

Journal of the Linguistic Society of Papua New Guinea ISSN: 0023-1959

Special Issue 2012

Harald Hammarström \& Wilco van den Heuvel (eds.) History, contact and classification of Papuan languages

Part Two

A classification of Papuan languages

Søren Wichmann
Max Planck Institute for Evolutionary Anthropology
wichmann@eva.mpg.de

Abstract

This paper provides a basic classification of 737 Papuan doculects pertaining to 513 different ISO 639-3 codes, in addition to 9 doculects that have not been assigned ISO 639-3 codes. Ethnologue (Lewis 2009) catalogues 848 non-Austronesian languages of New Guinea. Thus, this paper covers 60% of these languages. The point of the paper is to provide a solid benchmark for the classification of languages in a region which is clearly the most poorly understood in the world. The classification combines two different proposals, one of which is the classification by Harald Hammarström (2010), augmented by personal correspondence (2012), and the other is a classification based on methods of the Automated Similarity Judgment Program (ASJP). The former represents a conservative sifting of published evidence for language family affiliations and the latter provides an automated classification based on similarity among 40 lexical items selected for maximal stability. An ASJP tree annotated for Hammarström's families allows for identifying cases where the latter apparently fail to be coherent and should therefore possibly be broken up into smaller units, as well as cases where families should possibly be merged. The resulting classification will be even more conservative than Hammarström's in many cases, but it will also contain proposals for wider relationships not considered supported by Hammarström, including several proposals that have not been made before in the literature.

KEYWORDS: Language Classification, Papuan languages, Lexicostatistics, Levenshtein Distance, Neighbor-Joining

0. Introduction

The dominating trend in the historical linguistics of Papuan languages has been to cast the net widely and quickly gather languages into sometimes vast families based on loose counts of cognates, similarities in pronouns, typological similarity or simply geographical proximity (Foley 1986). While much progress has been made, it is certainly not an exaggeration to claim that non-Austronesian New Guinea still is the most poorly understood larger world area in terms of historical linguistics. In such a situation it behooves the comparative linguist to be conservative when assessing genealogical relations. Once the minimal family units are established the search for wider relations can begin.

In this paper two approaches are combined. One is the classification into families of Hammarström (2010), updated through personal communication (2012) from the author
(henceforth the HH classification). The reason why the HH classification is chosen as the basic reference is that it is (1) complete (includes all languages), (2) conservative, and (3) accompanied by references to literature where the corresponding groupings are argued for. Lewis (2009) is also complete but less conservative and fails as regards the third criterion. Other available classifications are incomplete, dealing only with subsets of Papuan languages, or are not explicit about each individual language. Each of the languages under consideration in this paper is tagged for the HH classification in the metadata contained in the database of Wichmann et al. (2012), where it is given in the first line introducing each word list, after the @ sign. The database is available for full download (see the References for the URL).

The second approach used in this paper is an automated classification of 60% of the Papuan languages based on 40 lexical items using ASJP methodology (to be explained shortly). While Papuan languages have already been subjected to lexically based classifications, the present approach differs from previous work by being more systematic and less biased by areally informed or other intuitions. A systematic, pairwise comparison of 737 word lists involves the inspection of 271,216 pairs of word lists. Such an amount of work is easily achieved by a computer but cannot be carried out manually, which is why lexicostatistic studies have been limited to subsets of Papuan languages. Usually the groups have been selected on a geographical basis, which has introduced an areal bias in the available classifications.

Each approach - the HH classification and ASJP—provides a check on the other, and where they concur in the sense that a HH family is represented by a single cluster in the ASJP tree I assume that the family is valid. When a HH family is scattered over more than one cluster I take this as an indication that the family is possibly problematic and present these cases in order to highlight a potential need for further research. In several cases a family is merely interrupted by one or a few languages that are not supposed to belong to the family in question in HH's scheme. Such cases are highlighted but not commented on further. Finally, in some cases visual inspection of the ASJP tree shows families or isolates (henceforth both will be referred to as 'families') to cluster together under a node, suggesting that the pair of families could be genealogically related (henceforth simply 'related'). For larger groups of languages the possibility of relatedness is evaluated by checking how highly the pair in question is ranked in terms of similarity among the 57,630 pairs of HH families from the entire world that are attested in the ASJP database. For single pairs of languages word lists will in several cases be inspected, and care will be taken to distinguish similarities possibly due to contact, i.e., loanwords, from cognates.

1. Introducing the ASJP tree

The ASJP tree of Papuan languages (henceforth 'the Papuan tree' or simply 'the tree') is found as Appendix 1 to this paper. ${ }^{1}$ The language names (in capitals) are the ones assigned for the purpose of the database. They are usually taken over from the sources of the data. Following the names are three-letter ISO 639-3 codes, when available. When a code is not available this is indicated by 'XXX'. The tree is annotated for HH families. The way that the tree was produced is described in the following.

The three basic components in ASJP are: (1) some lexical input; (2) a measure of distances between words which are subsequently averaged across words; and (3) an algorithm for deriving a phylogeny from the distance matrix. There is no particular input, distance measure or phylogenetic algorithm which is hard-wired in the approach, but the following specifications of the components are used here.
(1) The lexical input is lists of words corresponding to a 40 -item subset of the 100 -item Swadesh list. The 40 items in question were found to be particularly stable and sufficient for optimizing classification results in Holman et al. (2008). All word lists used in the present study are contained in Wichmann et al. (2012), where doculects are uniquely identified by their names and ISO 639-3 codes are also provided (when available) for help with the identification.
(2) The distance measure is the twice-modified Levenshtein distance called LDND (Levenshtein Distance Normalized \& Divided). It is based on the Levenshtein distance, a distance metric which counts the minimal number of operations (deletions, insertions, and substitutions) required to transform one word into another. The LDN distance between a pair of words is the Levenshtein distance divided by the length of the longer of the two words. Next, the LDND distance between two languages is defined as the average LDN distance between each pair of words with the same meaning, divided by the average LDN distance between each pair of words with a different meaning. The latter division is intended to control for similarity owing simply to similar phonemic inventories of the two languages (cf. Oswalt 1970 for a related approach).
(3) The algorithm used to turn the resulting distance matrix of doculects into a tree is Neighbor-Joining (Saitou and Nei 1987), which is probably the currently most widely used distance-based phylogenetic algorithm.

Large, cross-linguistic tests of the performance of this set of components (Pompei et al. 2011, Wichmann et al. 2010a, and Huff and Lonsdale 2011) have shown varying performance

[^0]with respect to classification results across language families, from perfect to far from perfect matches with the classifications of Lewis (2009) and Dryer (2005). At least some of the variability in fit with expert classifications must be attributed to variability in the quality of these expert classifications, since ASJP should in principle work equally well everywhere. Evaluating these evaluations is therefore not straightforward.

Other tests of a more fine-grained and qualitative nature have been carried out for some individual families. Hill (2011) compares an ASJP classification of Uto-Aztecan to one exclusively based on shared phonological innovations, and finds only minor differences. Hill's paper was originally presented at The First Conference on ASJP and Language Prehistory, a conference devoted to the evaluation of ASJP classifications for different families. Other papers from this conference have not been fully published but some are available as online working papers (Mailhammer 2010 on Indo-European, Donohue 2010 on Skou, Brown and Holman 2010 on Mayan; cf. also Urban 2009 on Pomoan and Urban 2009 on Iroquoian, not presented at the conference, but similar in nature). More recently, Walker et al. (2011) compare an ASJP classification of the Tupi language family with the literature on Tupi classification, finding that ASJP replicates the overall subgrouping scheme that is standardly assumed; within the large Tupi-Guarani clade subgrouping is more controversial, and the differences between ASJP and the various published proposals are on the same order as the difference among the opinions of experts, but the ASJP scheme is most similar to the two most recent proposals.

A final test is the irregularly updated ASJP World Language Tree of Lexical Similarity, the last published version of which was uploaded as Müller et al. (2010). It shows a clear tendency for younger families to be better replicated in the sense that all languages supposed to belong to a family are gathered under a single node, uninterrupted by unrelated languages. The oldest families (using definitions from Dryer 2005 in this case ${ }^{2}$) that are replicated in this sense include the following, where age estimates in years before present from Holman et al. (2011) are given in parentheses after the family names: Hmong-Mien (4243 BP), Uto-Aztecan (4018 BP), Nakh-Daghestanian (3907 BP), Salishan (3827 BP), Tor-Orya (3693 BP), Northwest Caucasian (3649 BP), Austro-Asiatic (3635 BP), East Bird's Head (3590 BP), Border (3453 BP), KiowaTanoan (3434 BP), Chukotko-Kamchatkan (3368 BP), Tai-Kadai (3252 BP), Uralic (3178 BP), and Barbacoan (3080 BP). The only exception, where a family having an estimated age younger than that of Hmong-Mien is not completely replicated in the world tree is Tupi (3585 BP), which has a single outlying member, Karitiâna [ktn]. ${ }^{3}$

[^1]Thus, for correctly replicating groups of related languages the method shows a high degree of reliability down to the time level of about 4000 BP. For older families the problems increase with time depth. Thus, for instance, Indo-European (4348 BP) constitutes a large, coherent segment, but the isolates Modern Greek and Albanian are attracted by accidental similarities to other regions in the world tree. Sino-Tibetan languages (5261 BP) also generally cluster, except for five languages that are found elsewhere in the world tree. Exceeding a time depth of around 5000 the method is of questionable utility, since families which are that old tend to be split into many different clusters in the world tree, even if the bulk of the languages may still cluster. Only a few of these old families, however, are uncontroversial (Afro-Asiatic, NaDene, Otomanguean); others tend to be controversial, at least as regards some of its supposed member groups: Australian, Macro-Ge, Niger-Congo, Nilo-Saharan, Penutian, Trans-New Guinea. Some relations picked up by the ASJP world tree have only been solidly established recently or relatively recently. For instance, Austro-Asiatic remained controversial well into the mid-20 ${ }^{\text {th }}$ century (Sidwell 2010: 46), and Totozoquean has only very recently received extensive confirmation (Brown et al. 2011). Thus, it is to be expected that for the Papuan languages, which are generally understudied (Hammarström and Nordhoff 2012), there are still relationships to discover within the time range where the method works well. Indeed, several such possible cases will be presented in this paper. When the method fails to replicate a family claimed to existsuch cases will also be presented-, it is no proof against the given family proposal, but cases like that do potentially point to problems with hypotheses of genealogical relationship.

2. Results comparing ASJP tree and HH classification

104 HH families (and isolates) are represented in the Papuan tree. Of these, only 18 fail to cluster under a single node in the tree. All these cases are listed in Table 1, which provides the family names, the minimal number of nodes in the tree under which the languages cluster, i.e. the number of segments that the family is split up into, and some comments. The comments distinguish different types of cases, which are now described.
(a) There are the cases of Angan, Eleman, and Lakes Plain, where all languages do cluster except one or two outliers. Such families can be regarded as supported, and it can be supposed that the outliers either have been misclassified or just are highly divergent members without close relatives within the family.
(b) Border is a family whose failure to cluster completely is due to a supposedly unrelated intruder behaving as a member of the family. I consider this supported, but in this case it should be investigated whether the intruder is really a family member or whether its behavior is due to accidental similarities or loanwords.

BP) is also split up, but it appears that Dryer (2005) actually does not operate with a Pauwasi family. The only language from the family in WALS is Karkar-Yuri, which is assigned to the Karkar-Yuri family.
(c) Then there is one case where the above two circumstances combine: Nuclear Torricelli has one intruder and two outliers. I also consider this family supported, but it should be investigated further in order to verify whether it should be expanded and/or reduced.
(d) Next, there are some cases of small families having or being represented by only 2-5 members which are in two different segments: Biksi, Dibiyaso-Doso-Turumsa, Kwalean, Morehead-Wasur, Pauwasi, and Sentanic. To be cautious I do not consider these to be supported, but since in all cases one of the two segments consists of only 1-2 languages it is possible, for instance, that data circumstances relating to these single languages are responsible for the failure to cluster. For a word list to be considered in the present study it is required that at least 70% among the 40 item be attested, i.e., a minimum of 28 items. For a single pair of languages this means that there can theoretically be as few as 16 words to compare if the number of missing items is maximal for both languages and if all those items are different. Of course this extreme situation rarely occurs, but it is also relatively rare to have full 40 -item lists available for both members of a pair. Holman et al. (2008) found classification performance to increase rapidly with the addition of items up to around 40, and Wichmann et al. (2011) found evidence that missing data introduce conflicting phylogenetic signals (i.e., reticulation) into classifications. This means that even a few missing items are expected to diminish the performance substantially.
(e) There are two cases where one family is intertwined in another, raising the question whether the two families should be considered a single entity. These are the cases of East TimorBunaq, which (except for one outlier) is embedded into West Timor-Alor-Pantar, and Greater Kwerba, which (again except for one outlier) is mixed with Tor-Orya.
(f) Finally there are cases where a larger putative family is split into two or more different larger segments occurring in separate regions of the larger tree: Sko (2 segments), Lower SepikRamu (5 segments), Nuclear Trans New Guinea (16 segments). These exhibit the sort of behavior of very old and/or controversial families like Afro-Asiatic, Altaic or Australian in the ASJP World Tree.

Table 1. Summary of behavior of HH families with aberrant behavior in the ASJP tree

Family	Nodes	Comments	Type
Angan	2	one outlier	a
Biksi	2	two languages, in different regions of tree	d
Border	2	one intruder	b
Dibiyaso-Doso-Turumsa	2	two languages, in different regions of tree	d
East Timor-Bunaq	2	three languages embedded as a cluster in	e
Eleman	2	West Timor-Alor-Pantar and one outlier one outlier	a
Greater Kwerba	3	three languages interspersed with Tor-Orya and one outlier	e
Kwalean	2	two languages in different regions of the	d

		tree	
Lakes Plain	2	one sister-pair of outlier languages	a
Lower Sepik-Ramu	5	spread over five different regions of the tree	f
Morehead-Wasur	2	three languages in two different regions of the tree	d
Nuclear Torricelli	7	one intruder and two outliers	c
Nuclear Trans New Guinea	1	sixteen different clusters and single	f
	6	languages spread over the entire tree	
Pauwasi	2	two small clusters, in different regions of the tree	d
Sentanic	2	three languages, two in a cluster, the third elsewhere	d
Sko	2	two clusters in different regions	f
Tor-Orya	2	Interspersed with Greater Kwerba	e
West Timor-Alor-Pantar	3	one single language intruder and one cluster intruding, one outlier	e

In summary, among the 18 families which to a greater or lesser degree show aberrant behavior in the ASJP tree, 5 (cases a-c) can nevertheless be considered supported barring details of some individual languages. I will not be further concerned with these cases in this paper. I will also not be concerned about final decisions with regard to whether smaller (case d) or larger (case f) families that are severely fragmented in the ASJP tree nevertheless do constitute families or whether they should be split, although I assume the latter to be the case for the purposes of this paper. If ASJP fails to support these entities it means that the data immediately available cannot be tweaked into saying something different, and going beyond these data would require entire investigations and papers for each case. The cases where something can be done with the ASJP database to shed further light on the Papuan classification are the cases classified in the (e) group, where ASJP apparently delivers false positives. In the following paragraph I will be concerned about how to interpret the mixture of families found in these two cases.

A phylogenetic algorithm such as Neighbor-Joining has the advantage that it takes the entire distance matrix into account when placing the languages relatively to one another, something which cannot be done by hand. But there is also a disadvantage to this and other phylogenetic algorithms. False positives-the branching together of languages that are really unrelated-can occur even if the unrelated languages in question have low similarities, provided that they also have low similarities to all the other languages in the tree. Languages that do not fit into any of the well supported clusters may end up clustering with unrelated languages simply because they do not fit in anywhere else. How can such cases of 'false friends' be distinguished from true relatives? One immediate clue is the length of the (horizontal) branch connecting the node that unites the languages to the remainder of the network which, when short, should cause one to be cautious. But visual inspection of a Neighbor-Joining tree has to be impressionistic and
can be inconclusive-there is not some absolute cut-off point with regard to how long a branch should be to be significant. So it is often worthwhile going beyond the tree and directly study the raw distances which the tree is based on-and one can obviously go further to inspect the actual word lists that are the basis for the distances or additional data. Indeed, this last step is recommended, but for a large groups of languages this additional step would constitute an investigation worth a whole separate paper. When judging the East Timor-Bunaq/West Timor-Alor-Pantar and Greater Kwerba/Tor-Orya connections I therefore focus directly on what the distances between the members of each pair of families say.

In and of themselves distances are not very telling, but they become so in a comparative perspective. Judgments on the evidence for respectively East Timor-Bunaq/West Timor-AlorPantar and Greater Kwerba/Tor-Orya will therefore be made with reference to distances between all 57,630 pairs of HH families throughout the world. Since HH's classification is so conservative, family pairs that are top-ranking in terms of average similarity between member languages are good candidates for actually being relatives, even if chance similarities could and probably do account for some of these high-ranking pairs. For the purpose of these comparisons Table 2 is offered, which includes the following information in the different columns:

- Family designations according to HH.
- Ethnologue family designations (only one per HH family pair if both are in the same Ethnologue family, otherwise separated by a slash).
- The number N of pairs of lists from each family. If one family is represented by m lists and the other by n lists then $N=m^{*} n$.
- $\quad C N$ is a correction of N taking into account how similar the lists are within each family. If there are many lists representing very close speech varieties then N should be penalized, and this has being taken care of by $C N$, which was suggested to me by Eric Holman (p.c., 2012), whose description of the procedure is reproduced in Appendix 2.
- SIM, which is the average similarity expressed as percentages (100% - LDND) for pairs of doculects where the members belong to each family.
- Finally, NSIM is a correction of SIM that puts greater weight on comparisons involving many and/or divergent doculects than on a small number of comparisons involving fewer and/or more divergent doculects. NSIM is found by multiplying SIM by the square root of CN.
- Numbers representing the rank by SIM and NSIM.

Table 2 is ordered by the NSIM rank, which gives a better idea of plausible genealogical relations than SIM. To check which of the two works best as an indicator of relationships, the family pairs were successively ranked by SIM and NSIM and tagged as being 'possible' or 'impossible', 'possible' being defined as 'not impossible', and 'impossible' being defined in a loose sense as not spoken in the same world area-areas being Eurasia, Africa, New Guinea,

Australia, North America, South America-and/or not considered related even by very enthusiastic long-range comparativists. Since no real claims are based on these judgments I will not account for them in more detail. The point of the exercise was simply to see which of the two measures, SIM or NSIM, turned up the fewest cases of 'impossible' relations along the lists of family pairs ranked for each of the two measures. The 500 top-ranking pairs for each measure were inspected, and in 4 of 5 100-pair bins SIM produced more 'impossible' pairs than NSIM. For instance, Furan (Nilo-Saharan in Ethnologue) and Konda-Yahadian (Trans New Guinea in Ethnologue) are ranked as \#31 by SIM, but \#182 by NSIM. Each of these two HH families is represented by just one language in the database, allowing for a greater influence of accidental similarities, and NSIM efficiently corrects for this. The exercise also showed that the number of 'impossible' pairs continues to grow quickly as ones moves down from the top of the list ranked by NSIM roughly until reaching pair \#200. Within the \#201-\#250 bin about one half of the pairs are 'impossible', and the same holds for successive bins within the 500 pairs investigated. Thus, within the c. 200 highest-ranking pairs, but not beyond that segment, NSIM should be a potentially valuable indicator of possible genealogical relations. It needs to be stressed, though, that the presence of impossible pairs even among the 200 highest-ranking pairs clearly indicates that chance similarity can be at work. I will not attempt to offer a probability estimate that languages entering into pairs in the top-200 segment really are related. What I am offering is simply a list of the best candidates in the world for being related as far as the ASJP lexical evidence goes. The 200 top-ranking pairs are provided in Table 2.

Table 2. A listing of the 200 HH family pairs ranking highest with respect to NSIM

HH family 1	HH family 2	Ethnologue	N	CN	SIM	rank	NSIM	rank
West Timor-	East Timor-	Trans-New Guinea	205	11.23	8.72	34	29.22	1
Alor-Pantar	Bunaq							
Lepki	Murkim	Both Unclassified	2	1.12	26.64	1	28.19	2
North Omotic	Mao	Afro-Asiatic	72	4.92	11.06	14	24.53	3
Garrwan	Limilngan	Australian	1	1	22.91	2	22.91	4
Amto-Musan	Left May	Amto-Musan / AraiKwomtari	16	3.81	11.19	12	21.84	5
Bunaban	Jarrakan	Australian	4	2.19	13.42	6	19.86	6
Eastern Daly	Northern Daly	Australian	6	1.5	16.04	3	19.64	7
Anson Bay	Northern Daly	Australian	6	1.38	15.98	4	18.77	8
Mongolic	Tungusic	Altaic	176	5.5	7.61	65	17.85	9
Central	Birri	Nilo-Saharan	45	4.95	7.88	59	17.53	10
Sudanic Kiwaian	Waia	Trans-New Guinea / South-Central Papuan	28	1.94	12.54	9	17.47	11
Bosavi	TuramaKikori	Trans-New Guinea	52	5.25	7.44	74	17.05	12
Nyulnyulan	Pama- Nyungan	Australian	218	11.62	4.98	576	16.98	13

Quechuan	Aymara	Quechuan / Aymaran	360	1.77	12.39	10	16.48	14
Panoan	Tacanan	Panoan / Tacanan	115	3.83	8.32	41	16.28	15
Central	Kresh-Aja	Nilo-Saharan	90	7.74	5.74	281	15.97	16
Sudanic								
Kamula	Awin-Pa	Trans-New Guinea	1	1	15.88	5	15.88	17
Jarrakan	Worrorran	Australian	6	3.33	8.55	36	15.60	18
Mirndi	Pama- Nyungan	Australian	436	18.97	3.53	1994	15.37	19
Iwaidjan	Marrku-	Australian	3	1.97	10.92	15	15.33	20
Proper	Wurrugu							
Gunwinyguan	PamaNyungan	Australian	1417	29.82	2.80	3801	15.29	21
AtlanticCongo	Dogon	Niger-Congo	7876	37.87	2.48	5059	15.26	22
Fasu	East Kutubu	Trans-New Guinea	2	1.44	12.66	8	15.19	23
Southern Daly	Western Daly	Australian	36	2.97	8.69	35	14.98	24
Garrwan	Pama- Nyungan	Australian	109	7.74	5.34	411	14.86	25
Bunaban	PamaNyungan	Australian	218	10.64	4.55	806	14.84	26
Jarrakan	PamaNyungan	Australian	218	12.34	4.22	1085	14.82	27
Murkim	Biksi	Unclassified / Sepik	4	2.18	9.98	22	14.74	28
Maningrida	PamaNyungan	Australian	327	16.95	3.53	1995	14.53	29
Pama- Nyungan	Worrorran	Australian	327	16.17	3.61	1867	14.52	30
Gunwinyguan	Giimbiyu	Australian	39	4.69	6.64	133	14.38	31
Giimbiyu	Iwaidjan Proper	Australian	9	2.4	9.24	28	14.31	32
Bosavi	Dibiyaso- Doso- Turumsa	Trans-New Guinea	26	4.78	6.53	144	14.28	33
Greater Kwerba	Tor-Orya	Tor-Kwerba	25	7.9	5.01	552	14.08	34
Suki- Gogodala	Waia	Trans-New Guinea / South-Central Papuan	14	1.77	10.58	16	14.08	35
Puinave	Kakua-Nukak	Language isolate / Maku	8	1.87	10.24	19	14.00	36
Birri	Kresh-Aja	Nilo-Saharan	2	1.56	11.17	13	13.95	37
Gunwinyguan	Yangmanic	Australian	26	5.45	5.92	240	13.82	38
Bosavi	East Strickland	Trans-New Guinea	91	4.78	6.21	196	13.58	39
AtlanticCongo	Mande	Niger-Congo	48688	47.87	1.94	7943	13.42	40
Nuclear Trans New Guinea	Pauwasi	Trans-New Guinea / Pauwasi	1350	59.24	1.74	9414	13.39	41
Bosavi	Fasu	Trans-New Guinea	26	3.67	6.99	100	13.39	42
Northern Daly	Western Daly	Australian	18	2.12	9.18	30	13.37	43
Anson Bay	Western Daly	Australian	27	1.92	9.60	24	13.30	44
Chitimacha	Huavean	Gulf / Huavean	3	1.6	10.47	17	13.24	45

Doso- Turumsa								
Worrorran	Yangmanic	Australian	6	2.96	5.77	270	9.93	144
Pauwasi	Sepik	Pauwasi / Sepik	84	15.6	2.51	4949	9.91	145
Dibiyaso-	Nuclear	Trans-New Guinea	450	33.48	1.71	9664	9.89	146
Doso-	Trans New							
Turumsa	Guinea							
Kayagar	Klamath- Modoc	Trans-New Guinea / Penutian	3	1.51	8.03	52	9.87	147
Nuclear Trans	Duna-Bogaya	Trans-New Guinea	450	28.14	1.86	8509	9.87	148
New Guinea								
Hmong-Mien	Mailuan	Hmong-Mien / Trans-New Guinea	105	10.45	3.02	3162	9.76	149
Waia	Pomoan	South-Central Papuan / Hokan	14	1.87	7.13	90	9.75	150
Manubaran	Misumalpan	Trans-New Guinea / Misumalpan	18	2.99	5.61	322	9.70	151
Bosavi	Arawakan	Trans-New Guinea / Arawakan	689	19.14	2.20	6385	9.62	152
Molala	Sahaptian	Penutian	2	1.69	7.40	77	9.62	153
Kapauri	Nimboran	Kaure / Nimboran	5	1.83	7.11	92	9.62	154
Left May	Busa	Arai-Kwomtari / Language isolate	8	2.70	5.83	256	9.58	155
North Omotic	South Omotic	Afro-Asiatic	72	5.99	3.91	1420	9.57	156
Kolopom	Mombum	Trans-New Guinea	12	3.66	5.00	557	9.57	157
Austronesian	Touo	Austronesian / Central Solomons	1129	5.67	3.98	1337	9.48	158
Manubaran	Yareban	Trans-New Guinea	6	1.38	8.05	51	9.46	159
Kamula	Bosavi	Trans-New Guinea	13	2.54	5.93	237	9.45	160
Gaagudju	Northern Daly	Australian	2	1.23	8.52	37	9.45	161
Marrku-	Northern	Australian	2	1.23	8.52	38	9.45	162
Wurrugu	Daly							
Kadugli-	Birri	Nilo-Saharan	11	1.88	6.88	109	9.43	163
Krongo								
Pomoan	Bororoan	Hokan / Macro-Ge	14	2.41	6.06	220	9.41	164
Border	Barbacoan	Border / Barbacoan	35	8.01	3.31	2452	9.37	165
Minkin-	Worrorran	Australian	6	2.89	5.51	350	9.37	166
Tangkic								
Savosavo	Touo	Central Solomons	1	1.00	9.36	27	9.36	167
Greater	Mawes	Tor-Kwerba	10	3.53	4.98	577	9.36	168
Kwerba								
Kolopom	Koiarian	Trans-New Guinea	24	5.58	3.95	1377	9.33	169
Greater	Eastern	Tor-Kwerba /	190	8.17	3.26	2574	9.32	170
Kwerba	Trans-Fly	Eastern Trans-Fly						
Greater	Nimboran	Tor-Kwerba /	25	5.47	3.98	1338	9.31	171
Kwerba		Nimboran						
Kaure-Narau	West Timor-	Kaure / Trans-New Guinea	41	4.20	4.53	825	9.28	172
Kosare	Nuclear	Kaure / Trans-New	225	17.78	2.20	6386	9.28	173
	Trans New Guinea	Guinea						
Indo-	Uto-Aztecan	Indo-European /	16434	20.61	2.04	7333	9.26	174
European		Uto-Aztecan						
Gunwinyguan	Iwaidjan	Australian	39	7.59	3.36	2333	9.26	175

Inland Gulf	Proper								
	Mombum	Trans-New Guinea	9	2.84	5.49	360	9.25	176	
Waia	Sko	South-Central	28	4.36	4.42	917	9.23	177	
		Papuan / Sko							
Maybrat	West Bird's Head		7	2.43	5.92	241	9.23	178	
		Papuan							
Bilua	Nuclear Trans New Guinea	Trans-New Guinea / Central Solomons	450	20.91	2.01	7515	9.19	179	
Songhay	Fasu	Nilo-Saharan /	16	2.23	6.15	205	9.18	180	
		Trans-New Guinea							
Great	Jarawa-Onge	Andamanese	16	3.73	4.75	688	9.17	181	
Andamanese									
Furan	Konda-	Nilo-Saharan /	1	1.00	9.16	31	9.16	182	
	Yahadian	Trans-New Guinea							
Nuclear Trans	Sepik	Trans-New Guinea /	3150	83.23	1.00	17190	9.12	183	
New Guinea		Sepik							
Ndu	West Timor- Alor-Pantar	Sepik / Trans-New	369	7.10	3.42	2214	9.11	184	
		Guinea							
Pyu	Atakapa	Arai-Kwomtari /	1	1.00	9.10	32	9.10	185	
		Gulf							
Siuslaw	Barbacoan	Penutian /	5	2.47	5.78	268	9.08	186	
		Barbacoan							
Austronesian	PamaNyungan	Austronesian /	12306	43.92	1.37	12793	9.08	187	
		Australian	1						
Limilngan	Southern Daly	Australian	4	1.73	6.90	108	9.08	188	
Cariban	Bororoan	Carib / Macro-Ge	56	4.78	4.12	1188	9.01	189	
Awin-Pa	Bosavi	Trans-New Guinea	13	2.54	5.65	314	9.00	190	
Furan	West Timor- Alor-Pantar	Nilo-Saharan / Trans-New Guinea	41	4.20	4.39	946	9.00	191	
Limilngan	UmbugarlaNgurmbur	Australian	1	1.00	8.99	33	8.99	192	
Kolopom	Moraori	Trans-New Guinea Trans-New Guinea	4	2.46	5.73	282	8.99	193	
Nuclear Trans	West Bomberai		675	36.28	1.49	11570	8.97	194	
New Guinea Lepki	BomberaiBiksi								
				2	1.95	6.42	167	8.97	195
Mor	Matacoan	Trans-New Guinean / Mataco-Guaicuru	8	2.79	5.36	406	8.95	196	
Nuclear Trans New Guinea Heiban	Angan	Trans-New Guinea	3150	66.10	1.10	15926	8.94	197	
	Nubian	Niger-Congo / NiloSaharan	55	7.55	3.25	2595	8.93	198	
Miwok- Costanoan Maningrida	Yokutsan	Penutian	18	3.10	5.07	520	8.93	199	
	Kungarakany	Australian	3	2.19	6.03	228	8.92	200	

Armed with Table 2 we can better approach the cases of East Timor-Bunaq/West Timor-Alor-Pantar and Greater Kwerba/Tor-Orya.The first of these is the highest-ranking of all HH family pairs in the world in terms of NSIM, and in terms of raw similarities (SIM) it ranks as \#34. Thus, there is strong support for these HH families as a single genealogical unit, as the Papuan tree also suggests. Greater Kwerba/Tor-Orya rank as \#34 in terms of NSIM and \#552 in terms of

SIM. This makes the pair a very good candidate for also constituting a single genealogical unit, as suggested by the tree, and as also suggested by the Ethnologue classification.

The reader will no doubt have been struck by the large number of HH families whose relatedness according to Ethnologue seem to receive support from Table 2, but there are also many high-ranking cases that suggest a different picture than Ethnologue, even towards the top end of the ranked list, and, importantly, one should not forget the fact that the HH families themselves should be supported before we can trust any wider relations among them. In particular, there are many cases where different HH families considered as belonging to Ethnologue's Trans-New Guinea indeed seem to be related. But 11 of the pairs involve HH's Nuclear Trans New Guinea, which is in itself not supported. When the Nuclear Trans New Guinea hub is taken out, most of the network - or 'mesh' in the sense of Swadesh (1954)—falls apart. In the next section we return to Table 2 and what it may suggest about deeper Papuan connections.

The closer look at East Timor-Bunaq/West Timor-Alor-Pantar and Greater Kwerba/TorOrya concludes the first part of this paper, which was intended to test the HH classification in order to arrive at a conservative set of lexically solid genealogical units as a basic classification which can be used as a framework for going back in the opposite direction to find some more distant relations using ASJP. The HH classification, represented by 104 families in the database, was largely supported (ignoring here some details of the affiliations of single languages), but 5 families with few representatives (Biksi, Dibiyaso-Doso-Turumsa, Kwalean, Morehead-Wasur, Pauwasi, and Sentanic) should possibly each be split in two, and the larger families Sko, Lower Sepik-Ramu, and Nuclear Trans New Guinea should possibly be split into respectively 2, maximally 5 , and maximally 16 segments respectively. For the moment this leaves us with a classification which is even more conservative than the HH one. The merging of some of these units, however, seems to be supported, albeit not necessarily in ways envisaged by scholars who have contributed to the scheme represented by Ethnologue. This is the topic of the next section.

3. Possible relations among HH families

In this section I will consider cases where ASJP has constructive contributions to make to the classification of Papuan languages in the sense that it suggests relatedness among groups considered unrelated in the HH classification. For a genealogical link among HH families to be considered sufficiently interesting I will require support both from the Papuan tree and from the similarity scores in Table 2, and in cases where only a few languages are involved I will also inspect the actual word lists for likely cognates. This section is organized by Table 2, going top down but excluding the investigation of any further relations of the 8 HH families that were considered to not be supported. The task of investigating whether their (ex-)members are related to other families is postponed to future work.

When only a few languages are involved it is a simple matter to inspect the word lists for possible cognates. When doing so, I cite words directly from the ASJP database in the phonemically reduced transcriptions. These word lists come with no warranty. They are from sources that vary in quality and they are produced by different transcribers and rarely rechecked by experts. So anyone interested in pursuing work on phonological correspondences should refer to the original sources. ${ }^{4}$ The transcription system (ASJPcode) is originally described in Brown et al. (2008) and may also be consulted in Wichmann et al (2010b) (an open access publication).
Here I will just mention the function of the most non-obvious symbols, * and ~. The former represents nasalization and the latter indicates that the symbols preceding it are to be regarded as a unit (according to the transcriber who produced a given list, who may not always have had sufficient evidence for distinguishing between unit phonemes and sequences).

3.1. Lepki/Murkim

Fig. 1. Locations of Lepki (red) Murkim (blue)

This pair of languages ranks first in the world in terms of SIM and second in terms of NSIM. The languages, not surprisingly, are also sisters in the Papuan tree. Since there are just two languages we will inspect the word lists. 20 comparisons (bold-faced) out of 33 have the appearance of cognates. A few are identical across the three doculects. If it were not for the fact that there are very many similar words we might be suspicious of identical forms as representing loan words. But in this case they simply look like evidence for a close relationship.

Table 3. Lepki/Murkim lexical comparison

Meaning	LEPKI $[\mathrm{lpe}]$	MILKI MURKIM $[\mathrm{rmh}]$	MOT MURKIM $[\mathrm{rmh}]$
one	kutuowap	hel	hel
two	kaisi	kais	kais
person	ra	ra	pra
fish	yakEn	kan	kan
dog	nan	sai	sai
louse	nim, nimdEl	om	im

[^2]| tree | ya | yamul | yamul |
| :---: | :---: | :---: | :---: |
| leaf | nabai | bw~aik | bw~aik |
| skin | yit | yaith~ | yaith~ |
| blood | yiri | mal | mal |
| bone | kow, yiow | kok | kok |
| ear | bw \sim i | bw~i | bw~i |
| eye | yEmon | amol | amol |
| nose | mogw ${ }^{\text {an }}$ | mo*a | mw~a |
| tooth | kal | kal | kal |
| tongue | braw | prouk | porouk |
| knee | kolbw~i | balka | balka |
| breast | nom | mom | mom |
| liver | b3oak | miEm | miEm |
| drink | yis | ksewo | kel5ilo |
| hear | ofao | pao | ha |
| die | di | knewo | ko |
| come | guyo | haro | kw~i |
| sun | mom | kaya7kalo | kayakalo |
| star | Endi | ili | ile |
| water | kEI | kel | kel |
| stone | saup | on | o*n |
| fire | yaoala | yo | yo |
| path | masin | msan | mesain |
| night | tioa, tiTa | disla | tisla |
| new | nowal | brel | prel |
| name | gy~e | ibe | ka |

3.2. Amto-Musan/Left May/Busa

Fig. 2. Locations of Amto-Musan (red), Left May (blue), and Busa (yellow)

Amto-Musan and Left May cluster in the tree and appear in Table 2 (rank NSIM: \#5; rank SIM: \#12). The tree suggests a further connection to Busa and four dialects of Demta [dmy], which are supposed to belong to the problematic Sentanic group. Busa also appears with Left May in Table 2 (rank NSIM: \#155; rank SIM: \#256), whereas the Busa/Amto-Musan pair has a NSIM rank of \#5789 and SIM rank of \#3150. Thus there is indirect, chained evidence tying Busa to Amto-

Musan via Left May. The direct evidence for Busa/Amto-Musan is less clear, but the \#5789 rank is still just below the top 10% of pairs of HH families in the world in terms of NSIM. This sort of ranking does not go strongly against a relationship although it does not strongly support it either. Thus, I tentatively regard Busa as an outlier connected with the better supported AmtoMusan/Left May family. Further connections to Demta will not be considered here since they would first require a detailed look at the evidence for Sentanic.

3.3. Kamula/Awin-Pa/Bosavi/East Strickland

Fig. 3. Locations of Kamula (red), Awin-Pa (blue), Bosavi (yellow), and East Strickland (green)

These four HH families cluster in the tree, and 5 out of the 6 pairs among them figure in Table 2. Kamula/East Strickland is the one pair that does not rank high for NSIM, having a rank of \#3080, and a SIM rank of \#2414. Nevertheless, because all other pairs have high similarity ranks and because an NSIM rank of \#3080 after all lies well within the highest 10% in the world, this looks like a strong cluster. It is interrupted by Dibiyaso [dby], whose supposed relative Doso [dol] sits elsewhere in the tree. The issue of the splintered Dibiyaso-Doso-Turumsa HH family is not considered here.

Since Kamula and Awin-Pa each consists of a single language (respectively Kamula and Pare) it is easy to inspect the word lists. This is done in Table 4. Kamula and Pare show so many similarities (boldfaced) that it would seem immediately viable to establish their relatedness with more extensive work. Inspection of some Bosavi and East Strickland word lists show a few promising possible cognates with Kamula, with Pare or with one another. To pursue the possibility of the relatedness of the entire group it would clearly be necessary to first reconstruct ancestral languages for respectively Bosavi and East Strickland and then compare proto-KamulaAwinPa, proto-Bosavi and proto-East Strickland to each other in a pairwise fashion.

Table 4. Kamula/Awin-Pa lexical comparisons

meaning	KAMULA [xla]	PARE $[\mathrm{ppt}]$
I	nE *	no*
you	wE^{*}	go* *

we (incl.)	diE	nigi
one	hotolop	
two	depiomEtE	oteso diyabo
person	opoloimi fish	kobo omolo
dog	esemolo	mune
louse	iyo	Ti
tree	toli	o
leaf	upo	i^{*}
skin	kopolo	use
blood	umoli	sia
bone	ELu	sowo
ear	molo	ko
eye	inoma	mogo
nose	mu*	kinemo
tooth	Epe	kine
tongue	tE	male
knee	oLuma	tE
hand	to	oumu
breast	mEmE	atowe 'arm'
liver		bu
drink		
see	ele	
hear	tolo	ded
die		wodala
come	pu	
sun	soLi	hadan
star	tomeLi	gine
water	yu	peteme
stone	ewoLo	ume
fire	deLopo	iebo
path	opi	nE
mountain	tomoLi	otigi
night	utoLElo	giso
full		hwiga
new	omoko	towate
name	hi	kw~ane
		hi

Kamula and Awin-Pa lexical comparisons are also provided in Reesink (1976:16) and the Bosavi-East Strickland connection is suggested in Shaw (1986) based on cognate counts. The latter author also considers it "very reasonable" (p. 56) to connect Awin-Pa to Bosavi-East Strickland, but nevertheless does not follow through with this suggestion. (Apparently following McElhanon and Voorhoeve 1970, Ethnologue considers all four of the HH families compared here to belong to Trans-New Guinea).

3.4. Fasu-East Kubutu

Fig. 4. Locations of Fasu (red) and East Kutubu (blue)

This pair of families is represented by just two languages by Ethnologue's count, Foe [foi] (East Kutubu) and Fasu \& Namumi [faa] (Fasu). The pair is a cluster in the tree and is supported by Table 2. Given that just three doculects are involved we can easily inspect the word lists for possible cognates. There are a total of 17 Foe words which are similar to forms in either Fasu or Namumi, with 15 Foe-Fasu matches out of 62 comparisons and 12 Foe-Namumi matches, out of 60 comparisons. ${ }^{5}$ These are highlighted in bold in Table 5. Borrowing cannot be excluded, but at least for recent borrowings we would expect forms to overall be more similar, and we would also not expect as many as $20-24 \%$ borrowings on these short lists of basic vocabulary. So in my opinion, there is little doubt that Fasu and East Kutubu are related. ${ }^{6}$ Franklin (1973b) also assumes that they are related, but the only evidence given is a list of 10 compared words-a list which is intended not to show that these two languages in particular are related, but that there is a large group of languages in the area which are all related to one another. Better evidence is given

[^3]by Franklin (2001) in the form of shared kinship and counting terms and some regular sound correspondences and grammatical markers (but again the emphasis is on wider relations).

Table 5. Fasu/East Kutubu lexical comparison

meaning	FASU [faa]	NAMUMI [faa]	FOE [foi]
I	ano	anuni	nano
you	re, ne	ni	ha7a, na7a
we (incl.)	isu	su	iya, yiya
one	hakasa, meno	nakasa	mana*xa
two	teta	tita	ha*xa
person		abano	amena
fish	pu, pokoa	poka	zagi
dog	kasa	kasa	gesa*, xaso
tree	ira	ira	iro
leaf	ira ku*	gu	iroso*i, sa*e
skin	rorofa	kau	kh~a7o
blood	yapi	kakusa	w3lia, hamage
bone	kiki	kiki	kh~igi, kh~ikh~i
ear	senaki	sinEki	ho xh~iyo, kh~ia
eye	hi*	hi*	$i^{*}, \mathbf{i}^{*} \mathbf{y}$
tooth	mere	akai	gi, ti
tongue	aru	airu	aru, auru
knee	kakuna	kukunai	ga7anua, xixi
hand	hokono	nokanu ('arm')	ya
breast	hoko	hotu	$\mathrm{o}^{*} \mathbf{x}{ }^{*}$, 070
liver	kasoko		$\begin{aligned} & \mathbf{k h \sim a s i a 7 o , ~} \\ & \text { ku*7u*nu* } \end{aligned}$
drink	nena		ni, No
see	asera	asia	ariy $3 y$, sebe, ere
hear	kaira	kai a	nisi, nisibuba7ai
come	pera	piE	w3y, wa
sun	ma* ${ }^{*}{ }^{\text {y }}$ a*	maya	iriyabo, iriyapo
star	ti*makata	putini iya	irinibu,
		putini, (iya means 'rain')	orowa*pa
water	he*	hi*	ibu, ipu
stone	eke	iki	kh~a*no, kh~ana
fire		irokupi	ira, iro
mountain	akai	uri	duma, tuma
night	ereamo	idi iya idi, iya	genemo

full	komarususua	komurusai	kh~ona, kh~onoba7ai
new	kawe	kawi	isa, isa*
name	ano	iyanu	yapo

3.5. Suki-Gogodala/Waia/Kiwaian

Fig. 5. Locations of Suki-Gogodala (red), Waia (blue), and Kiwaian (yellow)

This group of three HH families is a single cluster in the tree. The ranks for each of the three pairs are as follows: Suki-Gogodala/Waia: \#35 (NSIM) and \#16 (SIM); Suki-Gogodala/Kiwaian: \#3402 (NSIM) and \#4404 (SIM); Waia/Kiwaian: \#11 (NSIM) and \#9 (SIM). The ASJP support for the relatedness of each of the pairs Suki-Gogodala/Waia and Waia/Kiwaian is strong and Suki-Gogodala/Kiwaian, although not very highly ranking, is still towards the top of pairs in the world. Thus, I hypothesize that all three HH families are related.

According to Franklin (1973a:17) "Waia shows generally a 10-12\% lexical relationship with languages of the Kiwaian family, but over 15% with Gogodara." This proposal for a link between Suki-Gogodala, Waia, and Kiwaian is discussed in more detail by Reesink (1976:2225). He presents a list of 39 probable cognate sets involving Waia and some Kiwaian languages, but, mainly based on dissimilarities in Waia and Kiwaian pronouns, expresses skepticism about the relationship. He also shows lexical similarities between Waia and Gogodara, but-without any specific arguments-assumes that they are borrowings. Also rejecting an earlier proposal by Wurm (1975:325) that Waia belongs with the Pahoturi languages, he concludes that "[a] genuine genetic relationship could not be found for Waia" (Reesink 1976:26). Whether the similarities between Waia and Suki-Gogodala on the one hand and Waia and Kiwaian on the other are ultimately due to borrowing or inheritance, they are in obvious need of further investigation. It would seem somewhat odd for Waia to borrow basic vocabulary from two different sources, and I expect that the three groups can be shown to be related once reconstructed proto-SukiGogodala and reconstructed proto-Kiwaian are drawn upon for comparisons. Unlike Reesink, I would certainly not regard differences between pronouns as evidence against a relationship if
other basic vocabulary with similar degrees of stability as pronouns (Holman et al. 2008) supports a genealogical relationship.

3.6. South Bird's Head Family/ Inanwatan

Fig. 6. Locations of South Bird's Head Family (red) and Inanwatan (blue)

This pair ranks \#46 (NSIM) and \#26 (SIM) and the languages are sisters in the tree. The tree suggests that Konda-Yahadian is a more distant outlier. The ranks for pairs involving KondaYahadian (which is represented by a single doculect) are: Konda-Yahadian/Inanwatan: \#627 (NSIM), \#105 (SIM); Konda-Yahadian-South Bird’s Head Family: \#510 (NSIM), \#444 (SIM). Thus, the further connection to Konda-Yahadian is far from as well supported as the South Bird's Head Family/Inanwatan connections, but it would be worthwhile investigating further.

Following Voorhoeve (1975a), Berry and Berry (1987a) treat South Bird's Head Family, Inanwatan and Konda-Yahadian as three 'families' within the South Bird's Head 'stock'. Cognate counts show the same relations between the three groups as the ASJP Papuan tree, with Konda-Yahadian as a remote relative of the South Bird's Head Family-Inanwatan sisters. The authors also note a number of structural similarities, where the most striking is a pair of nominal gender suffixes that are identical in Inanwatan and at least one South Bird's Head Family language. The structural similarities also involving Konda-Yahadian are more run-of-the-mill.

3.7. Sepik/Ndu/Walio

Fig. 7. Locations of Sepik (red), Ndu (blue), and Walio (yellow)

The pairs in these HH families, which form a single cluster in the tree, rank as follows. Sepik/Ndu: \#47 (NSIM), \#736 (SIM); Sepik/Walio: \#124 (NSIM), \#3398 (SIM); Ndu/Walio: \#1072 (NSIM), \#3503 (SIM). While the last pair is not among the top 200 in the world it is quite highly ranking. Thus, this cluster has support.

The relatedness of Sepik and Ndu is substantiated by Foley (2005:126-138), who adduces evidence from pronominals (where 6 out of 10 proto-Ndu pronominals look very similar to Sepik pronominals); basic vocabulary; and some grammatical patterns, where the strongest piece of evidence is an applicative construction involving a grammaticalized form of a proto-Sepik verb *kwV 'to give'. Foley (2005:130) raises the possibility that Kwoma [kmo], otherwise regarded as Sepik, groups with Ndu, but Aikhenvald (2008:597-605) shows that Kwoma has borrowed from the Ndu language Manambu. Her discussion, however, does not affect the larger argument by Foley of Sepik-Ndu relatedness, only the placement of Kwoma within Sepik-Ndu. Laycock and Z'Graggen (1975:753) included Walio in their Sepik-Ramu Phylum along with many other families in a big lumping attempt, but do not present substantial data in support of this possibility.

3.8.
 Nimboran/Kapauri/Border(/Elseng)

Fig. 8. Locations of Nimboran (red), Kapauri (blue), Border (yellow), and Elseng (Green)

These four HH families belong to the same cluster in the tree, a cluster which also involves Saberi, supposed to be a Greater Kwerba language. I will ignore the status of Saberi since it would involve a closer look at its relation to Greater Kwerba to determine whether it really belongs with that family. Instead I concentrate on the four HH families appearing in the title of this subsection. The ranks for each entailed pair are as follows. Nimboran/Kapauri: \#154 (NSIM), \#92 (SIM); Nimboran/Border: \#48 (NSIM), \#392 (SIM); Kapauri/Border: \#1512 (NSIM), \#2965 (SIM); Nimboran/Elseng: \#4689 (NSIM), \#3538 (SIM); Kapauri/Elseng: \#14814 (NSIM), \#7627 (SIM); Border/Elseng: \#54 (NSIM), \#89 (SIM). These numbers show strong support for Nimboran/Border, with Kapauri mainly being supported as a member of the cluster through its
relationship with Nimboran, although Kapauri/Border is still towards the top of the world list. Elseng is potentially a spurious member given that it only scores among the top 200 world pairs for its relationship with Border. Two facts suggest that the relation is one of diffusion involving just these two languages. First, Sawa (the representative of Elseng) intrudes into Border in the tree, having Awji as a sister. Secondly, Sawa and Awji are also direct neighbors geographically. To check this possibility, the actual data are listed in Table 6. Surprisingly, it turns out that none of the word pairs looks like borrowing has been involved. Frankly there are also not any obvious cognates. Nevertheless, there are similarities throughout the list, including 10 cases of identical initial ASJPcode symbols and 3 cases where both the initial consonant and following vowel symbols are identical (marked by underscore). Thus I regard the relatedness of Nimboran, Kapauri, and Border as a sound hypothesis, whereas Elseng's membership in this group is possible but much more dubious. Its wider relation to Border needs further investigation. In the mean time I will regard it as an isolate.

Table 6. Sawa/Awji lexical comparisons

meaning	SAWA [mrf]	AWJI [auw]
I	ka	ko
you	sEm ("you pl.")	kebe ("you pl.")
we	kam	yebe
person	sisEu ("man")	kir ("man")
fish	oNgles	$\underline{0}$
dog	w3s	w31
louse	ku	tu
tree	s3k	ti
leaf	f3k3n	ti fiye
skin	son	f3ker
blood	w3tw3n	keane
bone	ok	sak3r
ear	uskNs	keato
eye	$\underline{\text { naf }}$	nayo
nose	s3npok3p	nubru
tooth	an	ka
tongue		$\underline{\text { marie }}$
knee	ambl3s	tumtkur
hand	s3k3s, s3ksan ("hand, arm")	kenie ("arm")
breast	pan	m3*
see	$\underline{\text { naf }} 0 *$ ni	nayo tai
hear	sko	keatik3rk3ri
come	laf	manam
sun	ninaf	mentao
star	waf	mase

water	$\underline{\text { w } 3 t 31 ~}$	$\underline{\text { wobobio }}$
stone	$\underline{\text { s.3pat }}$	$\underline{\text { ser }}$
fire	bot	tao
path	$\underline{\text { mul }}$	$\underline{\text { m } 3 N g i r ~}$
mountain	Nubikin	yunu
night	$\underline{\text { yaNga }}$	$\underline{\text { naburoa }}$
new	somb3n	no*mo*

Although Nimboran, Kapauri, and Border, together with many other families, have been lumped in a Central and Western Trans-New Guinea Phylum (Voorhoeve 1975b), there have been no suggestions in the literature that these three families in particular have a closer relationship.

3.9. Pahoturi/Eastern Trans-Fly

Fig. 9. Locations of Pahoturi (red) and Eastern TransFly (blue)

These HH families are sisters in the tree and rank \#83 (NSIM) and \#581 (SIM), so their relatedness has support. They were lumped together, along with many other families, in a TransFly stock by Wurm (1975:331). This author, however, did not see any particularly close relationship between Pahoturi and Eastern Trans-Fly, but actually assumed that they belong to separate divisions within his far-flung stock.

3.10. Abun/Maybrat/West Bird's Head

Fig. 10. Locations of Abun (red), Maybrat (blue), and West Bird's Head (yellow)

The HH families Abun, Maybrat, Mpur, and West Bird's Head form a cluster. The ranks among the 6 pairs are as follows: Abun/Maybrat: \#483 (NSIM), \#79 (SIM); Mpur/West Bird's Head: \#122 (NSIM), \#140 (SIM); Abun/West Bird’s Head: \#1020 (NSIM), \#1379 (SIM); Maybrat /West Bird's Head: \#178 (NSIM), \#241 (SIM); Abun/Mpur: \#8604 (NSIM), \#3304 (SIM); Maybrat/Mpur: \#21,962 (NSIM), \#15,086 (SIM). If Maybrat is related to both West Bird's Head and to Abun, as suggested by the high NSIM ranks, then Abun, by transitivity, should also be related to West Bird's Head, and the NSIM rank is, indeed, relatively high for Abun/West Bird's Head. It is harder to fit Mpur into the equation. Its relation to West Bird's Head is high-ranking, its relation to Abun is relatively high ranking, but that to Maybrat ranks low. In order to decide how to interpret this case we can compare the Abun, Maybrat, and Mpur data so as to develop a better sense of how solid these relations are, cf. Table 7.

Table 7. Maybrat/Abun lexical comparisons.

meaning	MAI BRAT	ABUN	MPUR
I	tuo, tuwo	ji	in
you	nuo, n	nan	nen
we	amu, p	men	yek
one	sau, s	dik	tu
two	eok, ewok	we	dokir
person	rae	ye	man, mamir
fish	sa	boge	mw~an
dog	mtax, mtah	nd~ar	per
tree	ara	kw~e	ni
blood	mes	de	far
ear	imara	git	kw~aip
nose	naif, nayif	gwembo	minsan, wanken
drink	he, xe	da	kobet
see	ari	me	wot
hear	hai, hayi	jam	minsem
die	ama	kw~op	ut
come	mie, ayo	ma	na
sun	aya	kam	put
water	atu	Sur	war
path	mti	os	nj~an, bw~ak
mountain	atot	banbo	noru
night	asom	sEs	dim
full	gum	bit, berem	
name			muk

Among the 24 Mai Brat/Abun lexical comparisons in Table 7 there are four that look to be solidly cognate: ‘dog', 'to drink', 'to come', and 'path'. Some other weaker candidates also appear: 'you', 'person', and 'night'. While the evidence is not overwhelming it nevertheless looks promising. Abun and Mpur, however, do not have the appearance of relatedness. Only the words for 'you' look like true cognates. Even by long stretches of the imagination only a few more, such as 'come' and 'water', could be added as candidates for cognacy. Given that Mpur only seems to show relatedness to West Bird's Head but not to West Bird's Head's likely relatives Maybrat and Abun, I prefer to not include Mpur in the hypothetical Abun/Maybrat/West Bird's Head group.

The Abun/Maybrat/West Bird's Head group is isomorphic with the West Papuan phylum of Berry and Berry (1987b), who suggest the grouping mainly based on cognate counts. Reesink (2005:187) briefly mentions pronouns, gender distinctions, and some verbal prepositions as kinds of evidence that might link Maybrat (but not Abun or Mpur) to West Bird's Head, but still regards Maybrat (as well as Abun and Mpur) as isolates.

3.11. Yareban/Mailuan

Fig. 11. Locations of Yareban (red) and Mailuan (blue)

Investigating the possible relationship between Yareban and Mailuan also involves looking into possible connections with Dem. This language is not shown in the map in Figure 11, but it should be noted from the outset that it is located in a completely different region, namely in the western highlands of the Indonesian part of New Guinea. All three HH families form a cluster, with Dem and Yareban as sisters and Mailuan as a more distant relative. The ranks are as

[^4]follows: Dem/Yareban: \#129 (NSIM), \#20 (SIM); Yareban/Mailuan \#51 (NSIM), \#21 (SIM); Dem/Mailuan: \#9154 (NSIM), \# 6159 (SIM). It is somewhat surprising that Dem and Mailuan are apparently so different when both are very similar to Yareban. Dem and Yareban are represented by single doculects, while Mailuan is represented by three very close doculects carrying different ISO 639-3 codes. This enables us to quickly inspect the data. In order not to clutter Table 8, where lexical comparisons are made, I have arbitrarily chosen just one representative of Mailuan, namely Laua (luf).

Possible cognates between Dem and Laua, the problematical pair, are marked in bold. There are 3 such pairs which, by a stretch, may be conceived of as possible cognates in the list of 22 items, with one, 'breast', possibly to be discounted as sound symbolic. Words for 'breast' throughout the world's languages have an average of four segments and the most frequently occurring ASJPcode symbols in the four positions are m, u, m, and a (Wichmann et al. 2010b). Thus, forms like Dem ami and Laua hama are similar in shape to words for 'breast' in many languages throughout the world. This does not look like a promising relationship. That raises the question about whether one of the pairs Dem/Yareban and Yareba/Mailuan are possibly not genealogically related after all. Both pairs cannot be valid genealogical units if Dem and Mailuan are not related.

Dem/Yareba have similarities throughout the set of pronominal forms ' I ', 'you', 'we'. But Dem interestingly has synonyms for two of these, increasing the probability of spurious matches. There is an identical word for 'dog' in both languages. Because of the great differences in the rest of the items, I suspect that this is a loanword. In fact, it seems to be a Wanderwort, because when inspecting words meaning 'dog' one finds similarly shaped words throughout the Papuan languages, e.g. (in ASJPcode), 3p3na, 5amp, 5imboaN, 5ombwi, 5umbakal, 5umb~ua, aga, age, agoa, agoa, amb~aipu, gwala, gwara, gw~ai, ka, kp~oro, kp~oto, kui, kw~3r, kw~a, $k w \sim a^{*}$, oa, owa, oana, obe, obe, ofun, okw $\sim a, p w a t, u^{*} k u * l o, ~ u b r i, ~ u b u i, ~ u w a N k u, ~ u w i, ~ u w u r a, ~$ etc. I take it that the origin is in Oceanic, since words for the dog is similarly shaped in some Oceanic languages, e.g., Kilivila kaukw~a, Kove kauwa, Lengo, Lusi, Mbirao, Nggela, Tolo kau, Torau kaukau, Tungak kauvek, Vitu kaua. Finally, there are similarities in the words for 'fire' and 'night', respectively, but these could be accidental. Thus Dem and Yareban similarities are not convincing of a genealogical relation. Their similarity score placing them as \#129 in terms of NSIM seems to come from a mixture of chance and borrowing.

The Yareban/Mailuan pair looks more convincing, with cognate-looking forms for 'fish', 'louse', 'tree', 'ear', 'see', 'hear' (and 'breast'). In addition, a-vowels are found in all three pronominal forms, suggesting similar systems of indicating distinction between pronouns by other means than vowel qualities. On the basis of these various considerations I hypothesize that Yareban/Mailuan to be related while Dem does not feed into the equation.

Table 8. Dem/Yareban/Mailuan lexical comparisons

meaning	DEM	YAREBA	LAUA
I	nau, no	na	ya7a
you	aN, yu	a	ga7a
we	Yu	ya	erio egi, ogo egi
fish		kw~a, kw~asiri	orabe
dog	kw~a	dahari	
louse	ndu, nduse	reiba, ua	tuma
tree	niye	ana oma	hana
blood	amiyep, miet	iwa, onono	lala
bone	awak	tai	gisa
ear	nado, nadoN	ome	ope
eye	aingewu, eNgip	diti, natei	ini
tooth	naNkasa, yaNkasa	nio	ma7a
knee		yajigo	turuna
breast	ami	ama	hama
drink		ogo it	hihilma7a
see	aige kotak, korak	er	helbau
hear	aindemo, nadunoye	naut	nanba7a
come	me, menaNot	ar, far	hai
star		muina, kodara	nigoru
water	da, yat	ogo	ne7ama
stone	daNat, Nga	gebiro, oma	baga
fire	kanu, kuna	ina	heu
road	dundak, mbo	daba, darei	vagorodi
mountain	dum, Na	maidani	horo
night	damuk	dumuro	garuru
full		beda, wate farinu	ma7apulaha
new		reka	gadara
name	agatiene, aluN	ifu	nim

Yareban and Mailuan are included in the far-flung South-Eastern Trans New Guinea phylum of Dutton (1975), but they are not singled out as particularly closely related. Interestingly, however, of all the different pairs of groups in the dubious phylum, YarebanMailuan shows the highest percentage of cognates (26\%) in the count of Dutton (1975:628).

3.12. A residual case

Bilua and Savosavo is the final case where both Table 2 and the tree support a genealogical relationship. However, Dunn and Terrill (2012) argue that the lexical evidence for the relatedness between these languages (as well as the two other 'Central Solomons Papuan' languages) vanishes when Oceanic (Austronesian) loanwords are excluded. I will follow Dunn and Terrill in this assessment and not group Bilua and Savosavo together.

4. Conclusion

In conclusion, below I present the hypothetical, basic classification of Papuan languages arrived at through the above considerations. New nomenclature is not introduced. Families that are considered to not be supported are split up into the fragments suggested by the ASJP Papuan tree, and these fragments are labeled "Ex-Fam-\#", where "Fam" is the HH name of the unsupported family and "\#" is a number. If one of these groups is isomorphic with some subgroup in Ethnologue, this subgroup's name is supplied in a parenthesis. The list is given in the order in which the groups appear in the ASJP tree, from top to bottom. No attempt is made to also offer subgrouping schemes, but suggestions can be retrieved from the ASJP Papuan tree. The languages that belong to each group are indicated using ISO 639-3 codes or language names when codes are not available. Languages that are supposed to belong to a HH family considered supported, but which do not occur under the same node as the bulk of the languages in the HH family, are listed as if they nevertheless did belong to the family in question, but their potentially problematical status is indicated by a question mark.

1. West Timor-Alor-Pantar/East Timor-Bunaq

abz/abz?, adn, beu, bfn?, ddg, hmu, klz, kpu, kvd, kvw, kyo, lev, mkz, nec, oia, swt, twe, woi, Kaera, Kawa, Sar Indonesia
2. South Bougainville buo, nas, siw
3. Wiru
wiu
4. Namla-Tofanma tlg
5. Ex-Pauwasi-1 (Western Pauwasi) dmu, ttn
6. Ex-Nuclear Trans New Guinea-1 (Asmat-Kamoro) asc, asi, asy, cns, irx, kgq, nks, txt, xse,

7. Mombum

kdw, mso
8. Marindic
bgv, jaq, kvg, mrz, zik
9. Ex-Nuclear Trans New Guinea-2 (Awyu-Dumut)
aax, ahh, aws, awy, bwp, khe, psa, saw, wms
10. Inland Gulf ipo, mcv, tsx
11. Ex-Nuclear Trans New Guinea-3(Oksapmin)
opm
12. Ex-Nuclear Trans New Guinea-4 (Ok)
bhl, fai, kti, kts, mpt, nxr, sug, tif, tlf, yon
13. Ex-Nuclear Trans New Guinea-5 (Finisterre-Huon) awx, bmu, ded, kgf, klt, kmg, kpf, ksr, mci, mlh, mpp, naf, nif, nnk, ons, spl, tbv, tim, wnc, yut
14. Goilalan fuy, ttd
15. Ex-Nuclear Trans New Guinea-6 (Chimbu-Wahgi) doa, gam, gvf, kue, med, nac, sst, wgi
16. Kamula/Awin-Pa/Bosavi/East Strickland
agl, ail, bco, beo, etr, goi, jko, khs, kkc, onn, ppt, siq, smq, xla
17. Ex-Dibiyaso-Doso-Turumsa-1
dby
18. Angan
aak, agm?, ago, apz, byr, hmt, kcb, klp, mcr, miw, smb, ygw
19. Duna-Bogaya
duc, boq
20. Ex-Nuclear Trans New Guinea-7 (Engan)
bir, enq, hui, kew, kjs, kjy, kyc, leq, ssx
21. Sepik/Ndu/Walio
abt, amp, bjh, bye, bzf, dju, gbe, ham, ian, iwm, kmn, kmo, mle, nnm, nud, sim, sny, tww, wla, ybx, ylg, yss
22. Greater Kwerba/Tor-Orya
bkl, kwe, srl?, tmj, ury, xau
23. Nimboran/Kapauri/Border
amn, auw, dnd, jet, khp, msf, nir, snu, sow, wrs
24. Elseng
mrf
25. North Halmahera
gbi, loa, mqo, mqs, pgu, saj, tby, tlb, tvo
26. Yale
nce
27. Ex-Dibiyaso-Doso-Turumsa-2
dol
28. Kwomtari
kwo
29. Ex-Nuclear Trans New Guinea-8 (Mek)
eip, kkl, mtg, xte
30. Ex-Morehead-Wasur-1
jei, ncm
31. Unclassified (Kenaboi)
xbn
32. Hatam-Mansim
had
33. Mor
moq
34. Pahoturi/Eastern Trans-Fly
bon, gdr, idi, kit, tof, ulk
35. Ex-Nuclear Trans New Guinea-9 (Kainantu-Goroka) agd, aso, auy, awb, bef, bjr, for, gaf, gah, gaj, gim, ino, isa, kbq, snp, tbg, waj, yby, ygr
36. Yareban/Mailuan dof, luf, mgu, yrb
37. Dem
dem
38. Ex-Nuclear Trans New Guinea-10
anh, ate, ena, faj, imi, kqa, mmq, msx, omo, pda, pmr, sbq, wdg
39. Ex-Nuclear Trans New Guinea-11 (Dani)
dni, dnt, dnw, wlw, wno, wul, yli
40. West Bomberai
bdw, ihp, kgv
41. Ex-Nuclear Trans New Guinea-12 (Wissel Lakes)
ekg, mnz
42. Koiarian
aom, bbb, kbk, kqi, mcq
43. Kaki Ae
tbd
44. Moraori
mok
45. Mawes
mgk
46. Kolopom
kig, nqm, ran
47. Bulaka River
jel, mgf
48. Molof
msl
49. Yuat-Maramba
kql
50. Kaure-Narau
bpp
51. Tirio
aup
52. Kayagar aqm, kyt, tcg
53. Suki-Gogodala/Waia/Kiwaian aac, bcf, ggw, kiw, kjd, kmx, knv, kxz, mdb
54. Ex-Nuclear Trans New Guinea-13 bhg, bjz, koz, kpr, sue, wsk, zia
55. Fasu-East Kubutu
faa, foi
56. Pawaia-Teberan
mps, ppo, pwa
57. Turama-Kikori
klq, meb, mgx
58. North Bougainville kyx, roo
59. Eleman
iar?, opo, oro, tqo, uar, xeu
60. Mairasi
etz, zrs
61. Touo
tqu
62. Ex-Kwalean-1
huf, ksj
63. Tanahmera
tcm
64. Savosavo
svs
65. Bilua
blb
66. Manubaran
kqc, mds,
67. Kuot
kto
68. Burmeso
bzu
69. Amto-Musan/Left May/Busa
amm, amt, bhf, bpw, itr, mmp, nax, niw, owi
70. Ex-Sentanic-1
dmy
71. Ex-Lower Sepik-Ramu-1
kbx
72. Taiap
73. Ex-Sko-1
ksi, skv, vam, wut, Dusur, Leitre
74. Ex-Lower Sepik-Ramu-2
aog, can, mtf, xop, yee
75. Geelvink Bay
trt
76. Konda-Yahadian
knd
77. South Bird's Head Family/Inanwatan
bzp, jbj, kzm, pru, szp, xod
78. Nuclear Torricelli
aif, aof, aon, aun?, ape, avt, but, bvn, eit, ele, kms, lsr, mkc, mty, mwb, niz, ong,
rhp, siu, tei, tua, urt, urx, van, xbi, wmo?, yev, ymb, ymo
79. Urim
uri
80. Ata
ata
81. Monumbo
lll, mxk
82. Ex-Sentanic-2 (Sentani Proper)
set, tnm
83. Ex-Lower Sepik-Ramu-3
byz
84. Yawa
yva
85. Ex-Kwalean-2
mfw
86. Lavukaleve
lvk
87. Anem
anz
88. Ex-Morehead-Wasur-2
pep
89. Papi
ppe
90. Mpur
akc
91. Abun/Maybrat/West Bird's Head
ayz, kgr, kzz, msg, mxn, sbg
92. Lakes Plain
afz, awr, bqq, dbf, ert, fau, kiy, pas, rac, spi, tad, tds, tmu, tty, wbe
93. Руи

> pby
94. Ex-Biksi-1
sbt
95. Ex-Sko-2
rwa, wra, Poo, Ramo, Sumararo, Womo
96. Ex-Biksi-2
yet
97. Yeli Dnye
yle
98. Lepki/Murkim lpe, rmh
99. Ex-Pauwasi-2 (Eastern Pauwasi) enr, wfg, yuj
100. East Bird's Head
mej, mnx, mtj
101. Kosare
kiq
102. Usku
ulf
103. Ex-Nuclear Trans New Guinea-14
abw, ali, bie, bql, buq, dmc, hih, kgu, mhl, mjj, mkr, mmi, mvq, ped, pla, prw, sks, ukg, wnb, wnu, xow, ybm, yrw
104. Ex-Nuclear Trans New Guinea-15
kpw
105. Senagi
kbv
106. Piawi
pnn, tmd
107. Ex-Lower Sepik-Ramu-4
rao
108. Ex-Lower Sepik-Ramu-5
geb, kct, msy
109. Ex-Nuclear Trans New Guinea-16
aey, asd, awm, bbd, bbr, bmh, bmx, boj, bpi, bpm, bpu, dnr, duk, eri, fad, gap, gaw, ggl, gmu, gyb, igo, jil, klm, kmf, kop, lei, mcz, mdc, mlp, mqe, mqv, mqw, mtc, nbk, pnr, pup,
rea, rmp, rpt, six, snr, snx, snz, spd, sra, ssd, ssj, swm, tya, urg, urw, usu, utu, wmc, wtf, xes, xsp, ybo, ydk, ynl

Starting from 104 families in the HH classification of the 60% of the Papuan languages under consideration here we have ended up with 109. Some of the HH families which have been split up can probably, at least in part, be reunited with more work on the data and inspection of the evidence that experts have put forward for the different proposals, but roughly the same number of families as in the HH classification for languages included in this paper may be a realistic number for a conservative classification immediately within reach. The methodology adopted is not exhausted with this study. The above new proposals for genealogical relationships should be investigated in more detail, drawing upon all data available. Some of the proposed relations may be due to chance or loanwords, so this further step is needed to establish the relations with a greater degree of confidence.

Once the proposed new relationship have been studied in more detail the exercise can be iterated using something like the above units in producing similarity measures for entire groups. The rubble left from breaking up weakly supported families has not been reused for new construction work, but there is no doubt that some larger groupings can be established. Just looking at the tree and observing branch lengths leading to nodes uniting some members of some ex-families with members of other families induces hope in this regard. For instance, promising groupings to investigate would be Mombum/Ex-Nuclear Trans New Guinea-1 (Asmat-Kamoro) or Piawi/Ex-Lower Sepik-Ramu 4/ Ex-Lower Sepik-Ramu 5. Of course, all relevant information should be extracted from the literature and used. For instance, in the case of Mombum and Asmat-Kamoro there are about a dozen Mombun words listed along with the 418 Asmat cognate sets of Voorhoeve (1980). It would obviously also improve the classification of Papuan languages to increase the current 60% coverage in the ASJP database.

The impressive genealogical diversity represented by the non-Austronesian languages of the New Guinea region represents a great challenge to comparative linguistics, and I hope to have shown that computational methods can be an aid in this enterprise. The main contribution of this paper has been to identify genealogical relations which are good candidates for becoming firmly established once more detailed work is undertaken, applying the comparative method.

Appendix 1: The ASJP tree of Papuan languages

See pages 357-386 below, for the ASJP tree of Papuan languages.

Appendix 2: Description of $\boldsymbol{C N}$

N is the number of pairs with one list from each family, so if one family has m lists and the other family has n lists, then $N=m^{*} n$. Other things being equal, the bigger N is, the more reliable the
average similarity between the families is. One thing that is not equal is the correlation between the lists. As an extreme example, if all the lists in a family are copies of the same list, then all the copies are no better than the one original list no matter how many copies there are. In general, the more highly correlated the lists are, the less helpful additional lists are. $C N$ is N corrected for the correlations between lists in the same family: $C N=m^{\prime} * n^{\prime}$, where m^{\prime} and n^{\prime} are m and n corrected for correlations.

To derive the correction, let a family with n lists be given, and let a list from a language outside the family also be given. Let s_{i} be the similarity between the i th list in the family and the list outside the family. The possibility of a relationship between the given family and the outside language can be tested by observing the mean similarity and the variability of the mean: a high mean with low variability provides evidence for a relationship. The mean similarity \bar{s} is defined as:

$$
\bar{s}=\Sigma_{i} s_{i} / n .
$$

The variability of \bar{s} can be expressed by its variance $V(\bar{s})$, which is:
(1) $\quad V(\bar{s})=V\left(\Sigma_{i} s_{i} / n\right)=V\left(\Sigma_{i} s_{i}\right) / n^{2}$.

The standard expansion for variance of a sum is:

$$
\begin{equation*}
V\left(\Sigma_{i} s_{i}\right)=\Sigma_{\mathrm{i}} V\left(s_{i}\right)+\Sigma_{i \neq j} r_{i j} V\left[V\left(s_{i}\right) V\left(s_{j}\right)\right], \tag{2}
\end{equation*}
$$

where $r_{i j}$ is the Pearson correlation between s_{i} and s_{j} across all the lists outside the given family. Under the null hypothesis that languages in different families are unrelated, it is reasonable to assume that $V\left(s_{i}\right)=V\left(s_{j}\right)$ for all i and j; let $V(s)$ denote the common variance. Substituting $V(s)$ for $V\left(s_{i}\right)$ and $V\left(s_{j}\right)$ in (2) produces:

$$
\begin{equation*}
V\left(\Sigma_{i} s_{i}\right)=n V(s)+V(s) \Sigma_{i \neq j} r_{i j} . \tag{3}
\end{equation*}
$$

Now let r denote the mean of the $r_{i j}$, which is:

$$
r=\Sigma_{i \neq j} r_{i j} /[n(n-1)] .
$$

Substituting this in (3) leads to:

$$
V\left(\Sigma_{i} s_{i}\right)=n V(s)[1+(n-1) r],
$$

and substituting this back in (1) produces:
(4) $\quad V(\bar{s})=V(s)[1+(n-1) r] / n$.

Finally, let n ' be defined as $n /[1+(n-1) r]$. With this substitution, (4) simplifies to:

$$
V(\bar{s})=V(s) / n^{\prime} .
$$

If $r=0$, then $n^{\prime}=n$; thus, n^{\prime} can be interpreted as the number of independent lists that would produce the same $V(\bar{s})$ as do the given n correlated lists. If $r=1$, then $n^{\prime}=1$, because n lists are no better than one if they are all perfectly correlated.

For comparing two families rather than a single family and a single list, $C N$ is the product of the two corrected family sizes. $C N$ is usually much lower than N, because lists in the same family tend to be highly correlated. A conventional test statistic for the relationship between two families, analogous to the t statistic, is the mean similarity divided by the standard deviation (SD) of the mean. Since the SD is the square root of the variance, the SD of the mean is inversely proportional to $\sqrt{ } C N$. The test statistic is therefore directly proportional to the mean similarity multiplied by $\sqrt{ } C N$, which is NSIM in Table 2 . The constant of proportionality is not estimated, which precludes formal significance tests but does not affect the ranking in Table 2.

Acknowledgments

This paper has benefitted enormously from collaboration with members of the ASJP consortium over the years. Special thanks go to Eric W. Holman, who contributed directly by producing and describing the different versions of the similarity scores for HH families reported in Table 2. Four large sets of comments from the editors-Harald Hammarström and Wilco van den Heuvel-and two referees, as well as comments from Malcolm Ross and Bernard Comrie, certainly helped to improve this paper, even if it could surely have been improved even more.

References

Adelaar, Alexander K. 1995. Borneo as a cross-road for comparative Austronesian linguistics. In: Peter Bellwood, James J. Fox, and Darrell T. Tryon (eds.), The Austronesian:
Historical and Comparative Perspectives, 75-95. Canberra: Department of Anthropology in association with the Comparative Austronesian Project, Research School of Pacific Studies, The Australian National University.
Aikhenvald, Alexandra Y. 2008. The Manambu Language of East Sepik, Papua New Guinea. Oxford: Oxford University Press.
Berry, Keith and Christine Berry. 1987a. A survey of the South Bird's Head Stock. Workpapers in Indonesian Languages and Cultures 4: 81-117.

Berry, Keith and Christine Berry. 1987b. A survey of some West Papuan phylum languages. Workpapers in Indonesian Languages and Cultures 4: 25-80.
Brown, Cecil H., David Beck, Grzegorz Kondrak, James K. Watters, and Søren Wichmann. 2011. Totozoquean. International Journal of American Linguistics 77.3: 323-372.

Brown, Cecil H. and Eric W. Holman. 2010. Comparing ASJP approaches to automated classification: correspondence-based and lexical-based trees for Mayan. http://email.eva.mpg.de/~wichmann/papers.htm.
Brown, Cecil H., Eric W. Holman, Søren Wichmann, and Viveka Velupillai. 2008. Automated classification of the world's languages: A description of the method and preliminary results. STUF - Language Typology and Universals 61.4: 285-308.
Donohue, Mark. 2010. Skou. http://email.eva.mpg.de/~wichmann/papers.htm.
Dryer, Matthew S. 2005. Genealogical language list. In: Haspelmath, Martin, Matthew Dryer, David Gil, and Bernard Comrie (eds.), The World Atlas of Language Structures, 584-644. Oxford: Oxford University Press.
Dunn, Michael and Angela Terrill. 2012. Assessing the lexical evidence for a Central Solomons Papuan family using the Oswalt Monte Carlo test. Diachronica 29: 1-27.
Dutton, Tom E. 1975. South-Eastern Trans-New Guinea Phylum languages. In Wurm, Stephen A. (ed.), New Guinea Area Languages and Language Study, Vol 1: Papuan Languages and the New Guinea Linguistic Scene (Pacific Linguistics, Series C 38), 613- 64. Canberra: Research School of Pacific and Asian Studies, Australian National University. Felsenstein, Joseph. 2004. Inferring Phylogenies. Sunderland, MA: Sinauer Associates. Foley, William A. 1986. The Papuan languages of New Guinea. Cambridge University Press. Foley, William A. 2005. Linguistic prehistory in the Sepik-Ramu Basin. In: Pawley, Andrew, Robert Attenborough, Jack Golson, and Robin Hide (eds.), Papuan Pasts: Studies in the Cultural, Linguistic and Biological History of the Papuan-speaking Peoples (Pacific Linguistics 572), 109-144. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Franklin, Karl J. 1973a. Introduction. In: Franklin, Karl J. (ed.), The Linguistic Situation in the Gulf District and Adjacent Areas, Papua New Guinea. Pacific Linguistics, Series C 26, 130. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Franklin, Karl J. 1973b. Other language groups in the Gulf District and adjacent areas. In: Franklin, Karl J. (ed.), The Linguistic Situation in the Gulf District and Adjacent Areas, Papua New Guinea. Pacific Linguistics, Series C 26, 263-277. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Franklin, Karl J. 2001. Kutubuan (Foe and Fasu) and proto Engan. In: Pawley, Andrew, Malcolm Ross, and Darrell Tryon (eds.), The Boy from Bundaberg: Studies in Melanesian Linguistics in Honour of Tom Dutton. Pacific Linguistics 514, 143-154. Canberra: Research School of Pacific and Asian Studies, Australian National University.

Franklin, Karl J. and Clemens L. Voorhoeve. 1973. Languages near the intersection of the Gulf, Southern Highlands, and Western District. In: Franklin, Karl J. (ed.), The Linguistic Situation in the Gulf District and Adjacent Areas, Papua New Guinea. Pacific Linguistics, Series C 26, 151-167. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Hajek, John. 1998. Kenaboi: An extinct unclassified language of the Malay Peninsula. MonKhmer Studies 28: 137-162.
Hammarström, Harald. 2010. A full-scale test of the language farming dispersal hypothesis. Diachronica 27: 197-213.
Hammarström, Harald \& Sebastian Nordhoff. 2012. The languages of Melanesia: Quantifying the level of coverage. In Evans, Nicholas and Marian Klamer (eds.), Melanesian Languages on the Edge of Asia: Challenges for the 21st Century (Language Documentation \& Conservation Special Publication 5), 13-34. Honolulu: University of Hawaii Press. [Including a 946 pp appendix].
Hill, Jane. 2011. Subgrouping in Uto-Aztecan. Language Dynamics and Change 1: 241-278.
Holman, Eric W., Søren Wichmann, Cecil H. Brown, Viveka Velupillai, André Müller, and Dik Bakker. 2008. Explorations in automated language classification. Folia Linguistica 42: 331-354.
Huff, Paul and Deryle Lonsdale. 2011. Positing language relations using ALINE. Language Dynamics and Change 1: 128-162.
Laycock, Donald C. and John A. Z’Graggen. 1975. The Sepik-Ramu Phylum. In: Wurm, Stephen A. (ed.), New Guinea Area Languages and Language Study, Vol 1: Papuan Languages and the New Guinea Linguistic Scene (Pacific Linguistics, Series C 38), 731764. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Lewis M. Paul. 2009. Ethnologue: Languages of the World, $16^{\text {th }}$ Edition. Dallas, Tex.: SIL International. http://www.ethnologue.com/.
Mailhammer, Robert. 2010. Subgrouping Indo-European: A fresh perspective. http://email.eva.mpg.de/~wichmann/papers.htm.
McElhanon, Kenneth A. and C. Voorhoeve. 1970. The Trans-New Guinea Phylum: Explorations in Deep-Level Genetic Relationships (Pacific Linguistics, Series B 16). Canberra: Research School of Pacific and Asian Studies, Australian National University.
Müller, André, Søren Wichmann, Viveka Velupillai, Cecil H. Brown, Pamela Brown, Sebastian Sauppe, Eric W. Holman, Dik Bakker, Johann-Mattis List, Dmitri Egorov, Oleg Belyaev, Robert Mailhammer, Matthias Urban, Helen Geyer, and Anthony Grant. 2010. ASJP World Language Tree of Lexical Similarity: Version 3 (July 2010). http://email.eva.mpg.de/~wichmann/language_tree.htm.
Oswalt, Robert L. 1970. The detection of remote linguistic relationships. Computer Studies in the Humanities and Verbal Behavior 3: 117-129.

Pompei, Simone, Vittorio Loreto, and Francesca Tria. 2011. On the accuracy of language trees. PLoS One 6.6, e20109.
Reesink, Ger P. 1976. Languages of the Aramia River area. In: Papers in New Guinea Linguistics 19 (Pacific Linguistics, Series A 45), 1-37. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Reesink, Ger. 2005. West Papuan languages: Roots and development. In Pawley, Andrew, Robert Attenborough, Jack Golson, and Robin Hide (eds.), Papuan Pasts: Studies in the Cultural, Linguistic and Biological History of the Papuan-speaking Peoples (Pacific Linguistics 572), 185-220. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Saitou, Naruya and Masatoshi Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
Shaw, Daniel R. 1986. The Bosavi language family. In: Papers in New Guinea Linguistics 24 (Pacific Linguistics, Series A 70), 45-76. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Sidwell, Paul. 2010. Comparative Mon-Khmer linguistics in the 20th century: Where from, where to? In: K. S. Nagaraja and Kashyap Mankodi (eds.), Austroasiatic Linguistics: Proceedings of Third International Conference of Austroasiatic Linguistics, 26-28 November 2007 (Central Institute of Indian Languages: Publication 573), 36-104. Mysore: Central Institute of Indian Languages.
Swadesh, Morris. 1954. Perspectives and problems of Amerindian comparative linguistics. Word 10: 306-332.
Urban, Matthias. 2009. Pomoan (with notes on Hokan). http://email.eva.mpg.de/~wichmann/papers.htm.
Urban, Matthias. 2009. Iroquoian. http://email.eva.mpg.de/~wichmann/papers.htm.
Voorhoeve, C. L. 1975a. Languages of Irian Jaya: Checklist, Preliminary Classification, Language Maps, Word Lists. Pacific Linguistics, Series B 31. Canberra: Research School of Pacific Studies, The Australian National University.
Voorhoeve, C. L. 1975b. Central and Western Trans-New Guinea Phylum Languages. In Wurm, Stephen A. (ed.), New Guinea Area Languages and Language Study, Vol 1: Papuan Languages and the New Guinea Linguistic Scene (Pacific Linguistics, Series C 38), 345460. Canberra: Research School of Pacific and Asian Studies, Australian National University.
Voorhoeve, C. L. 1980. The Asmat Languages of Irian Jaya. Pacific Linguistics, Series B - No. 64. Canberra: Research School of Pacific Studies, The Australian National University.

Wichmann, Søren, Eric W. Holman, Dik Bakker, and Cecil H. Brown. 2010a. Evaluating linguistic distance measures. Physica A. 389: 3632-3639 (doi:10.1016/j.physa.2010.05.011).
Wichmann, Søren, Eric W. Holman, and Cecil H. Brown. 2010b. Sound symbolism in basic vocabulary. Entropy 12(4), 844-858; doi:10.3390/e12040844.Wichmann, Søren, Eric W.

Holman, Taraka Rama, and Robert S. Walker. 2011. Correlates of reticulation in linguistic phylogenies. Language Dynamics and Change 1: 205-240. Wichmann, Søren, André Müller, Viveka Velupillai, Annkathrin Wett, Cecil H. Brown, Zarina Molochieva, Julia Bishoffberger, Eric W. Holman, Sebastian Sauppe, Pamela Brown, Dik Bakker, Johann-Mattis List, Dmitry Egorov, Oleg Belyaev, Matthias Urban, Harald Hammarström, Agustina Carrizo, Robert Mailhammer, Helen Geyer, David Beck, Evgenia Korovina, Pattie Epps, Pilar Valenzuela, and Anthony Grant. 2012. The ASJP Database (version 15). http://email.eva.mpg.de/~wichmann/listss15.zip.
Wurm, Stephen A. 1975. The central and western areas of the Trans-New Guinea phylum: The Trans-Fly (sub-phylum-level) stock. In: Wurm, Stephen A. (ed.), New Guinea Area
Languages and Language Study, Vol 1: Papuan Languages and the New Guinea Linguistic Sene (Pacific Linguistics, Series C 38), 323-344. Canberra: Research School of Pacific and Asian Studies, Australian National University.

DABU kit
DOROGORI gdr
KURU gdr
GAMAEWE gdr
PODARI gdr
WONIE gdr
ABAM gdr
PEAWA gdr
UME gdr
WIPIM gdr
KAPAL gdr
IAMEGA gdr
ZIM gdr
GUIAM gdr
YUTA gdr
GIDRA/JIBU gdr
GIZRA/KUPERE tof
GIZRA/TOGO tof GIZRA/WAIDORO tof WAIDORO tof KUPERE tof TOGO tof

MERIAM ulk
DRAGELI bon
IRUPI bon

SOGAL bon
BINE/BOZE GIRINGAREDE bon
BOZE bon
GINGAREDE bon
ALEKANO gah
GAHUKU gah
GAFUKU gah
ASARO aso
GAHUKU/ASARO aso
SIANE snp
YABIYUFA yby
KAMANO KAFE kbq BENABENA bef

[^0]: ${ }^{1}$ In addition to languages normally considered Papuan the tree also includes Kenaboi, an extinct language which has variously been depicted as some kind of Austronesian and Austro-Asiatic mix, as a regular Mon-Khmer language, or as a taboo jargon, according to Hajek (1998). The language is included because it branches with other Papuan languages in the ASJP world tree of Müller et al. (2010), but I do not wish to imply that Kenaboi should be regarded as Papuan. Nevertheless, I also do not wish to exclude the possibility that at least some of its lexical items could have a Papuan origin.

[^1]: ${ }^{2}$ The dates were produced using the Ethnologue classification. It is possible to simultaneously use family definitions from Dryer 2005 and the Ethnologue classification because Dryer's families in the cases listed here are isomorphic with either families or subgroups of families in Ethnologue. The following are cases where a Dryer family is an Ethnologue subgroup: Tor-Orya = the Orya-Tor subgroup of Tor-Kwerba; Northwest Caucasian = the West Caucasian subgroup of North Caucasian; East Bird's Head = the East Bird's Head subgroup of East Bird's HeadSentani.
 ${ }^{3}$ In addition, a single Austronesian (Oceanic) language, Kayupulau [kzu], sits in a cluster of Papuan languages next to Austronesian, but in the latest (still unpublished) version of the ASJP world tree Kayupulau has joined Austronesian. It appears that there was earlier some error in the data which has now been corrected. Pauwasi (4102

[^2]: ${ }^{4}$ See http://lingweb.eva.mpg.de/asjp/index.php/ASJP, where sources are listed by the Ethnologue names of each language.

[^3]: ${ }^{5}$ In counting the number of comparisons I regard each form as being involved in a separate comparison even if it is clearly a phonological variant, e.g., Foe iya and yiya 'we (incl.)', so the numbers are intended to err on the conservative side.
 ${ }^{6}$ One of the referees of this paper is more skeptical, arguing that Fiwaga, another East Kutubu language, which is not included in the ASJP database, lacks many of the matches with Fasu exhibited by Foe, something which could be construed as an argument that the Foe matches not present in Fiwaga are borrowings. Another possibility is to interpret this as meaning that Fiwaga is less lexically conservative. Finally, it may also be the case that some Foe matches are borrowings while others, the best candidates being the ones also shared with Fiwaga, are inherited. Indeed, this last scenario is probably the most likely. Franklin and Voorhoeve (1973:154) show the relevant cognate percentages. On a 231 item list Fasu has 18% cognacy with Foe and 10% with Fiwaga. I do not see the difference between 38 and 23 shared items as a cause for any special interpretation. Moreover, the cognate percentages between Foe and Fiwaga and the two other Fasu languages, Some and Namumi (Some is not in the ASJP database) are on the same order as Foe-Fasu: Foe-Some 18\%, Foe-Namumi: 16\%, Fiwaga-Some: 15\%, Fiwaga-Namumi: 15%. In other words, the percentages for all six pairs of East Kutubu-Fasu pairs range between 10% and 18%, with Foe-Fiwaga being the single outlier within this range. A borrowing scenario needed to explain all these lexical similarities would have to assume that much of the borrowing took place already at an early stage between protoFasu and proto-East Kutubu. But since so much basic vocabulary is involved (the percentages are similar for the Swadesh list and the full 231 item list in the matrices of Franklin and Voorhoeve 1973:154), and since Franklin (2001) additionally provides grammatical evidence, I doubt that this is a viable explanation.

[^4]: ${ }^{7}$ In the next section (3.11) I discuss another case where words for 'dog' are similar, this time arguing that borrowing explains the similarity. The evidence supporting the latter assertion is the widespread occurrence of similarly-shaped words in Papuan languages as well as in Oceanic. In contrast, forms similar to Mai Brat mtax/mtah and Abun nd~ar are not widespread. In fact, in the Papuan dataset the only words for 'dog' that have an initial nasal + alveolar stop sequence are Taiap [gpn] nc~ar and Angoram/Kambrindo [aog] ndanda. The former language is an isolate, the latter a member of Lower Sepik-Ramu in the HH classification. The two languages are spoken close to one another but far away from Mai Brat and Abun, on the northeastern coast of New Guinea; thus they are unlikely to be involved in diffusion of the words for 'dog' in Mai Brat and Abun. It is likely that the word for 'dog' is shared between Taiap and Angoram/Kambrindo, but this is another story.

