Chemistry B (Salters)

Mark Scheme

| Question Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 3 Mark Scheme Page 3 of 10 | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | (a) | (ii) | fractional distillation \checkmark | Mark | Guidance |
| | | (iii) | (structural) isomer(s) \checkmark | $\mathbf{1}$ | DO NOT ALLOW just distillation |
| | (b) | (iv) | (tendency to) autoignite / pre-ignite / knock \checkmark
 (more branching) increases octane number \checkmark | $\mathbf{1}$ | Functional group isomerism ALLOW mark |

Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 3 Mark Scheme

Question			Answer	Mark	Guidance
2	(a)	(i)	${ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{2}^{4} \mathrm{He} \checkmark+{ }_{82}^{206} \mathrm{~Pb} \checkmark \quad \checkmark$ for products (max 1 if any symbol clearly incorrect e.g. HE, he, PA, pA)	2	ALLOW a symbol instead of He ALLOW - (minus) ${ }_{2}^{4} \mathrm{He}$ on LHS ALLOW an arrow, \rightarrow instead of + MAX one mark if any number on right DO NOT ALLOW He on top of arrow DO NOT ALLOW charges on He or Pb If equation written as a fusion reaction with $+{ }_{2}^{4} \mathrm{He}$ (giving Rn-214) scores zero, however if written as a fusion but producing ${ }_{82}^{206} \mathrm{~Pb}$ allow one mark IGNORE gamma ray
		(ii)	$\frac{10^{-6}}{210}-=4.76 \times 10^{-9} \checkmark$ sig. figs. $4.8 \times 10^{-9} \checkmark 2$ marks if on answer line	2	First mark for process with correct evaluation; Some examples: $1.0 \times 10^{-6} \div 84=1.2 \times 10^{-8}$ scores zero for first point (wrong process) but scores second sf mark However: $1.0 \times 10^{-6} \div 210=4.7619$ scores zero for first point (wrong evaluation) but one for 4.8 on answer line (sf mark) And: $1.0 \times 10^{-6} \times 84=8.4$ scores zero for first point (wrong process) and zero for sf mark because evaluation also wrong (should be 8.4×10^{-5}) i.e. sig fig ecf is not scored if both process and evaluation are wrong

| Question | Answer | Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 3 Mark Scheme Page 5 of 10 | | |
| :---: | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{2}$ | (b) | | a particles not very penetrating / AW \checkmark | Guidance |

Question			Answer	Mark	Guidance
3	(a)	(i)	$\begin{aligned} & M_{r}=309.1 \checkmark \\ & \frac{195.1}{309.1} \times 100=63 \% \end{aligned}$	2	ALLOW ecf on M_{r} of PtF_{6} e.g. 195.1 $\div \mathbf{2 9 0 . 1} \times 100=67.25$ scores 1 ALLOW A_{r} values to nearest whole number ALLOW 2 or more sig figs Any of 63\%/63.106/63.11/63.12 on answer line scores both marks ALLOW $\mathrm{PtF}_{6} / \mathrm{XePtF}_{6}=70.2$ ecf 1 mark
		(ii)	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \mathrm{XePtF}_{6}=440.4 \checkmark \\ & \text { moles }=10.0 / 440.4(=0.0227) \checkmark \\ & \text { volume }=0.0227 \times 24000=545 \mathrm{~cm}^{3} / \text { ALLOW } 540 \mathrm{~cm}^{3} \end{aligned}$	3	ALLOW A_{r} values to nearest whole number (gives M_{r} 440) (NOT other values eg 440.2) ALLOW ecf's on wrong M_{r} for marking points 2 and 3 evaluation must be correct if present to any number of sig. figs For $3^{\text {rd }}$ mark don't allow rounding to 0.02 ALLOW rounding i.e. 0.023 (gives 550/552)
	(b)	(i)	Noble gas has full / complete outer shell of electrons (this is very stable)	1	ALLOW inner shells full and outer empty (Hence group 0) ALLOW 'has eight electrons in outer shell'
3	(b)	(ii)	reactions occur in order to attain Noble gas configuration; in the 'Bartlett' reaction this configuration is lost / broken / AW	1	NOTE to score this mark candidate must answer in terms of the idea that full/complete shells are stable and would not be expected to react. Some examples may help: - (Xe) can bond even with a full outer shell \checkmark - because only atoms without full outer shells (of electrons) were thought to react (v. good answer) \checkmark - because despite a full outer shell it reacted - when some atoms react they don't end up with

Question			Answer	Mark	Guidance
					complete outer electron shells (although not directly related to Xe this deserves credit) - can form dative bonds \checkmark - NOT general answers of the type 'no longer matched the evidence'; 'because the Xenon reacted'; clearly reacted therefore theory wrong
	(c)	(i)	$\mathrm{Xe}(\mathrm{~g})+\underline{\mathbf{3}} \mathrm{F}_{2}(\mathrm{~g})+\mathrm{Pt}(\mathrm{~s})$	2	Symbols (cases must be correct) with states \checkmark (both needed for first mark) $3 \checkmark$
		(ii)	$\left(\Delta H_{r}=\right) \Delta H_{2}-\Delta H_{1} \checkmark$	1	ALLOW $-\Delta H_{1}+\Delta H_{2}$ or $\Delta H_{r}+\Delta H_{1}=\Delta H_{2}$ Allow equations without Δ
		(iii)	only IAW bonds made OR no bonds broken \checkmark	1	ALLOW there are more bonds formed IGNORE answers in terms of magnitude of ΔH Any reference to bonds being broken scores zero unless candidate says no bonds broken
3	(d)		wedges show bond/molecule/elements/atoms/F in front/out of (plane of paper)/closer to us dots show behind/into (plane of paper)/further from us	2	ALLOW one mark for 'shows 3D (structure)' AW ALLOW one mark for wrong way round (essentially the 3D possibility)
	(e)		Group 0 and Period 5 number of 'shells' gives period, outer electron structure gives group \checkmark allow ecf on both numbers	2	ALLOW group 8/VIII/18/noble or inert gases IGNORE references to level of shell filling ALLOW specific description in terms of Xe i.e. 5 shells containing electrons therefore Period 5
			Total	15	

Question Cherry Hill Tuition A Level Chemistry OCR B Salters. Paper 3 Mark Scheme Page 8 of 10								
$\mathbf{4}$	(a)	(i)	$2.8 .8 \checkmark$	Mark	Guidance	$	$	ALLOW $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ (allow subscripts)
:---								

Question			Answer	Mark	Guidance
4	(b)	(ii)	(a) energy absorbed/heating causes electrons to be excited \checkmark (b) promotion to higher energy levels (electron shells allowed here - see diagram mark) (c) drop back emitting photon/light/em radiation/visible spectrum (ASSUME wave means light) (d) energy levels quantised/specific OR shown in diagram as discrete lines with energy levels labelled or implied OR energy on vertical axis \checkmark (e) therefore lines of specific/certain frequency/wavelength formed OR E=hf / AW \checkmark (f) diagram \checkmark	6	Please annotate the marking points \checkmark Marking points (a), (b), (c) and (d) can be scored from a diagram References to atoms moving up/down energy levels penalise once only To score (d) from diagram: MUST have energy/energy levels (not shells), label on axis $O R n=1, n=2 n=3$ and etc. Diagram mark: at least three levels upper gap smaller than lower but need not have energy label or transitions shown. Circles or horizontal lines.
	(c)	(i)	toxic / poisonous \checkmark	1	NOT hazardous/dangerous/harmful (to health) ALLOW specific danger e.g. binds to blood cells/causes respiratory problems but not breathing problems CON if greenhouse gas / photochemical smog

Question			Answer	Mark	Guidance
4	(c)	(ii)	reaction of N_{2} and O_{2} (either) in air/atmosphere Reference to either coming from exhaust or fuel is a CON at high temp (of fire)	2	ALLOW words nitrogen/oxygen (NOT N and O) and alternatives to 'react' i.e. combine / combust (oxygen does not need to be mentioned) / form bonds / burns ALLOW temperature/heat of fire (NOT high energy/engine) ALLOW partial combustion
		(iii)	$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2} \checkmark$ Doubles/halves/multiples	1	DO NOT ALLOW $\mathrm{N}_{2} \mathrm{O}$ instead of NO , however see below (iv)
		(iv)	(measure) of degree of disorder/chaos OR ways of arranging entropy decreases/randomness fewer molecules on right \checkmark ORA	3	DO NOT ALLOW arrangement of atoms/electron OR within a molecule or molecular size (penalise once only) ALLOW ecf from above e.g.: $\mathrm{CO}+\mathrm{N}_{2} \mathrm{O} \longrightarrow \mathrm{N}_{2}+\mathrm{CO}_{2}$ No/little change in entropy \checkmark Same number of molecules on either side \checkmark
			Total	18	

