl groups obstruct attack (1)	"Tertiary bromoalkanes react by SN1" without further explanation carbocation intermediates have different reactivity steric hindrance in carbocation	2

Question Number	Acceptable Answers	Rej ect	Mark
$\mathbf{2 2}$ (a)(i)	(Acid) hydrolysis	substitution	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ Potassium dichromate((VI)) / sodium dichromate((VI))/ dichromate((VI)) ions	Just "dichromate"	$\mathbf{1}$
ALLOW manganate((VII)) ions, etc	Chromates forrect wrong name with and vice versa		
Incorrect			
oxidation			
number			

\($$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { Number }\end{array}
$$ \& Acceptable Answers \& Reject \& Mark

\hline (a)(iii) \& \begin{array}{l}Lithium tetrahydridoaluminate/ lithium

aluminium hydride/ LiAlH\end{array} (in dry ether)\end{array} \quad\) Just [H $\left.\mathrm{H}^{-}\right]$| $\mathbf{1}$ |
| :--- |

Question Number	Acceptable Answers	Rej ect	Mark		
(a)(iv)	Methyl butanoate (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}^{2}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1)	Methyl butoate	$\mathbf{2}$		
ALLOW \rightleftharpoons					
IGNORE state symbols even if wrong				\quad	(1)
:---					

Question Number	Acceptable Answers	Reject	Mark
(a)(v)	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}^{-}=\mathrm{O}$ Don't penalise undisplayed methyl groups as here. COCl must be displayed as above.	$\mathrm{C}_{3} \mathrm{H}_{7}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen) OR Oxygen might react with chemicals going through column / sample might oxidise	$\mathbf{1}$	

Question Number	Acceptable Answers	Rej ect	Mark
(b)(ii)	Solubility (in liquid / stationary phase) OR Interaction with liquid / stationary phase OR Interaction between mobile and stationary phase OR Attraction for liquid / stationary phase OR Strength of (named) intermolecular forces OR Adsorption on liquid / stationary phase OR Absorption on liquid / stationary phase	Size of molecule / molar mass Polarity, unless with explanation Boiling point / volatility Viscosity Attraction for carrier gas J ust a named intermolecular force J ust 'retention time' Density	1

Question Number	Acceptable Answers	Rej ect	Mark
(c)(i)	 OR Ester link including $\mathrm{C}=0$ (1) Rest of polymer with oxygens at end correct (1) All H atoms must be shown. PENALISE lack of displayed $\mathrm{C}=0$ once only ACCEPT Without brackets around formula but bonds at end should be shown More than two correct units IGNORE n after brackets		2

Question Number	Acceptable Answers	Rej ect	Mark
(c)(ii)	Hydrolysis OR Splits / breaks ester link OR polymer breaks down to monomers OR equation showing hydrolysis	J ust 'breaks polymer down	1

Question Number	Acceptable Answers	Rej ect	Mark
$\begin{aligned} & 23 \\ & \text { (a)(i) } \end{aligned}$	$\left(\mathrm{K}_{\mathrm{p}}=\right) \frac{\mathrm{pCH}_{3}}{\mathrm{pCH}_{3}} \frac{-\mathrm{CO}_{2}-\frac{\mathrm{H}}{(\mathrm{O}}-\mathrm{pCO}}{}$ Partial pressure symbol can be shown in various ways, eg pp, $p_{c o}$ (CO) p, etc ALLOW p in upper or lower case, round brackets IGNORE units	[] State symbols given as (I) + in bottom line	1

Question Number	Acceptable Answers	Rej ect	Mark
(a)(ii)	$\begin{aligned} & \mathrm{P} \mathrm{CH}_{3} \mathrm{OH}=4.9(\text { atm })(\mathbf{1}) \\ & \mathrm{PCO}=4.9(\mathrm{~atm})(\mathbf{1}) \end{aligned}$ 1 mark for recognition that pressures are equal IGNORE units		2

Question Number	Acceptable Answers	Rej ect	Mark
(a)(iii)	$\begin{aligned} & K_{p}=\left((22.2) /(4.9)^{2}\right) \\ & =0.925(1) \end{aligned}$ atm $^{-1}$ (1) stand alone mark but must match expression used in (a)(iii) OR $9.25 \times 10^{4} \mathrm{~Pa}^{-1} / 92.5 \mathrm{kPa}^{-1}(\mathbf{2})$ ALLOW TE from (a)(i) if inverted and/ or (a)(ii)	Answers to other than 3 significant figures	2

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	$\mathrm{CH}_{3} \mathrm{OH}: 3.2$ $\mathrm{CO}: 3.2$ (1) for both values $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}: 46.8$ (1) ALLOW TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol =50	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	$\left(\frac{46.8 \times 32}{53.2}\right)=28.2 / 28.1504$ (atm)	28.1 IGNORE sf except 1 Value $=28.16$ if mol fraction rounded ALLOW TE from (b)(i)	$\mathbf{1}$
	29.95 (atm)		

Question Number	Acceptable Answers	Reject	Mark
(b)(iii)	exothermic as yield / pp of ethanoic acid / conversion of reactants/ Kp is higher at lower temperature / as equilibrium moves (right) at lower temperature	$\mathbf{1}$	
ALLOW if partial pressure of ethanoic acid <22.2 atm in(b)(ii), endothermic as yield / pp of ethanoic acid / conversion of reactants/ Kp is lower at lower temperature			

Question Number	Acceptable Answers	Reject	Mark
(c)(i)	No effect and other concentrations change to keep K_{p} constant / K is only affected by temperature/ as equilibrium moves (right) to keep K constant / change in pressure does not change K_{p}	As K K is a $_{\text {constant }}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(c)(ii)	Yield increased to restore fraction / quotient / partial pressure ratio back to Kp	$\mathbf{1}$	
ALLOW (equilibrium moves) to use up the methanol / answers based on entropy or Le Chatelier Correct prediction in (c)(i) and (c)(ii) with inadequate explanations scores $\mathbf{1}$ mark in (c)(ii)	Just 'equilibrium moves to the right'		

Question Number	Acceptable Answers	Rej ect	Mark
(d)	Mark independently Reaction can occur at lower temperature / has lower activation energy / requires less energy $\mathbf{(1)}$ less fuel needed / fewer emissions (from fuels) / fewer raw materials needed / less natural resources used (1) OR	Answer based on car exhaust emissions	$\mathbf{2}$
Enables use of an alternative process with higher atom economy (1) fewer raw materials needed / less natural resources used (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a) (i)}$	Correct answer with or without working scores $\mathbf{2}$ marks $\left[\mathrm{H}^{+}\right]=\left(1.00 \times 10^{-14} / 0.250\right)=4 \times 10^{-14}$ (1) $\mathrm{pH}=(13.39794=) 13.4$ (1) OR $\mathrm{pOH}=-\log 0.250=0.602$ (1) $\mathrm{pH}=(13.39794=) 13.4$ (1) ALLOW TE in second mark if error in $\left[\mathrm{H}^{+}\right]$calculation gives pH more than 7 3 or more sf IGNORE rounding errors e.g. accept 13.39	$\mathbf{2}$	

Question Number	Acceptable Answers	Rej ect	Mark
(a)(ii)	$\begin{equation*} \left(\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}=\right]\left[\mathrm{H}^{ \pm}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right. \tag{1} \end{equation*}$ ALLOW $\mathrm{H}_{3} \mathrm{O}^{+}$instead of H^{+} $[\mathrm{A}=]\left[\mathrm{H}^{ \pm}\right]$if key to symbols given [HA] IGNORE state symbols	$\frac{\left[\mathrm{H}^{ \pm}\right]^{2}-}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$	1

Question Number	Acceptable Answers	Reject	Mark		
(a)(iii)	Correct answer with or without working scores $\mathbf{2}$ marks $1.7 \times 10^{-5}=\frac{\left[\mathrm{H}^{ \pm}\right]^{2}}{0.125}$	(1)			
$\left[\mathrm{H}^{+}\right]=1.46 \times 10^{-3}$					
$\mathrm{pH}=2.84 / 2.8(1)$					
$n o \mathrm{TE}$ from an incorrect $\left[\mathrm{H}^{+}\right]$				$\quad \mathbf{2}$	
:---					

Question Number	Acceptable Answers	Reject	Mark		
(a)(iv)	$\mathrm{pH}=4.8 / 4.77$ (1) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}$ (when acid is half neutralized) (1)	$\mathrm{H}^{+}=\mathrm{K}_{\mathrm{a}}$		\quad 2 \quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
(a)(v)	Sigmoid curve starting between pH 2 and 4 (2.8), ending between pH 12 and 14 inclusive (1) with steep rise (may be vertical or gently sloping) of between 3-7 units between pH 6 and 12. Sloping section should not extend over more than 5cm 3 . (1) When 12.5 cm^{3}, NaOH added. (1) ALLOW tolerance for grid Reverse curves lose first mark	$\mathbf{3}$	

Question Number	Acceptable Answers	Reject	Mark
(a)(vi)	First mark Thymolphthalein more suitable as it changes (from colourless to blue) in steep region of titration (pH 8.3 to 10.6)/ at the equivalence point / at the end point OR thymolphthalein has pH range in steep region of titration (1) Second mark Methyl yellow changes (from red to yellow at pH 2.9 to 4) before equivalence point / before the end point / doesn't change in steep section OR Methyl yellow has pH range before / outside steep region of titration (1) ALLOW 'Thymolphthalein more suitable as it changes at the equivalence point but methyl yellow does not.' This scores $\mathbf{2}$ marks	$\mathbf{2}$	
OR OR			

Question Number	Acceptable Answers	Reject	Mark
(b)	Sodium ethanoate/ $\mathrm{CH}_{3} \mathrm{COONa}$ Potassium ethanoate $/ \mathrm{CH}_{3} \mathrm{COOK}$ ALLOW other cations as alternatives to sodium	Use of sodium hydroxide (because it's in food)	$\mathbf{1}$

Question Number	Acceptable Answers	Rej ect	Mark
25 (a)(i)	$\begin{align*} & \Delta S_{\text {system }}^{9}=109.2+(6 x 69.9)-343 \text { (1) } \\ & =(+) 185.6\left(\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /(+) 186(\mathrm{~J} \mathrm{~mol}\right. \tag{1} \end{align*}$ OR $(+) 0.186\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ IGNORE units even if incorrect correct answer with no working scores 2 Value using 1 for $\mathrm{H}_{2} \mathrm{O}=-163.9$ scores 1 Use of value for $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ (188.7) gives $898.4\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ (1) correct value with incorrect sign scores 1	185	2

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	Yes as (solid and) liquid forms (from solid) / number of moles increases	Disorder increases, with no ref to OR number of Ooles	$\mathbf{1}$
If $\Delta S_{\text {system }}^{\ominus}$ in (i) is negative the sign is not as expected as liquid forms from solid / number of moles increases	(

Question Number	Acceptable Answers	Rej ect	Mark
(a)(iii)	First mark $\Delta \mathrm{S}_{\text {surroundings }}^{\ominus}=\frac{-88.1 \times(1000)}{298}$ Second mark (1) $=-295.6375$ $=-295.6 \mathrm{~J} \mathrm{~mol}$ correct units must be shown but order not important	$\mathbf{2}$	
OR			
--0.2956 kJ mol correct units must be shown but order not important correct answer with or without working and correct units scores (2) ignore sf except 1 correct value with positive sign scores 1			

Question Number	Acceptable Answers	Rej ect	Mark
(a)(iv)	$\begin{aligned} & (185.6-295.6) \\ & =-110\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathbf{K}^{-1}\right) \end{aligned}$ OR $-0.110\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ could use 186 or 296 etc TE from (a)(i) and (iii) $(+) 602.8\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ if value for $\mathbf{6} \mathrm{H}_{2} \mathbf{O}(\mathrm{~g})$ was used in (a) (i) -459.5 ($\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$) if value for one $\mathrm{H}_{2} \mathrm{O}$ was used in (a) (i)	Answers where values in J are added to kJ	1

Question Number	Acceptable Answers	Reject	Mark
(a)(v)	Decomposition (at 298 K) will not occur as $\Delta S_{\text {total is negative / Reactions are only }}^{\text {spontaneous if total entropy change is positive }}$l decomposition not thermodynamically feasible / (hydrated cobalt chloride) is thermodynamically stable TE if answer to (a) (iv) is positive showing decomposition (at 298 K) may occur OR Positive total entropy change doesn't indicate rate of reaction	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	First mark Thermometer (1) Second mark (dependent on first) depends on choosing thermometer as temperature change is small / (\%) error in balance smaller than for temperature reading (\%) error in pipette smaller than for temperature reading (can be shown by calculation) / as scale with greater degree of precision needed / scale with more graduations needed (1) IGNORE any references to 'accurate thermometer'	$\mathbf{2}$	

Question Number	Acceptable Answers	Rej ect	Mark
(b)(ii)	Use more cobalt chloride / less water (1)	Just 'use more reactants' To increase temperature rise (1) Mark independently cobalt chloride and more water	$\mathbf{2}$
	repeat expt	add a lid or extra insulation to beaker	use distilled water

Question Number	Acceptable Answers	Rej ect	Mark
(c)(i) QWC	Radius (of cation) increases (down group) OR any two values of radius: $\mathrm{Mg}^{2+}=0.072, \mathrm{Ca}^{2+}=0.100 / \mathrm{Sr}^{2+}=0.113(\mathrm{~nm})$ data may be shown beside the table (1) Radius $\mathrm{Co}^{2+}=0.065 \mathrm{~nm}$ OR Co^{2+} radius smaller than other ions (1) Data on EITHER Co^{2+} OR data showing increase in radius down Group II required for BOTH of first two marks Force of attraction between ions decreases (as radius of ions increases) / charge density of ions decreases / negative ion can come closer to nucleus of positive ion (1) ALLOW "weaker ionic bonds" Predict lattice energy -2550 to $-2900\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (1) IGNORE sign	Atomic radii unless ionic radii also given Radius of cobalt chloride Polarising power decreases	4

Question Number	Acceptable Answers	Rej ect	Mark
(c)(ii) QWC	First mark Reference to enthalpy of hydration (may be in equation $\Delta \mathrm{H}_{\text {solution }}=-\mathrm{LE}+\Delta \mathrm{H}_{\text {hydration }}$ (1) Second mark Solubility depends on relative size of lattice energy and enthalpy of hydration (1) Third mark EITHER Solubility more likely if $\Delta \mathrm{H}_{\text {solution }}$ is negative OR (If $\Delta \mathrm{H}_{\text {solution }}$ is positive,) may / will dissolve if $\Delta \mathrm{S}_{\text {total }}$ is positive ACCEPT solvation instead of hydration	$\mathbf{3}$	

Question Number	Acceptable Answers	Reject	Mark
(d) QWC	First mark Third ionization energy high(er) for $\mathrm{Mg} / \mathrm{Mg}=$ $7733 \mathrm{~kJ} \mathrm{~mol}^{-1}$, (third ionization energy for $\mathrm{Co}=$ $3232 \mathrm{~kJ} \mathrm{~mol}^{-1}$) (1) Second mark (Third ionization energy for Mg is high) because the electron is being removed from an inner shell / full shell / $2 p$ level / $2 p$ orbital (1) OR Not compensated by higher lattice energy for Mg^{3+} (and so $\Delta \mathrm{H}_{\text {formation }}$ of MgCl_{3} would be highly endothermic) (1)		2

