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Abstract  
Prenatal and perinatal exposures vary seasonally (e.g., sunlight, allergens) and many diseases are linked with 
variance in exposure. Epidemiologists often measure these changes using birth month as a proxy for seasonal 
variance. Likewise, Genome-Wide Association Studies have associated or implicated these same diseases with many 
genes. Both disparate data types (epidemiological and genetic) can provide key insights into the underlying disease 
biology. We developed an algorithm that links 1) epidemiological data from birth month studies with 2) genetic data 
from published gene-disease association studies. Our framework uses existing data repositories – PubMed, 
DisGeNET and Gene Ontology – to produce a bipartite network that connects enriched seasonally varying 
biofactorss with birth month dependent diseases (BMDDs) through their overlapping developmental gene sets. As a 
proof-of-concept, we investigate 7 known BMDDs and highlight three important biological networks revealed by 
our algorithm and explore some interesting genetic mechanisms potentially responsible for the seasonal 
contribution to BMDDs. 
1. Introduction and Background 
Since antiquity [1], the relationship between disease and birth seasonality was described, pondered and studied. Of 
particular interest to modern researchers is the relationship between developmental seasonality (using birth month as 
a proxy) and disease risk. The recent expansion in Electronic Health Records (EHRs) usage throughout the United 
States of America has enabled researchers to conduct diverse high-throughput exploratory analyses [2-5]. Recently, 
we developed and conducted a Season-Wide Association Study (SeaWAS), to systematically identify dependencies 
between birth month and disease risk using EHRs [6]. The initial study found disease-birth month associations [6], 
however it did not provide any molecular explanation for the dependency.  
Recently, Dopico et al. demonstrated that gene expression can vary seasonally [7]. Additionally, we know that many 
biological compounds can vary seasonally in humans [8-11]. Therefore, we decided to develop an algorithm that 
uses existing data repositories containing genetic information for various disease states and Seasonally Varying 
Biofactors (SVBs) to find genes potentially responsible for reported birth month dependent diseases (BMDDs). We 
hope to use these genes to uncover mechanisms behind birth month-disease relationships. 
One well-studied BMDD is asthma. Several studies have linked asthma risk to birth month [6, 12] where birth 
month is a proxy for a perinatal environmental exposure. Environmental factors play a key role not only in asthma 
development but also in its progression. Others have demonstrated that asthma flare-ups are seasonally dependent 
[13, 14] and that genetic mechanisms are involved in this seasonal dependency [15]. Despite all the knowledge 
behind asthma seasonality and the role of perinatal exposures in regards to disease risk, we cannot easily point to a 
biological mechanism behind the birth month association. In part, the difficulty lies in the fact that >1,200 genes 
have been implicated in asthma disease progression [16]. Because of the plethora of genes implicated in certain 
diseases, finding the potential genetic mechanisms underlying birth seasonality associations is non-trivial. This 
formed the motivation for our current study. 
2. Materials and Methods 
Our framework combines data from three public data repositories: PubMed (http://www.ncbi.nlm.nih.gov/pubmed), 
DisGeNET (http://www.disgenet.org) [16] and the Gene Ontology (GO - http://geneontology.org). Figure 1 
illustrates the overall framework approach. Each step is described in more detail in the sections that follow. 
2.1 Assembling Data Sources from Existing Data Repositories 
2.1.1 Develop List of Seasonally Varying Biofactors (SVBs) 
Using PubMed, we searched for SVBs in humans (Homo sapiens). All non-humans (e.g., rats, geese, and even non-
human primates) were excluded. While we required that the studies involve humans, we ignored the human state 
(e.g., post/pre menopausal, old/young). Figure 2 contains an example of two SVBs extracted from a study by Meier 
et al. [17] demonstrating the seasonality of parathyroid hormone (PTH) and vitamin D (specifically calcifediol). In 
Figure 2, we can see that PTH tends to be higher in the winter months (Jan-Mar) while vitamin D is noticeably 
higher in the late spring / summer months (Jun-Aug).  
 



To develop a list of literature-backed SVBs, we first queried PubMed with the query: 
 (human) AND "seasonal variation" 

returning 4,091 articles. We then added a 
species filter (humans) and a language filter 
(English), which reduced the results set 
down to 3,627 articles. 
We are interested in SVBs and not disease 
flare-ups (e.g., asthma exacerbations occur 
seasonally). Therefore, we decided to modify 
the query to also include the compound. We 
then ran this for a large variety of 
compounds (e.g., vitamin D, lactic acid, 
eosinophils, neutrophils, estrogen, 
testosterone) to retrieve articles related to 
their seasonality or lack thereof.  
We then read through the resulting abstracts 
to determine if the compound was accurately 
found, and to remove any non-human studies 
that managed to pass the earlier filter. After 
these initial checks, we determined if 
seasonal variation was found or not found by 
the study. 
2.1.2 Develop List of Birth Month Dependent 
Diseases (BMDDs) 

Previously, a curated reference set of BMDDs was assembled to assess the quality of SeaWAS results [6]. To derive 
this reference set, we extracted all articles from PubMed using the term “birth month” and one additional article 
referenced from a located article (156 articles total). After manually reviewing all articles, we identified 92 relevant 
articles where birth month was used to study disease risk as a proxy for an environmental exposure. Each article was 

manually classified regarding whether they found or failed 
to find an association between the disease of interest and 
birth month. We then mapped these diseases to EHR-
extractable conditions and found that 19 diseases reported in 
the literature could be mapped including 16 positively 
associated and 3 not associated with birth month (<50% 
literature support for an association with birth month). 
Because we wanted a list of BMDDs with at least 1 
publication supporting the relationship between birth month 
and disease risk, we extended the original list to include the 
12 novel findings from SeaWAS [6]. We provide this list 
with the supplemental information available on figshare. We 
will use the phrase ‘see supplement’ throughout this paper 
and we are referring to figshare accessible via: 
figshare.com/s/b47610ea62d111e5b56406ec4bbcf141 
2.1.3 DisGeNET 
We mapped each SVB to a disease involving dysregulation 
of a SVB because DisGeNET only contains genes 
associated with disease states. For example, vitamin D is an 
SVB. Hence vitamin D deficiency was used as one of the 
diseases involving the SVB vitamin D. All genes implicated 
via association studies in the disease of vitamin D 

deficiency were used as vitamin D genes. To match SVBs to diseases in DisGeNET, we performed substring 
matching to the SVB query term. In some cases, we had to modify the SVB search term used. We also did this to 
ensure that SVBs such as vitamin C (also known as ascorbic acid) were mapped properly. A list of SVBs and the 
exact query terms used for extracting genes from DisGeNET is included with the supplement. We include examples 
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Figure 2. SVBs (parathyroid hormone and 
calcifediol) measured by Meier et al. 2004. 
Best-fit lines were applied and slight non-

significant anti-correlation was observed (r=-
0.303, p=0.338). 

Figure 1. Overview of Our Method Designed to Locate Genes 
Potentially Responsible for Seasonal Contribution to BMDD. 
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in Table 1 for explanatory purposes along with example diseases and example genes implicated in those diseases for 
each SVB in Table 1. However, these examples are not exhaustive. 
Table 1. Examples of SVBs and DisGeNET query terms used to extract SVB-related diseases and genes potentially 
involved in perturbation of SVBs 
SVB SVB query term used Example Disease Names  Example Genes Implicated  
Vitamin D “Vitamin_D” Vitamin D Deficiency, Rickets Hereditary 

Vitamin D-Resistant 
DHCR7, VDR 

Parathyroid 
hormone 

“Parathyroid” Pseudo-hypoparathyroidism, Parathyroid 
Neoplasms 

GNAS, CDC73 

Vitamin C “ascorbic_acid” Ascorbic Acid Deficiency GSTK1, HP, SLCO6A1 
Vitamin K  “Vitamin_K” Vitamin K Deficiency, Vitamin K Dependent 

Clotting Factors Combined Deficiency  
GGCX, VKORC1, F7 

Neutrophil “Neutrophil” Neutrophil Actin Dysfunction, Hereditary 
Neutrophilia 

PARP1, CYBA, CSF3R 

Eosinophil “Eosinophil” Eosinophilia, Hyper-eosinophilic Syndrome IL5, FIP1L1, PDGFRA 
Hemoglobin “Hemoglobin” Hemoglobinopathies, Methemoglobinemia HBB, CYP1A2, HBA1 
Estrogen “Estrogen” Oestrogen deficiency, Estrogen Resistance  ESR1, RBBP4, BCAR1, PPP2CA 
Additionally, we mapped our list of BMDDs to diseases in DisGeNET. We did this using approximate string 
matching similar to above. As this is a proof-of-concept of our framework, we randomly chose 7 BMDDs for this 
analysis provided they spanned the distribution of number of distinct genes. The seven BMDDs and their query 
terms used in DisGeNET are given in Table 2. We only used 7 BMDDs because we wanted to test the feasibility of 
our framework and algorithm. Note the number of distinct genes involved in each disease varies largely from 21 
genes (reproductive performance) to 1253 genes (asthma). We randomly selected the BMDDs with this one 
constraint. 
Table 2. BMDDs included in proof-of-concept along with query terms, example genes implicated and counts of genes 
involved in BMDD 
BMDD BMDD query term used Example Genes Implicated No. Distinct 

Genes 
Asthma “Asthma” SCGB1A1, TNF, CCL11 1253 
Attention Deficit 
Disorder 

“attention_deficit_disorder” COMT, LPHN3, GRM5 338 

Atrial Fibrillation “Fibrillation” ACE, NOS3, KCNE2, SELE, VWF 318 
Reproductive 
Performance 

“Reproductive” BRCA1, BRCA2, TLR4, ESR1, MBL3P 21 

Cardiovascular 
Disease 

“Cardiovascular” ACE, APOB, LPL, MTHFR 775 

Cardiomyopathy “Cardiomyopathy” CSRP3, TTN, DES, TMPO, VCL 717 
Mitral Valve Disorder “mitral_valve” FBN1, AGTR1, FBN2, NPPB, PLAU, COL3A1 82 

2.2 BMDD-SVB Pair Enrichment Algorithm 
We developed an algorithm to uncover BMDD-SVB pairs that were enriched using their respective gene sets. The 
first step was the creation of an empirical null distribution for each disease. For each BMDD, we randomly extracted 
genes from DisGeNET (of the same size as the number of genes for that BMDD). Therefore, 1,253 distinct genes 
would be randomly pulled from DisGeNET for the empirical null distribution for asthma. However, for reproductive 
performance only 21 genes would be randomly pulled. We calculated the overlap between the SVB and the random 
gene set. We iterated through this sampling protocol 100 times and then an overall average overlap was computed. 
Fisher’s exact test was performed between the true BMDD-SVB pair and the random average overlap computed 
above (Table 3). Bonferroni correction was applied to adjust for multiple comparisons since each SVB was 
compared to each BMDD.  
2.3 Restrict to Genes Involved in Developmental Processes  
We aim to explore the contribution of birth month variance on lifetime disease risk. We are especially interested in 
genes involved in developmental processes, as these are most likely to contribute to a prenatal/perinatal contribution 
to increased disease risk due to environmental exposures around birth month. Using the Gene Ontology (GO), we 
restricted the gene set to only include those genes involved in developmental processes. We retained only those 
genes with at least one GO term containing ‘develop’ in its annotation term description. So for example, if a gene 
contained the term ‘positive regulation of hair follicle development’ or ‘embryonic placenta development’ it was 
retained in our analyses. This further reduced the gene set to about 30% of the size (for asthma, 439 asthma genes 
were enriched in asthma-SVB pairs and only 140 of those genes also had at least 1 developmental GO term). 



Table 3. The Structure of the Enrichment Algorithm: Each BMDD-SVB Pair was Compared Against a Randomly 
Generated BMDD-SVB Pair Specific for that BMDD 

 No. of BMDD Genes Per SVB No. Genes Per SVB – No. 
BMDD Genes Per SVB 

Actual BMDD-SVB Pair A B 

Randomly Generated* C D 

* Random was the average across 100 random gene set extractions from DisGeNET using the same number of genes as 
the BMDD 
2.4 Construct Bi-Partite Networks 
To visualize the results, we created bi-partite networks [18] for each SVB. BMDDs are included if they are enriched 
for overlapping genes with the SVB of interest. Each SVB (shown on the left side of the network) is linked to 
BMDDs (shown on the right side of the network) that are enriched in overlapping genes that are depicted in the 
middle portion of the graph. Only genes with a developmental GO process are included in the graph. We used 
DAVID [19, 20] to annotate the genes and identify functional gene modules. Network visualization was performed 
using Cytoscape [21].  
3. Results 
3.1 Using Existing Data Repositories to Assemble Key Datasets 
3.1.1 Seasonally Varying Biofactors (SVBs) 
Our original search returned 3,627 articles related to seasonal variation in humans. Therefore, we included 
additional query terms for biological compounds such as hormones, vitamins, and immune-related cells that are 
thought to vary seasonally. This allowed us to identify 22 SVBs that are known to vary seasonally in humans. We 
also found 2 compounds (Homocysteine and Glutaric acid) that are not known to vary seasonally and one that varies 
seasonally in animals (Corticosterone) but with no human studies currently. We focused on the 22 SVBs that are 
confirmed to vary seasonally in humans by published studies indexed by PubMed. We used these as input for the 
enrichment algorithm. Table 4 contains the references supporting the seasonal relationship and references that refute 
the relationship, if any exist. 
3.1.2 Birth Month Dependent Diseases (BMDDs) 
We combined results from our SeaWAS study with a carefully curated set of diseases related to birth month that we 
developed previously. This file is available with the supplement and includes the PubMed ID, publication year, 
disease area (high-level disease category), and a binary variable indicating whether the study found or failed to find 
the association. In this feasibility study of the algorithm’s framework, we used 7 randomly chosen BMDDs with one 
constraint: that the number of distinct disease genes differed largely. For example, 21 genes were implicated in 
reproductive performance while 1253 genes were implicated in asthma.  
3.1.3 DisGeNET 
SVBs and BMDDs were mapped to DisGeNET to extract genes associated with each SVB and BMDD. Examples of 
the extraction process are given in methods Tables 1 and 2. For this proof-of-concept, we ran the DisGeNET 
extraction on 7 random BMDDs with different gene set sizes. We also used DisGeNET to extract the genes related 
to the 22 SVBs given in Table 4 (folate and folic acid are counted as separate SVBs but merged under vitamin B9 in 
Table 4).  
3.2 Enrichment Results 
Our enrichment algorithm investigates the overlap among gene sets from the BMDD and each SVB. It compares this 
overlap to an average across 100 randomly generated gene sets of the same size (i.e., number of genes) as the 
particular BMDD of interest. The average overlap score from the 100 random sets is compared against the actual 
number to determine significance using Fisher’s exact test. We adjusted the p-values using the Bonferroni correction 
method. We then ranked each significant BMDD-SVB pair by the ORs. Results are shown in Table 5 with the top 
three associations in bold. 
The top SVBs associated with each BMDD are biologically intuitive. Cardiovascular disease is known to involve 
vitamin K regulation with the anti-coagulant drug warfarin targeting the well-studied vitamin K gene: VKORC1. 
The two top SVBs related to asthma (a known immune-related condition) are also immune related: eosinophils and 
neutrophils [22]. Atrial fibrillation’s top hits are calcium related and atrial fibrillation is associated with increased 
calcium release from the sarcoplasmic reticulum [23]. 



Table 4. Biofactors With Seasonal Dependencies Extracted from the Literature 
  Seasonal Relationship 
Biofactor Notes Reference 

Supporting 
Reference 
Refuting 

Hormone    
Parathyroid Hormone (PTH)  PTH and vitamin D are slightly anti-correlated  [17, 24]  
Estrogen (modulated through Vitamin D) [25]  
Estradiol   [26]  
Testosterone  (modulated through Vitamin D) [25]  
Progesterone  (modulated through Vitamin D) [25]  
Vitamins/Minerals    
Vitamin A (retinol, beta-carotine)  Bitot eye spots are a sign of vitamin a deficiency [9, 10, 27, 28]  
Vitamin B9: Folate and Folic Acid   [11, 29]  
Vitamin B12  [30]  
Vitamin C (Ascorbic acid)   [9, 31, 32]  
Vitamin D   [17, 24, 33]  
Vitamin E  [9]  
Vitamin K  Vitamins K and D regulate osteocalcin [33, 34]  
Calcium  [17, 24, 33]  
Phosphate  [33]  
Immune Cells    
Neutrophil  [35, 36]  
Eosinophil  [35, 37, 38]  
Basophil  [38] [37] 
Other Cells/Metabolites    
Hemoglobin  [39]  
Uric Uric acid [40]  
Creatine  [41]  
Lactic   Lactic acid [42]  
3.3 Restrict to Genes Involved in Developmental Processes  
We reduced the number of genes in our results set by restricting the gene sets to only include those involved in at 
least one developmental process using GO annotations. This was primarily because of our interest in genes that are 
involved in developmental processes and therefore may play a role in birth month associations. This drastically 
reduced our results set as shown in Table 6.  
Table 6 illustrates how the algorithm started with 1,253 genes associated with Asthma as extracted from 
DisGeNET. Because asthma is also known to be associated with birth month and a BMDD, we ran our algorithm to 
find overlapping genes between asthma and SVBs where the overlapping genes were enriched. This reduced the 
number of genes potentially involved in a seasonally varying process at birth down to 439 genes from 1253. We 
then restricted these 439 genes to only include genes known to be involved in some developmental process using 
GO term annotations. This further reduced the number of genes down to 140. Therefore, only 11.2% of asthma-
related genes are potentially involved in developmental processes related to SVBs that could potentially lead to birth 
month-related effects. 
3.4 Developmentally Expressed Genes Link SVBs to BMDDs in Biological Networks 
Our algorithm produces output containing each BMDD, the enriched SVBs and the overlapping genes that are 
developmentally expressed between the BMDD and the SVB. A file containing tuples of BMDD, SVB, and gene is 
available in the supplement. 
For illustrative purposes, we show three SVB networks from our feasibility study: two immune cells  (eosinophil 
and neutrophil) and one hormone (parathyroid hormone). Full resolution images are available with supplemental 
information on figshare at figshare.com/s/b47610ea62d111e5b56406ec4bbcf141. The immune cells are shown in 
Figure 3, the SVB is represented by a triangle, the BMDD is represented by a square and circles represent the 
overlapping genes. Cluster annotations from DAVID are shown above or near each cluster. In the neutrophil 
network (Figure 3A) there are clusters involving blood vessel development, response to an organic substance, 
positive regulation of nitrogen compound metabolic processes, regulation of cell proliferation and embryonic 
development / birthing. In Figure 3B, the largest cluster includes genes related to the immune response (as 
expected). Other clusters are for neuron development, tube development (e.g., neural, endothelial tubes), response to 
sterol hormone synthesis and insulin stimulus. The same 5 BMDDs are involved in both: attention deficit 
hyperactivity disorder (ADHD), cardiomyopathy, atrial fibrillation, cardiovascular disease, and asthma. Eosinophils 



and neutrophils are in the top 3 most enriched SVBs for both asthma and ADHD (Table 5). Its possible that the 
genes involved in neuron development is responsible for the ADHD – Eosinophil relationship (Figure 3B).  

Table 5. BMDD-SVB Enriched Overlapping Gene Sets Sorted by OR 
BMDD Disease Enriched SVB OR -log(p) * 
Asthma Eosinophil 23.545308 92.3610942 
 Neutrophil 7.608800 41.7971736 
 Vitamin D 7.597455 4.9508901 
 Phosphate Gene Set 1 (Phosph) 6.787030 36.4156313 
 Hemoglobin 6.684969 19.1382008 
 Uric 5.672420 12.1008132 
 Calcium Gene Set 2 (Calcinosis) 4.085383 5.4623019 
 Calcium Gene Set 1 (Calci) 3.511367 9.7828493 
 Phosphate Gene Set 2 (Phosphate) 5.095905 10.1171083 
 Parathyroid Hormone 4.494405 23.8948578 
ADHD Eosinophil 3.805091 5.2892789 
 Parathyroid Hormone 3.553309 11.9138662 
 Neutrophil 3.308624 9.2041648 
 Phosphate Gene Set 1 (Phosph) 3.302909 9.7728579 
 Calcium Gene Set 1 (Calci) 2.679110 7.5585981 
 Calcium Gene Set 2 (Calcinosis) 2.043983 7.1930726 
Fibrillation Calcium Gene Set 2 (Calcinosis) 12.287454 7.1930726 
 Phosphate Gene Set 1 (Phosph) 6.440454 9.7728579 
 Parathyroid Hormone 6.437664 11.9138662 
 Calcium Gene Set 1 (Calci) 6.380333 7.5585981 
 Neutrophil 6.252987 9.2041648 
 Eosinophil 6.242087 5.2892789 
Reproductive - - - 
Cardiovascular Vitamin K 45.187116 5.8861829 
 Folic Acid 14.548556 6.5377502 
 Vitamin D 13.319860 6.1949509 
 Phosphate Gene Set 2 (Phosphate) 11.560768 23.1079644 
 Phosphate Gene Set 1 (Phosph) 9.246976 39.8563236 
 Uric 9.174204 17.0939677 
 Calcium Gene Set 2 (Calcinosis) 8.543921 13.0824611 
 Calcium Gene Set 1 (Calci) 8.492730 28.6820297 
 Neutrophil 7.892360 28.6839072 
 Eosinophil 6.946996 19.5349288 
 Hemoglobin 6.384460 11.7733926 
 Parathyroid Hormone 4.149517 13.8335245 
Cardiomyopathy Vitamin D 10.145258 3.851662 
 Eosinophil 8.923802 25.690966 
 Lactic 8.159469 6.974233 
 Hemoglobin 7.666338 15.743251 
 Calcium Gene Set 2 (Calcinosis) 7.616024 10.981833 
 Neutrophil 6.468582 21.428566 
 Phosphate Gene Set 1 (Phosph) 6.284259 22.014083 
 Calcium Gene Set 1 (Calci) 6.049040 16.056148 
 Uric 5.784556 6.909913 
 Parathyroid Hormone 4.781197 16.279232 
 Phosphate Gene Set 2 (Phosphate) 4.342993 3.422636 
Mitral Valve Phosphate Gene Set 1 (Phosph) 16.780523 5.1995428 
 Calcium Gene Set 1 (Calci) 13.587347 3.2560223 

* greater than 3.0 is significant after Bonferroni correction 
Figure 4 shows the network for parathyroid hormone (PTH). There are three main genetic processes involved: 
positive regulation of the development process, receptor linked signal transduction, and response to hormone 
stimulus. Not only is parathyroid hormone a hormone, but it also is involved in regulation or other hormones. 
Figure 2 illustrates the somewhat anti-correlated relationship PTH has with vitamin D that has been described by 
others [17]. Both PTH and vitamin D are hormones that regulate each other through complex mechanisms. Positive 
regulation of the development process to also be enriched in this network connecting PTH and BMDD this fits with 
the involvement of this SVB with a contribution to disease risk that is due to birth month.  



Table 6. Number of Genes Involved in BMDD That Are Potentially Involved in Birth Month Contribution to Disease is 
Drastically Reduced After Framework Is Applied 

BMDD No. Distinct 
Genes  (A) 

No. of Overlapping 
Genes from Enriched 
BMDD-SVB Pairs (B) 

No. of Genes from B 
Involved in 

Developmental Processes 
(C) 

% of Genes Potentially Involved 
in Birth Month Contribution Out 

of All BMDD Genes (C / A) 

Asthma 1253 439 140 0.112 
ADHD 338 63 18 0.053 
Fibrillation 318 105 45 0.142 
Reproductive 21 - - - 
Cardiovascular 775 302 109 0.141 
Cardiomyopathy 717 250 89 0.124 
Mitral Valve 82 24 15 0.183 

A. Neutrophil Network B. Eosinophil Network 

Figure 3. Immune Cell Bi-Partite Networks Connecting SVBs to BMDDs Via Overlapping Genes Involved in 
Developmental Processes. Full resolution images are available on figshare. 
4. Discussion 
4.1 Value of a High-throughput Birth Month-Disease Dependency Genetic Algorithm 
The relationship between genes, environment and disease has been discussed by medical researchers since the early 
days of genetics [43]. Because the relationship between genes and the environment is complex, researchers 
originally investigated single environmental exposures and how those exposures influenced disease risk via genetic 
changes [44]. An improvement on this original concept was the development of the Environment-Wide Association 
Study (EWAS) that explored a large variety of environmental exposures (not just one as was done previously) and 
then explored how those exposures effected one single disease: Type 2 Diabetes [45]. While an improvement over 
the work that was conducted previously, EWAS was still limited to exploring one disease at a time. 
Our SeaWAS study revealed multiple birth month-disease dependencies (called BMDDs). Additionally, 92 other 
articles revealed additional information on BMDDs. None of these epidemiological studies sheds light on the 
genetic underpinnings of BMDDs as they focus primarily on observational data. Therefore, a method was required 
that could investigate diverse environmental triggers across a plethora of diseases and disease types (e.g., 
reproductive, mental, immune, and respiratory diseases). To address this gap, we developed an algorithmic 
framework to uncover enriched SVBs related to BMDDs.  
In addition to finding SVBs enriched in BMDDs, we also explore the overlapping genes implicated in both the SVB 
and the BMDD. We limit our investigation to only those genes that are known to be involved in developmental 
processes to hone in on those genes that are potentially responsible for birth month disease dependencies. We 
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describe in this paper our exploration of 7 BMDDs and we highlight 3 biological networks related to key SVBs and 
the BMDDs they potentially modulate. 
4.2 Highlighting One Well-Studied Disease: Asthma 
The top SVBs enriched for asthma were eosinophil (OR=23.545), neutrophil (OR=7.601) and vitamin D 
(OR=7.597) (Table 5). The relationship between eosinophils (key cells in the immune response) and asthma is well 
known and studied [46]. At the same time asthma exacerbations and underlying gene expression changes are also 

known to vary seasonally [15]. As 
revealed by our framework, there is 
also literature support for a 
relationship between eosinophil 
changes and season [35, 37, 38]. Our 
framework revealed 42 genes in 
common between asthma and 
eosinophils that are also involved in 
developmental processes (the entire 
eosinophil network is shown in 
Figure 3B). The immune response 
was the key functional process 
involved in this network along with 
neuron development (which could 
help to explain the interesting 
relationship between eosinophils and 
ADHD in our network). 
Table 5 reveals an interesting 
relationship between asthma and 
ADHD: they both share eosinophils 
and neutrophils among their top 3 
SVB enrichments (asthma also has 
vitamin D and ADHD has 
parathyroid hormone—which are also 
related to each other). When we 
investigated the biological network 
(Figure 3B), the enrichment in 
neuron development genes is 

revealed. Importantly, asthma patients are known to be at increased risk for developing ADHD and this increased 
risk was observed even after adjusting for urbanization and comorbid allergic diseases suggesting an underlying 
etiology behind the two diseases [47]. Others have also studied the relationship between asthma and ADHD [48] 
without uncovering a clear genetic/biological mechanism for the relationship.  
Studies show that fetal outcomes following an environmental exposure can vary based on the trimester of exposure. 
Specifically there have been studies related to famine [49] and air pollution [50]. Our SeaWAS study found both 
ADHD and asthma to be associated with birth month, but the relative risk curves were different (ADHD risk peaked 
in Nov. while asthma risk peaked in Sept.) [6]. These differences in birth month risk suggest the possibility of a 
trimester effect (if the exposure is constant for both diseases). Gelardi et al. found that eosinophil cell counts 
increased almost four-fold in March when compared to any other month (data from Southern Europe) [35]. Hence, 
babies born in November would be experiencing their first trimester during March while babies born in September 
would be in their second trimester and a trimester-exposure effect of eosinophils on development could be partially 
responsible. Importantly, our framework enables researchers to construct biological networks that connect complex 
associations between SVBs and BMDDs through their shared underlying genetic pathways. This enables researchers 
to formulate and test hypotheses behind disease etiology and progression. 
4.3 Limitations and Future Work 
Our study is limited by the information contained and available on PubMed regarding biofactors that vary seasonally 
(SVBs) and BMDDs. Therefore, neither of these lists is fully complete as there may be other studies not reported in 
PubMed, studies not translated into English and so forth that would prevent us from using their findings in our 
framework. Our initial query to PubMed returned 3,627 articles related to seasonal variation in humans. Because we 
were primarily interested in biological compounds that vary seasonally (such as hormones, vitamins, immune cells), 
we added additional query terms (as specified in the methods section of the paper). Ideally we would manually 

Figure 4. Network Connecting Parathyroid Hormone with BMDDs 
Via Overlapping Genes Involved in Developmental Processes. Full 
resolution images are available on figshare. 
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review all 3,627 articles but this was not feasible, therefore we may be missing some lesser-known SVBs. Future 
work includes expanding this work beyond the proof-of-concept presented here to all BMDDs and SVBs. This 
includes developing a master list of biofactors. Additionally, the fetal-maternal barrier warrants further investigation 
as the placenta is known to be susceptible to environmental effects [51]. Incorporating knowledge on the epigenetics 
of the placenta could help with understanding the underlying disease mechanism [51].  
5. Conclusion 
We present a framework that combines existing data repositories (PubMed, GO, and DisGeNET) to uncover 
biological mechanisms underlying birth month – disease dependencies (BMDDs) using known Seasonally Varying 
Biofactors (SVBs). Our framework allows us to link 1) epidemiological data on birth month-disease relationships 
and 2) genetic data on gene-disease associations recorded in existing public data repositories. Our algorithm finds 
enriched BMDD-SVB pairs using the genes involved in both the disease and the SVB. We then investigate the 
overlapping genes in these enrichments and trim away genes not known to be involved in developmental processes 
using GO annotations. Our framework produces a bipartite network that connects enriched SVBs with BMDDs 
through their overlapping developmental gene sets. Thus allowing us to form biological hypotheses around the 
genetic mechanisms underlying birth month-disease dependencies. As a proof-of-concept, we present results from 7 
BMDDs across all identified known SVBs. We show biological networks from 3 SVBs while highlighting asthma. 
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