Question		Answer	Marks	Guidance
1	(a)	M1 EITHER in words: (pyruvic acid forms) hydrogen bonds with water OR correctly labelled diagram showing hydrogen bond between pyruvic acid and water M2 diagram showing dashed/dotted line between $\mathbf{H}^{\boldsymbol{\delta +}}$ in COOH and lone pair of electrons on O in $\mathrm{H}_{2} \mathrm{O}$ OR diagram showing dashed/dotted line between $\mathbf{H}^{\delta+}$ in $\mathrm{H}_{2} \mathrm{O}$ and lone pair of electrons on O of OH in $\mathrm{COOH} \checkmark$	2	FOR M1 only: if use diagram ALLOW a labelled hydrogen bond to O in $\mathrm{C}=\mathrm{O}$ FOR M2 only: IGNORE a hydrogen bond to $\mathrm{C}=\mathrm{O}$, i.e. $\mathrm{C}=\mathrm{O}-\mathrm{-}$ H-O IGNORE bond angles Diagram does not need to show all of pyruvic acid (IGNORE if wrong so allow ethanoic acid) but must have minimum of COOH MIMIMUM requirement is a $\mathrm{H}^{\delta+}$ (on acid or water) and a lone pair on O (in acid or water) involved in a hydrogen bond ie IGNORE ס-
	(b)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}+3[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COCOOH}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { four correct formulae } \checkmark \\ & \text { balanced } \checkmark \end{aligned}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous (IGNORE lack of brackets round 2° alcohol) DO NOT ALLOW molecular formulae IF propane1,3-diol used score 0

	uesti	Answer	Marks	Guidance
1	(c)	 M1: 1 mark for curly arrow from H^{-}to C of $\mathrm{C}=\mathrm{O} \checkmark$ M2: 1 mark for correct dipoles on $\mathrm{C}=\mathrm{O}$ AND curly arrow from double bond to $\mathrm{O}^{\delta-} \checkmark$ M3: 1 mark for correct intermediate with - charge on O \checkmark M4: 1 mark for curly arrow from O^{-}of intermediate to H in $\mathrm{H}_{2} \mathrm{O}$ AND curly arrow from the $\mathrm{O}-\mathrm{H}$ bond to the O in $\mathrm{H}_{2} \mathrm{O}$: Do not need to show formation of OH^{-}	4	Curly arrow MUST start from - sign OR lone pair on H^{-} Lone pair does not need to be shown on H^{-} Lone pair does not need to be shown on O^{-} Curly arrow MUST start from - sign OR from lone pair on O^{-}of intermediate Lone pair does not need to be shown on O^{-} For M4, ALLOW mark for curly arrow from O^{-}of intermediate to H^{+}

Question		Answer	Marks	Guidance
1	(d)	Either:	3	
		Use Tollens' reagent		ALLOW AgNO_{3} in ammonia OR ammoniacal AgNO_{3}
		AND correct reference to compound A being oxidised or Tollen's reagent acts as oxidising agent \checkmark		ALLOW redox reaction
		Observation: silver mirror/precipitate/ppt/solid or:		ALLOW black ppt OR grey ppt
		Use $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND correct reference to compound A being oxidised or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ acts as oxidising agent		ALLOW $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ OR $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ for $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ If formulae used, formulae must be correct ALLOW acidified dichromate If name given, ALLOW dichromate OR dichromate(VI) IGNORE reference to dilute/conc ALLOW H^{+}
		QWC oxidised/oxidized/oxidation/redox etc. must be spelled correctly at least ONCE (i.e. NOT oxidisation,		ALLOW KMnO_{4} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ / acidified manganate(VII)/ permanganate / alkaline manganate(VII) AND correct reference to compound A being oxidised or KMnO_{4} acts as oxidising agent Observation: decolourised
		oxidated) to score $1^{\text {st }}$ mark UNLESS 2,4-DNP(H)/Brady's reagent is used, when condensation/addition-elimination must be spelled correctly at least ONCE		ALLOW Benedict's or Fehling's reagent/solution AND correct reference to compound A being oxidised or Benedict's or Fehling's acts as oxidising agent Observation: (brick) red ppt
				ALLOW 2,4-DNP(H)/Brady's reagent AND measure melting point of derivative AND state it is a condensation reaction/additionelimination reaction Observation: orange/yellow/red precipitate ALLOW solid OR crystals OR ppt as alternatives for precipitate

Question			Answer				Marks	Guidance
			HOOC	$\mathrm{OH} \checkmark$				ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW COO- if used Tollens' or Fehling's or Benedict's ALLOW correct unambiguous name: propan(e-1,3-)dioic acid IGNORE dipropanoic acid DO NOT ALLOW propan(e-1,3-)dicarboxylic acid if used $2,4-\mathrm{DNP}(\mathrm{H})$: ALLOW correct hydrazone structure or name ALLOW "(2,4-dinitrophenyl)hydrazone" (derivative)
1	(e)	(i)	 $\%$ mol ratio empiri molec	C 55.81% 4.65 2 ula $=\mathrm{C}_{2} \mathrm{H}_{3}$ $\text { nula }=\mathrm{C}_{4}$	$\begin{aligned} & \hline \mathrm{H} \\ & \hline 7.02 \% \\ & \hline 7.02 \\ & \hline 3 \end{aligned}$	O 37.17% 2.32 1	2	Alternative method scores 2 marks: $0.0702 / 1 \times 86=6 ; \quad 0.3717 / 16 \times 86=2 ; \quad 0.5581 / 12 \times 86=4$ $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$ answer alone worth 2 marks

Question			Answer	Marks	Guidance
2	(a)	(i)	M1: $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}^{+} \checkmark$ Note: ALLOW M2 AND M4 for benzene OR ANY substituted benzene compound For M3, credit ONLY the correct intermediate $\text { M5 H } \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$	5	ALLOW $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{NO}_{2}{ }^{+}$ ALLOW $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}$ then $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$ ALLOW ${ }^{+} \mathrm{NO}_{2} \mathrm{OR} \mathrm{NO}_{2}{ }^{+}$ ALLOW first curly arrow from the ring OR from within the ring to any part of the $\mathrm{NO}_{2}{ }^{+}$including the + charge DO NOT ALLOW intermediate with broken ring covering less than half the ring DO NOT ALLOW incorrect orientation of horseshoe ALLOW non-delocalized (Kekulé) structures ALLOW carbocation on either side of $\mathrm{H} / \mathrm{NO}_{2}$ substituents: OR IF NO_{2} is shown in incorrect position or COOCH_{3} has been omitted in intermediate DO NOT AWARD M3 but can award other marks (max 4)
		(ii)	electrophilic substitution \checkmark	1	

Question			Answer			Marks	Guidance
2	(b)	(i)				1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
		(ii)	Reaction 1 Reaction 2 Reaction 4	Sn AND concentrated HCl HNO_{2} OR NaNO_{2} with (dil) HCl $<10^{\circ} \mathrm{C}$ hot/heated aqueous NaOH	\checkmark	4	IGNORE temperature and reaction type/purpose of reagents IGNORE reference to concentration ALLOW (heat under) reflux for 'hot' IGNORE warm/alkaline if temp stated accept 50° or greater MUST have aq or water or any stated concentration

Question			Answer	Marks	Guidance
2	(b)	(iii)	In amine, (lone) pair of electrons on N is (partially) delocalised into the ring QWC delocalised/delocalized/delocalise, etc. must be spelled correctly in the correct context at least once for $1^{\text {st }}$ mark electron density is high(er) / increases great(er) attraction (from aromatic ring) for electrophile/diazonium ion	3	ALLOW diagram to show movement of (lone) pair into ring but delocalised ring must be mentioned ALLOW (lone) pair of electrons on N is (partially) drawn/attracted/pulled into delocalised ring ALLOW electron density low(er) for benzene IGNORE 'activates the ring' IGNORE charge density alone but ALLOW electron charge density DO NOT ALLOW electronegativity ALLOW less/low attraction from benzene for electrophile/diazonium ion ALLOW amine is a better nucleophile/more susceptible to electrophilic attack DO NOT ALLOW reference to dipole induced in diazonium ion DO NOT ALLOW reference to bromine as electrophile
			Total	14	

Question			Answer	Marks	Guidance
3	(a)		Both NH_{2} and COOH are attached to the same carbon \checkmark	1	ALLOW amine/amino and carboxyl(ic) ALLOW (it has the structure) ALLOW $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$ in any order but C and H must be adjacent (to each other)
	(b)	(i)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW NH ${ }_{3}{ }^{+}$ ALLOW delocalised carboxylate
		(ii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW NH ${ }^{+}$
	(c)			1	Connectivity is being tested: Chiral C must be linked to the C of the COOH , the C of the $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SH}$ and the N of the NH_{2} eg DO NOT ALLOW an attempted NH_{2} shown as below:

Question			Answer	Marks	Guidance
3	(d)	(i)	$\mathrm{CH}_{2} \mathrm{Cl}_{2} \checkmark$	1	ALLOW CH Br_{2} OR CH I_{2} OR CH F_{2} OR other dihalogenated methane derivatives eg $\mathrm{CH}_{2} \mathrm{BrCl}$ IGNORE names
		(ii)		2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW - NH - at other end 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and/or n around two repeat units 1st mark does not require amide group fully displayed ie ALLOW-CONH- DO NOT ALLOW 2nd mark if amide/peptide link wrong If more than 2 repeat units only first mark (peptide link) can be awarded
	(e)	(i)	penicillamine $=4 \checkmark$ methionine $=5 \checkmark$	2	
		(ii)	(CO)OH, NH/NH2 AND SH all undergo proton exchange	2	ALLOW (CO)OD, ND/ND ${ }_{2}$, SD, ALLOW H (atoms/protons/ions) replaced by D (atoms/ions)

Question			Answer					Marks	Guidance
3	$\text { (e) } \mid \text { (iii) }$		${ }^{1} \mathrm{H}$ NMR spectrum for methionine					5	ALLOW any value within ranges given for δ / ppm on the Data Sheet
			Type of proton(s)	Chemical shift	Splitting pattern	Relative peak area			IGNORE reference to NH_{2} signals (given as example)
			NH_{2}	4.5	singlet	2			GUIDANCE
			$\mathrm{H}_{3} \mathrm{C}-\mathrm{S}-$	2.1	singlet	3	\checkmark		- mark by rows
			$-\mathrm{S}-\mathrm{CH}_{2}{ }^{-}$	2.4	triplet	2	\checkmark		- ALL data in row must be correct for each mark
			$\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$	0.7-2.0	multiplet OR quartet	2	\checkmark		- ALLOW "triplet of doublets" or "doublet of triplets" for multiplet/quartet signal from $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}-$
			CHNH_{2}	2.0-3.0	triplet	1	\checkmark		
			OH	11-12	singlet	1	\checkmark		ALLOW quadruplet
			Rows can be IGNORE extr Do not need	in any order rows show bon	between at				ALLOW a response that implies a single peak OR 'no splitting' ALLOW a response that implies a splitting into three for a triplet/into four for a quartet
									Clear and unambiguous identification of the protons (when more than one type is present) other than by position number should be credited eg for CHNH_{2} could be HCCO or CHN or HCN or $\mathrm{CH}_{2} \mathrm{CH}$ eg for $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ could be $\mathrm{CH}_{2} \mathrm{C}(\mathrm{H}) \mathrm{NH}_{2}$ or $\mathrm{CCH}_{2} \mathrm{C}$ or $\mathrm{CH}_{2} \mathrm{CH}_{2}$ or $\mathrm{RCH}_{2} \mathrm{R}$ or RCHR
									eg ' CH between COOH and NH_{2} ' OR identification by number labels on chemical structures
							Total	16	

Question			Answer	Marks	Guidance
4	(a)	(i)	(2-)methylpropan-1-ol \checkmark	1	ALLOW without hyphens
		(ii)	 \checkmark	3	DO NOT MARK top left hand structure: (on paper) ALLOW in any order ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous If use displayed formulae but omit one or more H atoms DO NOT ALLOW each time
	(b)	(i)	The time (from the injection of the sample) for the component/compound/substance to leave the column	1	IGNORE (time for) gas to leave column DO NOT ALLOW time in GC/machine/apparatus ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
		(ii)	They have similar retention times OR unknown compounds have no reference retention times for comparison	1	ALLOW same retention times ALLOW both are esters therefore relative solubilities/ partition/adsorption/retention times will be very similar

Question			Answer	Marks	Guidance
4	(c)	(iii)	broad absorption 2500-3300 $\left(\mathrm{cm}^{-1}\right)^{\checkmark}$ (because) (degradation) forms (di)carboxylic acid / $\mathrm{COOH} \checkmark$	2	ALLOW carboxyl group IGNORE reference to carbonyl/1640-1750 (cm^{-1}) IGNORE reference to $\mathrm{C}-\mathrm{O} / 1000-1300\left(\mathrm{~cm}^{-1}\right)$
		(iv)	 M1 ester link M2 the two oxygen atoms from benzene-1,3-diol linked at 1,3 positions M3 one repeat unit fully correct	3	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Ester link does not need to be fully displayed eg accept-COO- ALLOW -O— at other end ie 'End bonds' MUST be shown (solid or dotted) DO NOT ALLOW more repeat units IGNORE brackets and/or n IF more than one repeat unit has been drawn a single repeat unit MUST be identified by brackets or clear label
			Total	13	

