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Abstract 

This paper examines the presence of long memory in the daily returns of the Egyptian stock 
market, using parametric and semiparametric methods. Both techniques have their merits and 
demerits. Accordingly, the Exact Maximum Likelihood (EML) estimation is employed to 
estimate the ARFIMA model in the time domain; while two main semiparametric techniques, 
log periodogram (LP) and local Whittle (LW), were applied to estimate the memory 
parameter in the frequency domain. Unlike the findings for developed equity markets, the 
results show strong and significant evidence of long memory in the Egyptian stock returns, 
which refutes the hypothesis of market efficiency. As a result the Egyptian stock returns can 
be predicted using historical information. The findings of this paper are helpful to regulators, 
financial managers and investors dealing in the Egyptian stock market. 
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1 Introduction 

 
This paper uses parametric and semiparametric methods to estimate the long memory 
parameter for the Egyptian stock market returns. A time series has a long memory, whenever 
the dependence between apart events diminishes very slowly as the number of lags increases. 
The presence of long memory properties in asset returns has important implications for asset 
pricing models. Such features can be used to construct a profitable trading strategy. In 
another words, long memory entails that perfect arbitrage is impossible and contradicts 
standard derivative pricing models based on Brownian and martingale assumptions 
(Mandelbrot, 1963). 
 
In the last two decades, it has been of great importance, theoretically and empirically, to 
study the properties of long memory in financial asset returns which is used as a proxy for 
analysing market efficiency. The stock market returns are said to exhibit long memory 
properties, if there is a significant autocorrelation (dependence) between observations widely 
separate in time. This dependence between apart observations can be utilised to predict future 
returns, leading to the possibility of consistent speculative profits. Consequently, the 
existence of long memory in the return series refutes the weak form of the market efficiency 
hypothesis. The price of an asset determined in an efficient market should follow a 
martingale process in which each price change is unaffected by its predecessor and has no 
memory. Therefore, if the returns series display significant autocorrelation between distant 
observations then past returns can help to predict future returns, thus violating the market 
efficiency hypothesis which states that, asset prices incorporate all relevant information, 
where future asset returns are unpredictable, conditioning on past returns.  
 
The development of statistical long memory processes was inspired by Hurst (1951) who was 
the first to introduce a method for the quantifying of the long memory called rescaled range 
analysis (R/S). This method involves parameter estimation to capture the scaling behaviour of 
the range of partial sums of the variable under consideration. Using the rescaled range 
analysis, Mandelbrot (1971) has found evidence of long memory in the stock returns. 
However, Lo (1991) pointed out the lack of robustness of the statistical R/S test in the 
presence of short term memory and heteroskedasticity. Lo (1991) suggested a modified R/S 
test and tested for long memory in daily US stock market indices and found no evidence of 
long range dependence. Mills (1993) found weak evidence of long memory in a sample of 
monthly UK stock returns. Cheung and Lai (1995) provided little evidence of long memory 
in the Morgan Stanley Capital International stock index data. Ding and Granger (1996) 
reported evidence of long memory for S&P 500 returns, while Lobato and Savin (1997) saw 
no evidence of long memory in daily S&P 500 returns over the period July 1962 to December 
1994. The majority of the above studies have employed either parametric or semiparametric 
methods to test and estimate the long memory property. For the parametric method, a 
complete parametric model to express the autocovariance function as a parametric function of 
the parameters, �, is built, such as ARFIMA model. In contrast, the semiparametric method is 
only interested in the memory parameter � and does not require the modelling of a complete 
set of the autocovariances. In the main, both parametric and semiparametric techniques have 
their merits and demerits. Estimation of fully parametric long memory models is 
computationally expensive and is subject to misspecification; hence the correct choice of the 
model is important. On the other hand, the semiparametric estimation considers � as the main 
parameter of interest. The SPE derives robust estimators since it avoids difficulties over the 
specification of the short run ARMA parameters; however, the idea of explaining the entire 
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autocorrelation structure by a single parameter � is highly restrictive. This study employs 
parametric and semiparametric methods to estimate the long range dependence. 
 
Compared to the world’s well-developed financial markets (the U.S. markets), the presence 
of long memory in emerging capital markets in developing economies has received little 
attention. Nevertheless, there are various conditions and reasons that contribute to a different 
dynamics regarding returns in emerging stock markets. Emerging markets are typically much 
smaller, less liquid, and more volatile than well known world financial markets. Emerging 
markets may be less informationally efficient. This could be due to several factors such as 
poor-quality (low precision) information, high trading costs, and less competition due to 
international investment barriers. Furthermore, the industrial organization found in emerging 
economies is often quite different from that in developed economies. As a result, it is very 
important to study the emerging securities markets and the complete characterization of the 
dynamic behaviour underlying stock returns in these developing economies, in order to 
attract investors and investment funds seeking to diversify their assets. 
 
The objective of this paper is to examine the presence of long memory in the Egyptian stock 
returns using parametric and semiparametric methods. The Daily EGX30 price index is 
considered as a proxy for the Egyptian stock market. There has been very limited research on 
the behaviour of stocks traded on the Egyptian stock exchange, although the capital market in 
Egypt is apt to exhibit different characteristics from those observed in developed capital 
markets. Biases due to market thinness and nonsynchronous, trading should be expected to be 
more severe in the case of the Egyptian stock market. The Egyptian stock market is not 
expected to be highly efficient in terms of the speed of information reaching traders 
compared to the developed capital markets. Furthermore, traders and investors in the 
Egyptian stock market tend to react slowly and gradually to new information. The existence 
of long memory will have significant implications in the Egyptian stock market, where future 
returns can be predicted from past returns, thus violating the market efficiency hypothesis. 
 
This paper is organised as follows. The next section provides an overview of the theoretical 
and relevant literature review of long memory. Section 3 covers the parametric and 
semiparametrics methods used to estimate the long memory parameter. Section 4 describes 
the data and reports the results of the empirical application to the daily Egyptian stock market 
and finally section 5 offers some concluding remarks. 
 
2 Literature Review 

 

2.1 Background 

 

Long memory, or LM, processes were initially documented in non-economic literature, with 
interest starting from the empirical examination of data in physical science since at least 
1950s. The famous British hydrologist Harold Edwin Hurst (1951), during the engineering of 
the high Aswan dam, developed an analysis to determine if the yearly flows and inflows into 
reservoirs of the Nile were random or clustered from year to year using long reliable 
historical data for the years 622- 1281 recorded at the Roda gauge in Cairo. He determined 
they were not random and found evidence of dependence over long intervals of time, with 
stretches when floods are high tending to be above the mean and others when they are low 
tending to be below the mean. As a result, the data was found to show several cycles; 
however, these cycles did not exhibit periodicity. Mandelbrot and Wallis (1968) called this 
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behaviour the Joseph effect
1 in reference to the biblical seven good years of abundance and 

seven bad years of famine2. Hurst (1951, 1956 and 1957) also examined 900 records of other 
natural phenomena (for example, annual river levels, rainfall, temperature and pressure 
records, tree rings, and sunspot activity) finding non-random positive correlations in most of 
them (Baillie, 1996). 
 
Since then, LM processes have been investigated by many researchers from very different 
fields; and because of the diversity of its applications, its literature is generally spread over a 
large number of journals including Agronomy, Astronomy, Chemistry, Climatology, 
Engineering3, Geo-science, Hydrology, Mathematics, Physics and Statistics. Examples of 
these are presented in, inter alia, Hurst (1951, 1956 and 1957), Lawrance and Kottegoda 
(1977) and Painter (1998) in geophysical data, Mandelbrot and Wallis (1968), Mandelbrot 
(1972), Hipel and McLeod (1978a, 1978b and 1978c), Bloomfield (1992), Seater (1993) and 
Kirk-Davidoff and Varotsos (2006) in climatology. 
 
As the data in natural sciences demonstrate a preference towards LM and the source of 
uncertainty in Economics can be considered as natural phenomena, then we can expect LM to 
be found in economic data. The importance of LM in economic data was recognised in 
Mandelbrot (1963), Adelman (1965) and particularly, in Granger (1966), who noticed that for 
economic time series, the typical shape of the spectral density is a function with a pole at the 
origin that then decays monotonically at high frequencies. It was not until 1980 that LM 
models were used by Econometricians and by Financial Researchers circa 1995. Granger and 
Joyeux (1980) propose the use of the fractional differencing to model LM which is related to 
earlier work by Mandelbrot and Van Ness (1968) describing fractional Brownian motion. 
 
There is substantial evidence that LM models can be successfully applied to time series data 
in both Macroeconomics and Financial Economics data; for example, real national output 
measures, inflation rates, exchange rates, interest rate differentials, stock prices, commodity 
prices, market indices and forward premiums. These time series show evidence of being 
neither �(0) nor �(1). When first differenced, those series appear as being over-differenced. 
This feature is typical of long memory processes. LM processes has also been used in 
modelling the volatility of asset prices and power transformations of returns. Investigations 
for LM in real output measures were first studied in Diebold and Rudebusch (1989) and 
Haubrich and Lo (1989). Baillie, Chung, and Tieslau (1992) and Hassler and Wolters (1995) 
apply fractionally integrated �	
�, or �	��
�, models to describe the fluctuations of the 
inflation rates. They provided empirical evidence in favour of LM models. Baillie et al. 
(1992) examined the relationship between the mean and the variability of inflation rates by 
means of �	��
� − �	�� models for 10 countries using monthly observations from 1948 
to 1990. Baillie, Bollerslev and Mikkelson (1996) find LM in the volatility of the Deutsche 
Mark- U.S. Dollar (DM-USD) exchange rate. Long range dependence, in asset price series, 
was reviewed by Brock and De Lima (1996); yet, LM seems much more likely in asset 

                                                           
1
 The Joseph effect involves long stretches of time when the process tends to be above the mean, and long 

stretches of time when the process tends to be below the mean. 
2
 In the Bible (Genesis 41, 29-30): “Seven years of great abundance are coming throughout the land of Egypt, 

but seven years of famine will follow them”, and the same phenomenon was also mentioned in the Koran 
(Joseph 12, 47-48):  “He [Joseph] said, What you cultivate during the next seven years, when the time of harvest 
comes, leave the grains in their spikes, except for what you eat. After that, seven years of drought will come; 
this will consume most of what you stored for them”. However, there are no records of the water level of the 
Nile from those times. 
3
 In signal and image processing. 
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volatility than in asset returns themselves. LM was found in the Deutshcer Aktien IndeX 
(DAX, the German stock index) by Lux (1996). In addition, some research demonstrates the 
existence of LM in smaller and less developed markets. Tolvi (2003) examined the Finnish 
stock market; Madhusoodanan (1998) provides evidence on the individual stocks in the 
Indian Stock Exchange. Barkoulas and Baum (2000) give similar evidence on the Greek 
financial market; while Cavalcante et al (2002) demonstrate LM in Brazil stock market. 
 
Finally, the monographs by Beran (1994), Robinson (2003), Palma (2007) and 
Samorodnitsky (2007) provide an excellent introduction to LM processes. Additionally, 
several survey-type articles on LM have been written, for example Taqqu (1986), Hampel 
(1987), Beran (1992), Robinson (1994), Baillie (1996), Guégan (2005) and Banerjee and 
Urga (2005). Recently, research on LM is growing significantly leaving some of these 
surveys very out-of-date. 
 
2.2 Defining Long Memory 

 

The terms long memory, long-range dependence, strong dependence or persistence can be 
used interchangeably.  LM can be defined in several ways. Traditionally, LM has been 
specified in the time domain in terms of long lag autocovariance, or in the frequency domain 
in terms of explosion of low frequency spectra.  Given a stationary time series process {��} 
with an autocovariance function �(�) = ���(��, ����) at lag � that does not depend on �, then 
the process has LM if, 

�(�)~��� !"# , as  � → ∞ 

for 0 < � < #
  , where � is the memory (differencing) parameter, or the fractional difference 

parameter. The constant �� is finite positive (0 < �& < ∞), and the notation “~” means that 
the ratio of the left and right sides tend to one for large �. The intuition interpretation for this 
definition is that the dependence between apart events diminishes very slowly as the number 
of lags increases (tends to infinity) often called a hyperbolic decay. On the contrary, short-
range dependence is characterised by quickly decaying correlations at an exponential rate to 
zero (e.g. �	
� and Markov processes). The asymptotic behaviour in (2.2.1) indicates that 
the autocovariance decreases very slowly with long lags, or in other words the 
autocovariances are not summable so that,  

lim*→∞ ∑ �(�) = ∞*�,"*  
 
On the other hand, LM can be described in the frequency domain using the spectral density 
structure. It is interesting to see how long-range dependence, or LRD, translates from the 
time domain to the frequency domain. Suppose that  {��}  has absolutely continuous spectral 
density function, then it has a spectral density -(.) that is 

-(.) = #
 / ∑ �(�)0"12�∞�,"∞  ,  −3 ≤ . ≤ π 

 
where -(.) is a non-negative, even function, periodic of period 2π when extended beyond the 
Nyqvist4 range 6– 3, π8. LM in the time domain is expected to be translated into the behaviour 
of the spectral density around the origin because low frequencies (frequencies around the 
origin) account for big lags in the time domain. A process with spectral density - is defined 
to exhibit long memory if, 

-(.)~�9|.|" ! , as . → 0 

                                                           
4
  Nyqvist range is named after the Swedish-American Engineer Harry Nyqvist (1889-1976). 

(2.2.1) 

(2.2.2) 

(2.2.3) 

(2.2.4) 
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Both definitions, in the time and frequency domain, are not equivalent but connected (Beran, 
1994a and Taqqu, 1986). The spectral density in (2.2.4) implies that the spectral density will 
be unbounded at low frequencies. Hence long range dependence corresponds to the blow-up 
of the spectral density -(.) at the origin so that it has a pole at frequency zero,     

-(0) = #
 / ∑ �(�)∞�,"∞ = ∞ 

Thus if �(�) behaves like a power function at infinity, so does -(.) at zero and the relation 
can be remembered by the “add one, change sign” rule, where the exponent 2� − 1, is the 
asymptotic behaviour of  �(�). 
 
2.3 Long Memory Models 

 

During the World War II, a massive momentum in time series research has evolved as a 
result of advances in many engineering applications, including spectral analysis and radio 
signals. Afterwards, a flexible group of models, known as �	
�, also called short-range 
dependent models involving correlation functions that decrease exponentially fast over time, 
was developed in the time domain. Although short-memory models were used widely, by 
economists, these models had a number of shortcomings and could not be applied to all 
fields. Some data seemed to require models, whose correlation functions would decay much 
less quickly. 
  
Kolmogorov (1940) discovered the fractional Brownian motion, or -;<, which was used 
along with its increments by Mandelbrot to generate long-range dependence. The 
characteristic of LRD in economic and financial data is lately described by a number of 
models. This includes the fractional differencing model, the autoregressive fractionally 
integrated moving average models (�	��
�) and fractional cointegration models. Among 
these models, the focus would be on the �	��
�(=, �, >) models introduced by Granger and 
Joyeux (1980). 
 
In 1971, Box and Jenkins introduced the �	�
�(=, �, >) model,  

Φ(?)(1 − ?)!�� = Ψ(?)@�  
 

where � is an integer,  Φ(?) and Ψ(?) are the polynomials Φ(?) = 1 − ∑ A�?�B
�,#  and 

Ψ(?) = 1 + ∑ D�?�E
�,#  involving autoregressive and moving average coefficients of order = 

and > respectively and @� is a white noise process. To ensure the stationarity and inverstibility 
conditions, the roots of Φ(?) and Ψ(?) must lie outside the unit circle. Granger and Joyeux 
(1980) managed to extend the set of �	�
� models by considering instead fractional 
� ∈ (−0.5, 0.5) in (2.3.1) which introduces a fractional autoregressive integrated moving 
average model orders  =, � and  >, or �	��
�(=, �, >) or ��	�
�(=, �, >). It has spectral 
density, 

-(.) = IJ
 / K1 − 012K" ! LM(NOP)

Q(NOP)L
 
 ,  −3 ≤ . ≤ π 

A fractional white noise process is a particular case which is equivalent to an 
�	��
�(0, �, 0) process. �	��
� processes are covariance stationary for −0.5 < � < 0.5, 
mean reverting for � < 1 and weakly correlated for � = 0. For � > 0.5  these processes have 
infinite variance. For � ≥ 0.5  the processes have infinite variance but in the literature it is 
more usual to impose initial value conditions so that �� has changing, but finite, variance. 
Granger and Joyeux (1980) and Hosking (1981) considered �	��
�(0, �, 0)  and 
�	��
�(1, �, 0) respectively, which based on Adenstedt’s (1974) model. Further 

(2.2.5) 

(2.3.1) 

(2.3.2) 
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information on �	��
�(=, �, >) models was give by Sowell (1992), Chung (1994) and 
others. 
 
2.4 Estimation Methods 

 

One of the main interests in the literature of long memory is to estimate the unknown 
parameter � that describes the long memory properties or the low frequency behaviour of the 
spectral density function -(.). There are two main groups of estimation methods used to test 
for LM: the parametric estimation (TU) and the semi-parametric estimation (VTU). For the 
parametric estimation, a complete parametric model that expresses �(�) for all �, or the 
spectral density function -(.) for all ., as a parameteric function of the parameters, � and 
unknown scale factors, is built, such as  �	��
� model. In contrast, the semi-parametric 
estimation is only interested in the memory parameter � and do not require the modelling of a 
complete set of the autocovariances. 
 
In the main, each method has its merits and demerits. Estimation of fully parametric long 
memory models is computationally expensive, especially in the time domain. Additionally, 
parametric methods are subject to misspecification. Under- or over-specification of the 
autoregressive and moving average orders = and >, which describes the short range 
dependent component of ��, can lead to invalidation of the statistical properties and can 
dangerously bias the estimation of �. On the other hand, WXY  considers � as the main 
parameter of interest. SPE derives robust estimators since it avoids difficulties over the 
specification of the short run ARMA parameters; however, the idea of explaining the entire 
autocorrelation structure by a single parameter �  is highly restrictive. 
 
 2.4.1 Parametric Estimation 

 

Several joint estimation methods of the unknown parameters in the �	��
�(=, �, >) model 
in equation (2.3.1) were considered. If �� is assumed Gaussian process, then the log-
likelihood function is,  

ℒ([) = − *
 log(23) − #

 log|Ω| − #
 �′Ω"#� 

 
The Gaussian maximum likelihood estimate, or MLE, is obtained by maximising ℒ([) and 
might be expected to have optimal asymptotic statistical properties. The log likelihood 
function requires the calculation of the determinant and the inverse of the variance-
covariance matrix Ω. These calculations can be done by means of several procedures, for 
example, Cholesky decomposition method, Durbin-Levinson algorithm and state space 
techniques. Furthermore, Sowell (1990, 1992) derives the exact MLE of the �	��
� process 
with unconditional normally distributed error terms. Sowell’s estimator performs poorly if the 
model is misspecified, like all maximum likelihood. Baillie and Chung (1993) developed a 
conditional sum of squares estimator in the time domain and show that it performs similarly 
to Sowell’s estimator for the �	��
�(0, �, 0) model. Computer programs for the exact MLE 
were developed by Doornik and Ooms (2003, 2004), who showed, by building on the work 
by Sowell (1992), that the exact MLE can be efficiently estimated with storage of order ^ and 
computation of order ^ . Their ML approach is applied in the Arfima package and therefore 
also in PcGive (See, Doornik and Hendry (2001)).  
 

The calculation of the exact MLE is complicated and computationally demanding. As a 
result, alternative procedures have been considered to replace the exact MLE. The use of 

(1.2.4.1.1) 
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approximations to Gaussian ML was developed to speed up the calculation of parameter 
estimates, without affecting the first order limit distributional behaviour. Estimates 
maximising such approximations are called Whittle estimates due to Whittle (1951) described 
in detail in Beran (1994a). Whittle estimates are all √^ −consistent and have the same limit 
normal distribution as the Gaussian MLE. One type of Whittle estimates is the discrete form 
described in the frequency domain. Suppose the parametric spectral density is -(.; [, a ), 
where [ is an b −dimensional unknown parameter vector and a  is a scalar. Under 
�	��
�(=, �, =) specification, the vector [ is an estimate of the autoregressive, moving 
average and long memory coefficients. Under a fractional white noise specification, [  
reduces to the long memory parameter �. Now suppose the periodogram,  

�(.) = #
 /* K∑ ��01�2*�,# K 

 

where .� =  /�
*   are the Fourier frequencies. The discrete frequency Whittle estimate, 

mentioned in Hannan (1973), minimised the Whittle objective function, 

ℒc([) = ∑ dlog -(.�; [) + e(2)
9(2f;g)h*"#�,#  

This form of Whittle estimation has many advantages. One of these is that it is based on the 
rapid calculation of the periodogram by means of the fast Fourier transform (FFT), even 
when ^ is large. Another advantage of Whittle estimate is that their limit distribution is 
unchanged by many departures from Gaussianity, which means that the same rules of 
statistical inference can be used without worrying about Gaussianity. Thus the same 
relatively convenient rules of statistical inference can be used without worrying too much 
about the question of Gausiannity.  
 

Alternative parametric methods are available but they are less efficient than Whittle 
estimation when �� is Gaussian. For example; generalised method of moments, or GMM, has 
been used to estimate LM models, in both time and frequency domains. However, GMM 
estimates are not only less efficient in the Gaussian case than the Whittle estimates, but 
GMM is also computationally less attractive than the Whittle estimation in (2.4.1.3). Beran 
(1994b) proposed M-estimators for Gaussian long-memory models, while Pai and 
Ravishanker (1998) use Bayesian analysis to detect changing parameters in �	�
� 
processes. Hauser (1998) has compared the various maximum likelihood estimators on 
samples of size 100 using Monte Carlo methods. He concludes that the Whittle estimator 
with tapered data is most reliable. Hauser, Pötscher and Reschenhofer (1999) are critical of 
�	��
� models for estimating persistence in aggregate output. They show that over-
parameterisation of an �	
� model may bias the estimates of persistence downwards. In 
general all the above methods were applied on the stationary LM models, the case 0 < � <
0.5. 
 2.4.2 Semiparametric Estimation, or SPE 

 

Semiparametric estimation methods were developed to overcome some of the difficulties 
found in the parametric methods. These methods include the log-periodogram (LP) regression 
and the local Whittle (LW) estimation, also known as the Gaussian semiparametric 
estimation. The LP regression is longer established and was the most widely used, but it is 
less efficient than the LW estimate. The semiparametric estimators of the LM parameter 
assume the spectral density model, 

-(.)~|.|" !i(ℎ), as . → 0 
where i(∙) is an even function on the Nyqvist range 6– 3, π8 that determines the short run 
dynamics of the stationary process �� and satisfying 0 < i(0) < ∞.  

(2.4.1.2) 

(2.4.1.3) 

(2.4.2.1) 
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LP regression estimator was first proposed by Geweke and Porter-Hudak (1983) and also 
known as GPH estimator. It is considered the first semiparametric estimation of the LM 
parameter,  � in the frequency domain. GPH is based on the characteristic pattern of the 
periodogram around zero frequencies, which is first estimated from the series, and its 
logarithm is regressed on the logarithm of a trigonometric function of frequency. This method 
of estimation has been used comprehensively in macroeconomic and financial time series 
application because it is easy to implement even before development of any satisfactory 
theoretical analysis of its asymptotic distributional properties. The performance of this 
estimator, however, has several drawbacks; one of which concerns the number of values of 
the periodogram to be used in the regression. Geweke and Porter-Hudak (1983) proposed a 
heuristic based on the length of the time series. Agiakloglou, Newbold and Wohar (1992) 
shows that X� is biased in the presence of strongly autoregressive short memory and in 
addition does not possess satisfactory asymptotic properties.  
 
Robinson (1995a) has further refined the X� log-periodogram regression. Using the same 
notation as X�, the estimator is based on the least-square regression using spectral 
ordinates .#, . , …, .l from the periodogram of ��, �mn.�o, and � = 1, 2, … , <, where <, a 
bandwidth or smoothing number, is less than ^ but is regarded as increasing slowly with ^  in 
asymptotic theory. 

log6�mn.�o8 = q + rlogn.�o + s� 
 

where s� is assumed to be t. t. �. The least square estimator ru, which gives �v = − #
 ru, is 

asymptotically normal and the corresponding theoretical standard error is 3(24<)"x
J. This 

version is easier to use for actual computation. The value of the estimator �v depends on the 
choice of truncation parameter <. Diebold and Inoue (2001) showed that the choice of a large 
value for < would result in reducing standard error at the expense of biasness in the 
estimator, as the relationship that the X� regression is based on holds only at low 
frequencies. On the other hand, consistency requires that < grows with sample size, but at a 
slower rate. They adapt the rule of thumb of  < = √y, where y is the number of 
observations. Additionally, Wright (2000) develops log-periodogram estimators with 
conditional heavy tails, while Henry (2001) introduced a periodogram spectral estimation for 
the case of long memory conditional heteroscedasticity. 
 

There are a plethora of new SPEs of the long memory parameter that are more efficient and 
robust, for example, Kunsch (1987), Robinson (1994b), Lobato and Robinson (1996), 
Moulines and Soulier (1999), Phillips and Shimotsu (2006) and Phillips (2007). Nevertheless, 
the most widely used and preferred WXY is the local Whittle estimation proposed by 
Robinson (1995b), and was further investigated by Dalla, Giraitis, and Hidalgo (2004) and 
Phillips and Shimotsu (2006), where the objective function is a discrete form of an 
approximate frequency domain Gaussian likelihood, averaged over a neighbourhood of zero 
frequency, 

?(�, �) = ∑ dlogn�.�" !o + e(2f)
z2f{J|hl�,#  

where < is a bandwidth (see, Kunsch (1987)). The argument requires < to be of smaller 
order than ^. It is inadvisable to choose < too large as bias can then result. However the 
longer the series length ^, the larger we can choose <, so that in very long series the extra 
robustness gained by the semiparameteric approach may be worthwhile. LW estimator is 

(2.4.2.2) 

(2.4.2.3) 
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shown to be asymptotically normal and more efficient than previous estimators.  WXY also 
includes data differing and data tapering methods. Phillips and Shimotsu (2004) propose 
variant of the local Whittle estimation procedure that does not rely on differencing or tapering 
and they further extend the range where the estimator of � has standard asymptotic. 
 
3 Methodology 

 

This section introduces the methodology used to estimate the long memory parameter using 
parametric and semiparametric methods. The parametric estimation, analysed in the time 
domain, is based on the likelihood function as mentioned before in section 1.2.4. The 
parametric estimation used in this paper is the Exact Maximum Likelihood (EML) estimation 
method developed by Sowell (1992). On the other hand, the semiparametric estimation for 
the memory parameter is based on frequency domain. Two semiparametric estimators will be 
considered in this section, the GPH log-periodogram regression and the local Whittle 
estimator. 
 
3.1 The Exact Maximum Likelihood (EML) 

 

Consider the following �	��
�(=, �, >) process, 
Φ(?)(1 − ?)!�� = Ψ(?)@� 

where Φ(?) and Ψ(?) are the polynomials 

Φ(?) = 1 − } A�?�
B

�,#
 

and 

Ψ(?) = 1 + } D�?�
E

�,#
 

involving autoregressive and moving average coefficients of order = and > respectively and 
@� is a white noise process. Now assume ~ = (~#, … , ~�)′ follows a normal distribution with 
~~�(0, Σ). The EML procedure allows for simultaneous estimation of both the long memory 
parameter and ARMA parameters. The maximum likelihood objective function is expressed 
as, 

��(Φ, Ψ, �; ~) = − �
 log|Σ| − #

 ~′Σ"#~  

As a result, the EML estimator of � can be derived as, 

�v��� = arg max �− �
 log|Σ| − #

 ~′Σ"#~� 

This estimator can be inconsistent if the AR and MA orders of the ARFIMA model are 
misspecified, like all maximum likelihood. The ARFIMA model’s EML estimate in the 
OxMetrics 6 package was used to estimate the long memory parameter (see Doornik and 
Ooms, 2003). 
 
3.2 GPH Log-periodogram Regression 

 

This and the next subsections investigate the main semiparametric methods applied to the 
Egyptian stock market to estimate the long memory parameter � in the frequency domain. 
The semiparametric estimation used in this paper is carried out in the Time Series Modelling 
(TSM) 4.32. These methods are not a recommended substitute for maximum likelihood 
estimation of an �	��
�(=, �, >) model if there is confidence that the ARMA components 

(3.1.2) 

(3.1.1) 
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are correctly specified, but they impose fewer assumptions about the short-run. The 
assumption is that the spectrum of the process takes the form 

-(.) = K1 − 0"12K" !-∗(.) 
 

where -∗ represents the spectral density of an �	
�(=, >); and hence, the short-range 
component of the dependence. This is assumed smooth in the neighbourhood of the origin, 
with -∗(0)′ = 0. Note the alternative representation 

-(.) = ." !i(.) 
where i is likewise assumed smooth at the origin with i(0)′ = 0. 
 
Equation (3.2.1) is a semiparametric model, where the long memory parameter, �, is 
parametrically specified in the frequency domain; on the other hand, the short memory 
component represented in -∗(.) is not required to obey any parametric model. The two 
semiparametric estimators discussed in this paper are the GPH and LW estimators. The log-
periodogram estimator (i.e. GPH) minimise some distance between the periodogram and the 
spectral density function at low frequencies represented by the first < Fourier 
frequencies, .� = J�f

� , � = 1, … , < ≪ [�
J]. Estimation is usually between a set frequency band 

(0,<] to capture the long run component -(.) = ." !i(.) whilst the remainder of the 
frequencies capture the local variations. 
 
This method is based on the periodogram of the time series defined by 

�(.) = #
 /� K∑ 01�2(�� − ��)��,# K 

 

A series with long memory has a spectral density proportional to ." ! close to the origin 
(2.4). Assuming the fact that the spectral density of a stationary process can be formulated as 

-(.) = -�(.)4 sin (2
 ) we may consider a regression of the logarithm should give a 

coefficient of −2�. The GPH estimator is based on the log linearization of the periodogram 
as follows, 

log��(.�)� = � − � log �4 sin �2f
 �� + @  

The memory parameter is estimated 
 

�v��� = − ∑ (mf"m�)�f�x � ¡{e(2f)}
 ∑ (mf"m�)�f�x

 

We consider only harmonic frequencies .� = J�f
� , � ∈ (�, <], where � is a trimming parameter 

discarding the lowest frequencies and < is a bandwidth parameter. A necessary condition for 
consistency which depends on the bandwidth is that �

� → 0 as y → ∞. 
 
3.3 Local Whittle Estimation 

 

Kunsch (1987) proposed a local Whittle (LW) estimator and then developed by Robinson 
(1995). This estimator represents approximately a MLE in the frequency domain, since for 
larger y 

�n.�o~09(2f){x
  

As a result, the likelihood function is, 

?��n.�o, … , �(.l), [� = ∏ #
9£(2f) 0"e(2f)9(2f){xl�,#  

 
where [ = (�, �) is the parameter vector. The log-likelihood function becomes, 

(3.2.3) 

(3.2.2) 

(3.2.1) 

(3.2.5) 

(3.2.4) 

(3.3.2) 

(3.3.1) 
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�([) = ∑ d− log -g(.�) − e(2f)
9£(2f)hl�,#  

In the neighbourhood of zero frequency we obtain, 

?(�, �) = ∑ dlog � − 2� log(.�) + e(2f)
z2f{J|hl�,#  

¤¥(z,!)
¤z = ∑ d#

z + e(2f)
zJ2f{J|hl�,#  

yielding 

�v = <"# ∑ de(2f)
2f{J|hl�,#   

Inserting �v for � in (1.3.3.4) and by minimisation, the local Whittle estimator can be written 
as, 

�v�c = arg min ¦log d<"# ∑ de(2f)
2f{J|hl�,# h − 2�<"# ∑ logn.�ol�,# § 

Robinson (1995) showed the LW estimator is consistent for � ∈ (−0.5, 0.5). However, its 
consistency depends on the bandwidth <, which satisfy x

���
� → 0 as y → ∞. The LW 

estimator is more attractive due to its nice asymptotic properties, the mild assumptions 
underlying it and the likelihood interpretation. Robinson (1995) also showed that 

√<(�v�c − �) → �(0, #
¨) 

 
4 Data and Empirical Results 

 

To analyse the Egyptian stock market, the daily EGX30 stock index traded on Cairo Stock 
Exchange has been used in this paper. The data covers the period from the first transaction, 
01 January 1998 to 09 May 2010 for a total of 3,050 observations. The EGX30 Price Index 
includes the top 30 companies in terms of liquidity and activity in Egypt. It is weighted by 
market capitalisation adjusted by the free float. This stock index can be considered as a proxy 
for the Egyptian stock market. The period under analysis is of major importance because it 
starts with the revival of the stock market after major changes in political and economic 
reforms in 1990s and before the January Revolution in 2011. All subsequent analysis is done 
on the daily return series (see Figure 4 for the daily stock returns) by taking the natural 
logarithmic first-difference on EGX30 price index (see Figure 1), 

b� = ln ¦ X�
X�"#

§ = ln X� − ln X�"# 

where X� denotes the stock index in day �. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.3.5) 

(3.3.4) 

(3.3.3) 

(3.3.6) 

(3.3.7) 
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Figure 1: The EGX30 daily stock index 

 
 
 
 
 

Figure 2: The periodogram of the daily EGX30 index 
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Figure 3: The correlogram of the daily EGX30 index 

 
 
 
 
 

Figure 4: The EGX30 daily returns 
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Figure 5: The periodogram of the daily EGX30 returns series 

 
 

 
 
 

Figure 6: The correlogram of the daily EGX30 returns series 
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Figure 1 displays plots of the original EGX30 price index series where a nonstationary 
appearance can be observed. This can be also confirmed through its corresponding 
periodogram where large values (a large peak) are observed around the zero frequency and 
also across the correlogram with values decaying very slowly. Plots of the EGX30 daily 
return series data, with its corresponding periodogram and correlogram are displayed in 
Figures 4, 5 and 6. The return series may now be stationary (see figure 4). Based on the 
shapes of the corresponding periodogram and correlogram, the series may be over-
differenced suggesting a presence of long memory. Dominant peak areas occurs around low 
frequencies (figure 5) and the correlogram declines steadily but very slowly and remains 
positive for many lags, indicating the presence of stationary long memory component (figure 
6). 
 

Table 1: Descriptive Statistics of EGX30 daily returns (1 Jan. 1989- 9 May 2010) 
Obs. Mean S.D. Skewness Kurtosis 
3049 0.0006 0.0179 -0.248 12.337 
Min. Max. Jarque-Bera ADF KPSS 

-0.179 0.183 11107 -21.25 0.3845 
Note: The critical values of ADF unit root tests are -2.54, -1.95, -1.61 at 1%, 5%, 10% levels of significance. 

 
Table 1 displays the descriptive statistics for the EGY30 daily returns over the full sample. 
The sample mean return is positive and very close to zero. There are significant departures 
from normality as the returns series is negatively skewed possibly due to the large negative 
returns associated with the financial crisis of 2007- 2009. The unconditional distribution is 
peaked with fat tails. The data also display a high degree of kurtosis. Such skewness and 
kurtosis are common features in asset return distributions, which are repeatedly found to be 
leptokurtic. The data also fail to satisfy the null hypothesis of normality of the Bera-Jarque at 
the 1% level. Table 1 also includes the implementation of ADF and the KPSS tests. The ADF 
test shows evidence of non-stationary. The results of the ADF unit root test indicate that the 
return series are stationary by rejecting the null hypothesis of �(1) at 1% level. For the KPSS 
test, the critical values are 0.739, 0.463 and 0.347 corresponding to the 1%, 5% and 10% 
level respectively. The null hypothesis of �(0) against long memory alternatives is rejected 
(KPSS = 0.38) at the 10% level suggesting that the long memory process can be appropriate 
representation for the return series.  
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Figure 7: The distribution of the daily EGX30 returns series 

 
 
 

 
 

Figure 8: The QQ plot of the daily EGX30 returns series 
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Table 2: ML estimation of ARFIMA models using EXG30 returns 
= > �v S.E. AIC 
0 1 0.035 0.019 -5.232 
1 0 0.031 0.023 -5.231 
1 1 0.055 0.023 -5.232 
0 2 0.061 0.026 -5.233 
1 2 0.058 0.027 -5.232 
2 0 0.068 0.028 -5.232 
2 1 0.070 0.029 -5.231 
2 2 0.063 00.30 -5.231 
3 0 0.051 0.032 -5.232 
3 1 0.046 0.034 -5.231 
3 2 0.275** 0.109 -5.232 
0 3 0.056 0.030 -5.232 
1 3 0.049 0.035 -5.231 
2 3 0.259** 0.107 -5.232 
3 3 0.031 0.032 -5.235 
0 4 0.043 0.033 -5.231 
1 4 0.255** 0.108 -5.232 
2 4 0.032 0.029 -5.235 
3 4 0.174** 0.078 -5.232 
4 0 0.044 0.035 -5.231 
4 1 0.258** 0.123 -5.234 
4 2 0.054 0.027 -5.231 
4 3 0.186 0.081 -5.232 
4 4 0.416* 0.062 -5.236 

Note: * and ** indicate statistical significance at the 1% and 5% levels respectively. 
 
 
 
 

Table 3: ML estimation of ARFIMA(4, �, 4) model 
 Coefficient S.E. t-value p-value 

©̂ 0.0003 0.035 0.09 0.925 
�v 0.461 0.062 6.67 0.000 

Au# 0.721 0.055 9.76 0.000 

Au  0.168 0.061 3.10 0.002 

Au« -0.933 0.058 -15.9 0.000 

Au¨ 0.616 0.068 9.65 0.000 

Du# -0.965 0.070 -15.3 0.000 

Du  -0.159 0.063 -2.92 0.004 

Du« 0.101 0.051 16.2 0.000 

Du¨ -0.785 0.046 -15.6 0.000 
Note: All estimators are statistically significant at the 1% level. 
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The parametric estimation for the returns series were derived by means of the Exact MLE of 
the OxMetrics 6 ARFIMA package, while the TSM modelling was used to obtain the long 
memory estimates via semiparametric methods. The ARFIMA model’s Exact MLE 
(Maximum Likelihood Estimate) in the OxMetrics 6 package was used (see Doornik and 
Ooms, 2003). The models with different orders are estimated for ARFIMA (=, �, >). Table 2 
show the results from various ARFIMA models with different specifications where = +  > 
equals and less than 4. The model is selected based on the Akaike’s information criterion 
(AIC) and log likelihood values. The selected ARFIMA model is ARFIMA(4, �, 4)5. The 
estimated results show that the memory parameter is 0.41. The evidence of long memory 
property can be found in the model estimation where the long memory parameter is 
statistically significant at 1% level (see table 3). Hence, the EGX30 returns series exhibit long 
memory features. ARFIMA (4, 0.41, 4) model is fitted to the data to capture the long 
memory characteristics of the returns series as in Figure 9.  
 

Figure 9: The fitted ARFIMA(4, 0.41, 4) model 

 
 

 
Moreover, the presence of the long memory properties in the Egyptian stock market suggests 
that ARFIMA models can improve forecasting performance by providing very reliable out-
of-sample forecasts for both the long memory and the short run dynamic properties of the 
return series. The Egyptian stock returns series is forecast by using the ARFIMA model fitted 
to the EGX30 returns series according to the AIC. This forecast should significantly 
outperform any others using standard linear models. The period 9 April 2010 to 9 May 2010 
is used for out of-sample forecasting. Table 4 reports the ex-ant forecasting performance for 
the EGX30 returns series (see figure 10). 
                                                           
5
 If the lag polynomials for AR and MA have common roots, a more economical ARMA (= − 1, > − 1) model 

suffices and hence written as a lower-order process. Unique roots were found and are either real or in complex 
conjugate pairs. The A 's roots are outside the unit circle, while the D's roots are inside the unit circle. So, it is an 
ARMA (4, 4). Alternatively, a purely autoregressive process can be considered which may typically require a 
higher number of parameters. 
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Table 4: Out-of-sample Forecasting Performance for the daily EGX30 Returns 

Forecasting 
Horizon 

1 5 10 15 30 

RMSE 0.0622 0.1145 0.1899 0.2536 0.4019 

MAD 0.0597 0.0871 0.1540 0.2321 0.3358 

Note: The out-of-sample period is from 9 April 2010 to 9 May 2010. The forecasting horizon is reported in k-

steps ahead. The RMSE stands for the root mean square error, while the MAD is the mean absolute deviation. 
 
 

Figure 10: The ARFIMA(4, 0.41, 4) model forecast 

 
 

Table 5: Semiparametric estimates of � for returns 
 Bandwidth 
 < = ^�.¨¬ < = ^�.¬ < = ^�.¬¬ < = ^�. 
     

�v��� 0.2644 0.1981 0.1979 0.1838 
 (0.1212) (0.0954) (0.0787) (0.0631) 
     

�v�c 0.2536 0.1758 0.1346 0.1290 
 (0.0833) (0.0680) (0.0559) (0.0458) 
     

Note: The standard errors are provided in parentheses. 
 
Table 5 reports the semiparametric estimates of the long memory parameter � for the two 
estimators GPH and LW. The conventional setting of the bandwidth to be equal to the square 
root of the same size (< =  ^�.¬) was adopted. Moreover, � estimates were reported for 
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different bandwidths < =  ^�.¨¬, ^�.¬¬ and ^�. in order to evaluate the sensitivity of the 
results to the choice of the bandwidth. The results are not too sensitive to the bandwidth. 
Looking at the returns series, both estimators present similar results which show the existence 
of long memory features. The estimated � values range between 0.1 and 0.3, which is the 
property of stationary long memory processes. All the estimates of � are significantly 
positive at the 1% level. This result, due to semiparametric techniques, confirms the presence 
of long memory in the Egyptian stock returns as that of the parametric method. 
 
5 Concluding Remarks 

 

This paper applied the parameter and semiparametric techniques to examine the long memory 
property in the daily Egyptian stock market returns. The exact maximum likelihood 
estimation was employed as a parametric method in the time domain to estimate the 
ARFIMA model, while two semiparametric methods were used to estimate the memory 
parameter in the frequency domain. The results from the ARFIMA model show evidence of 
long memory in the EGX30 returns. The results were also confirmed using the 
semiparametric methods. Both techniques provide strong evidence of long range dependence 
in the EGX30 returns. This implies that price movements in the Egyptian stock market appear 
to be related and affected by past and remote observations. The paper’s findings suggest that 
long memory plays an important role in the structure and the dynamic behaviour of the 
Egyptian stock market returns and hence, influence the investment strategies involving 
multinational equities portfolios. Moreover, the presence of long memory in the Egyptian 
stock market may suggest constructing nonlinear econometric models, such as ARFIMA, for 
improved and more efficient price forecasting performance.  
 
Furthermore, long memory in returns is not consistent with market efficiency. This market 
inefficiency in the Egyptian stock market can be attributed to the high persistence of risk 
factors in the market or due to the lack of liquidity. Accordingly, investors can exploit such 
inefficiency to earn excess returns. In addition, regulators should analyse the sources of the 
persistence in the Egyptian stock market that takes the form of long memory in order to 
improve its efficiency. 
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