Question	Marking Guidance	Mark	Comments
1(a)	Enthalpy change (to separate) 1 mol of an (ionic) substance into its ions Forms ions in the gaseous state		If ionisation or hydration / solution, $\mathrm{CE}=0$ If atoms / molecules / elements mentioned, $C E=0$ Allow heat energy change but not energy change alone. If forms 1 mol ions, lose M1 If lattice formation not dissociation, allow M2 only. Ignore conditions. Allow enthalpy change for $\mathrm{MX}(\mathrm{s}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{X}^{-}(\mathrm{g})$ (or similar) for M 1 and M2
1(b)	Any one of: - Ions are point charges - Ions are perfect spheres - Only electrostatic attraction / bonds (between ions) - No covalent interaction / character - Only ionic bonding / no polarisation of ions	1 max	If atoms / molecules mentioned, $\mathrm{CE}=0$
1(c)	(Ionic) radius / distance between ions / size (Ionic) charge / charge density	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Allow in any order. Do not allow charge / mass or mass / charge. Do not allow 'atomic radius'.

1(d)	$\begin{aligned} & \Delta H_{\mathrm{L}}=\Delta H_{\mathrm{a}}(\text { chlorine })+\Delta H_{\mathrm{a}}(\mathrm{Ag})+\mathrm{I} \cdot \mathrm{E}(\mathrm{Ag})+\mathrm{EA}(\mathrm{Cl})-\Delta H_{\mathrm{f}}^{\ominus} \\ & =121+289+732-364+127 \\ & =(+) 905\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	1 1 1	Or cycle If $\mathrm{AgCl}_{2}, \mathrm{CE}=0 / 3$ Allow 1 for -905 Allow 1 for (+)844.5 (use of 121/2) Ignore units even if incorrect.
1(e)	M1 Greater M2 (Born-Haber cycle method allows for additional) covalent interaction OR M1 Equal M2 AgCl is perfectly ionic / no covalent character	1 1	Do not penalise AgCl_{2} Allow AgCl has covalent character. Only score M2 if M1 is correct.

Question	Marking Guidance	Mark	Comments
2(a)	Chloride (ions) are smaller (than bromide ions) So the force of attraction between chloride ions and water is stronger Chloride ions attract the $\delta+$ on H of water / electron deficient H on water	1 1 1	Must state or imply ions. Allow chloride has greater charge density (than bromide). Penalise chlorine ions once only (max 2/3). This can be implied from M1 and M3 but do not allow intermolecular forces. Allow attraction between ions and polar / dipole water. Penalise H^{+}(ions) and mention of hydrogen bonding for M3 Ignore any reference to electronegativity. Note: If water not mentioned can score M1 only.
2(b)	$\begin{aligned} & \Delta H_{\text {solution }}=\Delta H_{\mathrm{L}}+\Delta H_{\text {hyd }} \mathrm{K}^{+} \text {ions }+\Delta H_{\text {hyd }} \mathrm{Br}^{-} \text {ions } /=670-322-335 \\ & =(+) 13\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	1 1	Allow $\Delta H_{\text {solution }}=\Delta H_{\mathrm{L}}+\Sigma \Delta H_{\text {hyd }}$ Ignore units even if incorrect. +13 scores M1 and M2 -13 scores 0 -16 scores M2 only (transcription error).

2(c)(i)	The entropy change is positive / entropy increases Because 1 mol (solid) $\rightarrow 2 \mathrm{~mol}$ (aqueous ions) / no of particles increases Therefore $\underline{T \Delta S>\Delta H}$	1 1 1	ΔS is negative loses $M 1$ and $M 3$ Allow the aqueous ions are more disordered (than the solid). Mention of atoms / molecules loses M2
2(c)(ii)	Amount of $\mathrm{KCl}=5 / M_{\mathrm{r}}=5 / 74.6=\underline{0.067(0) \mathrm{mol}}$ $\text { Heat absorbed }=17.2 \times 0.0670=1.153 \mathrm{~kJ}$ Heat absorbed $=$ mass $\times \mathrm{sp}$ ht $\times \Delta T$ $(1.153 \times 1000)=20 \times 4.18 \times \Delta T$ $\Delta T=1.153 \times 1000 /(20 \times 4.18)=13.8 \mathrm{~K}$ $T=298-13.8=284(.2) \mathrm{K}$	1 1 1 1 1 1	If moles of KCl not worked out can score M3, M4 only (answer to M4 likely to be 205.7 K) Process mark for $\mathrm{M} 1 \times 17.2$ If calculation uses 25 g not 20, lose M3 only ($\mathrm{M} 4=11.04, \mathrm{M} 5=287$) If 1000 not used, can only score M1, M2, M3 M4 is for a correct ΔT Note that 311.8 K scores 4 (M1, M2, M3, M4). If final temperature is negative, $\mathrm{M} 5=0$ Allow no units for final temp, penalise wrong units.

Question	Marking Guidance	Mark	Comments
3(a)(i)	(At 0 K) particles are stationary / not moving / not vibrating No disorder / perfect order / maximum order	1 1	Allow have zero energy. Ignore atoms / ions. Mark independently.
3(a)(ii)	As T increases, particles start to move / vibrate Disorder / randomness increases / order decreases	1 1	Ignore atoms / ions. Allow have more energy. If change in state, $C E=0$
3(a)(iii)	Mark on temperature axis vertically below second 'step'	1	Must be marked as a line, an ' x ', T_{b} or 'boiling point' on the temperature axis.
3(a)(iv)	L_{2} corresponds to boiling / evaporating / condensing / $\rightarrow \mathrm{g} / \mathrm{g} \rightarrow \mathrm{I}$ And L_{1} corresponds to melting / freezing / $\mathrm{s} \rightarrow \mathrm{I} / \mathrm{I} \rightarrow \mathrm{s}$ Bigger change in disorder for L_{2} / boiling compared with $L_{1} /$ melting	1 1	There must be a clear link between L_{1}, L_{2} and the change in state. M2 answer must be in terms of changes in state and not absolute states eg must refer to change from liquid to gas not just gas. Ignore reference to atoms even if incorrect.

3(b)(i)	$\Delta G=\Delta H-T \Delta S$ $\Delta H=c$ and $(-) \Delta S=m / \Delta H$ and ΔS are constants (approx)	1 1	Allow ΔH is the intercept, and $(-) \Delta S$ is the slope / gradient. Can only score M2 if M1 is correct.
3(b)(ii)	Because the entropy change / ΔS is positive / $T \Delta S$ gets bigger	1	Allow -T Δ S gets more negative.
3(b)(iii)	Not feasible / unfeasible / not spontaneous	1	
3(c)(i)	$+44.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	1	Allow answer without units but if units given they must be correct (including mol^{-1})
3(c)(ii)	At $5440 \Delta H=T \Delta S$ $=5440 \times 44.5=242080$ $(O R$ using given value $=5440 \times 98=533$ 120 $)$ $\Delta H=242 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ($O R$ using given value $\Delta H=533 \mathrm{~kJ} \mathrm{~mol}^{-1}$)	1 1 1	Mark is for answer to (c)(i) $\times 5440$ Mark is for correct answer to M2 with correct units ($\mathrm{J} \mathrm{mol}^{-1}$ or $\mathrm{kJ} \mathrm{mol}^{-1}$) linked to answer. If answer consequentially correct based on (c)(i) except for incorrect sign (eg -242), max $1 / 3$ provided units are correct.

Question	Marking Guidance	Mark	Comments
4(a)	MgO is ionic Melt it (Molten oxide) conducts electricity	1 1 1	If not ionic, $\mathrm{CE}=0$ If solution mentioned, cannot score M2 or M3 Allow acts as an electrolyte. Cannot score M3 unless M2 is correct.
4(b)	Macromolecular Covalent bonding Water cannot (supply enough energy to) break the covalent bonds / lattice	1 1 1	$C E=0$ if ionic, metallic or molecular. Allow giant molecule. Giant covalent scores M1 and M2 Hydration enthalpy < bond enthalpy.
4(c)	(Phosphorus pentoxide's melting point is) lower Molecular with covalent bonding Weak / easily broken / not much energy to break intermolecular forces OR weak vdW / dipole-dipole forces of attraction between molecules	1 1 1	If M1 is incorrect, can only score M2 M2 can be awarded if molecular mentioned in M3 Intermolecular / IMF means same as between molecules.

4(d)	Reagent (water or acid) Equation eg $\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$	1 1	Can be awarded in the equation. $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$ Equations can be ionic but must show all of the reagent $\mathrm{eg} \mathrm{H}^{+}+\mathrm{Cl}^{-}$ Simplified ionic equation without full reagent can score M2 only. Allow $6 \mathrm{MgO}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 2 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
4(e)	$\mathrm{P}_{4} \mathrm{O}_{10}+12 \mathrm{NaOH} \rightarrow 4 \mathrm{Na}_{3} \mathrm{PO}_{4}+6 \mathrm{H}_{2} \mathrm{O}$	1	Allow $\mathrm{P}_{2} \mathrm{O}_{5}$ and acid salts. Must be NaOH not just hydroxide ions.

Question	Marking Guidance	Mark	Comments
5(a)	It has mobile ions / ions can move through it / free ions	1	Do not allow movement of electrons. Allow specific ions provided they are moving but do not react.
5(b)	$\underline{\text { Chloride ions react with copper ions / } \mathrm{Cu}^{2+} \text { OR }\left[\mathrm{CuCl}_{4}\right]^{2-} \text { formed }}$	1	If incorrect chemistry, mark $=0$
5(c)	The Cu^{2+} ions $/ \mathrm{CuSO}_{4}$ in the left-hand electrode more concentrated So the reaction of Cu^{2+} with $2 \mathrm{e}^{-}$will occur (in preference at) left-hand electrode / $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+$ electrons at right-hand electrode	1 1	Allow converse. Allow left-hand electrode positive / right-hand electrode negative. Also reduction at left-hand electrode / oxidation at right-hand electrode. Also left-hand electrode has oxidising agent / right-hand electrode has reducing agent. Allow E left-hand side $>E$ right-hand side
5(d)	(Eventually) the copper ions / CuSO_{4} in each electrode will be at the same concentration	1	
5(e)(i)	-3.05 (V)	1	Must have minus sign. -3.05 only.

5(e)(ii)	$\mathrm{LiMnO}_{2} \rightarrow \mathrm{Li}+\mathrm{MnO}_{2}$ correct equation Correct direction	1 1	Allow 1 for reverse equation. Allow multiples. If Li+ not cancelled but otherwise correct, $\max =1$ If electrons not cancelled, CE $=0$ $\mathrm{LiMnO}_{2} \rightarrow \mathrm{Li}+\mathrm{MnO}_{2}$ scores 2 $\mathrm{Li}^{+}+\mathrm{LiMnO}_{2} \rightarrow \mathrm{Li}^{+}+\mathrm{Li}+\mathrm{MnO}_{2}$ scores 1 $\mathrm{Li}+\mathrm{MnO}_{2} \rightarrow \mathrm{LiMnO}_{2}$ scores 1
5(e)(iii)	Electricity for recharging the cell may come from power stations burning (fossil) fuel	1	Allow any reference to burning (of carboncontaining) fuels. Note combustion = burning.

Question	Marking Guidance	Mark	Comments
6(a)	$\Delta E=h v$ $v=\Delta E / h=2.84 \times 10^{-19} / 6.63 \times 10^{-34}=4.28 \times 10^{14} \mathrm{~s}^{-1} / \mathrm{Hz}$	1 1	Allow $=\mathrm{hf}$ Allow $4.3 \times 10^{14} \mathrm{~s}^{-1} / \mathrm{Hz}$ Answer must be in the range: $4.28-4.30 \times 10^{14}$
6(b)	(One colour of) light is absorbed (to excite the electron) The remaining colour / frequency / wavelength / energy is transmitted (through the solution)	1 1	If light emitted, CE $=0$ Allow light reflected is the colour that we see.
6(c)	Bigger Blue light would be absorbed OR light that has greater energy than red light would be absorbed $O R$ higher frequency (of light absorbed / blue light) leads to higher ΔE	1 1	Can only score M2 if M1 is correct.

Any three from:

3 max

- (Identity of the) metal
- Charge (on the metal) / oxidation state / charge on complex
- (Identity of the) ligands
- Co-ordination number / number of ligands
- Shape

Question	Marking Guidance	Mark	Comments
7(a)	Iron(II): green (solution) gives a green precipitate $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \underline{O}_{\mathrm{O}}^{2}\right)_{6}\right]^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{FeCO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$ Iron(III):: yellow / purple / brown / lilac / violet (solution) gives a brown / rusty precipitate Effervescence / gas / bubbles $2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \rightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	1 1 1 1 1	Apply list principle throughout if extra colours and/or extra observations given. Ignore state symbols in equations. Not blue-green ppt. Must start from $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ Allow equations with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ Allow CO_{2} evolved but not just CO_{2}
7(b)	Copper(II): blue (solution) gives a green / yellow solution OR blue solution (turns) to green / yellow / olive green $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \underline{\mathrm{O}}_{6} 6\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}\right.$ Cobalt(II): pink (solution) gives a blue solution OR pink solution turns blue $\left[\mathrm{Co}\left(\mathrm{H}_{2} \underline{\mathrm{O}}_{6} 6_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}\right.$	1 1 1 1	Apply list principle throughout if extra colours and/or extra observations given. Ignore state symbols in equations. Allow equations with HCl

7(c)	Iron(II): green (solution) gives a green precipitate $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \underline{O}_{6}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Chromium(III): green / ruby / purple / violet / red-violet (solution) gives a green solution OR green / ruby / purple / violet / red-violet solution turns green $\left[\mathrm { Cr } \left(\mathrm{H}_{2} \mathrm{O}_{6} 6^{3+}+6 \mathrm{OH}^{-} \rightarrow\left[\mathrm{Cr}(\mathrm{OH})_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}\right.\right.$	1 1 1 1 1	Apply list principle throughout if extra colours and/or extra observations given. Ignore state symbols in equations. Allow equations with NaOH Ignore green ppt. Allow also with 4 or 5 OH balanced with 2 or 1 waters. Also allow two correct equations showing $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ as intermediate.
7(d)	Al: colourless (solution) gives a white ppt $\left[\mathrm { Al } \left(\mathrm{H}_{2} \underline{O}_{6} 6^{3+}+3 \mathrm{NH}_{3} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{NH}_{4}^{+}\right.\right.$ Ag: colourless (solution) remains a colourless solution / no visible change $\left[\mathrm { Ag } \left(\mathrm{H}_{2}{\left.\underline{\mathrm{O}})_{2}\right]^{+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+2 \mathrm{H}_{2} \mathrm{O}, ~}_{\text {an }}\right.\right.$	1 1 1 1 1	Apply list principle throughout if extra colours and/or extra observations given. Ignore state symbols in equations. Allow $+3 \mathrm{OH}^{-} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}$ if $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$also Ignore brown ppt. Allow 2 / 3 equations involving $\mathrm{Ag}_{2} \mathrm{O}$ or $\mathrm{Ag}(\mathrm{OH})_{2}$

\begin{tabular}{|c|c|c|c|}
\hline Question \& Marking Guidance \& Mark \& Comments \\
\hline 8(a) \& \begin{tabular}{l}
Cobalt has variable oxidation states \\
(It can act as an intermediate that) lowers the activation energy
\[
\begin{aligned}
\& \mathrm{CH}_{3} \mathrm{CHO}+2 \mathrm{Co}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+} \\
\& \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Co}^{2+}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Co}^{3+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
Allow exists as Co (II) and Co (III) \\
Allow (alternative route with) lower \(E_{a}\) \\
Allow multiples; allow molecular formulae Allow equations with \(\mathrm{H}_{3} \mathrm{O}^{+}\)
\end{tabular} \\
\hline 8(b)(i) \& \begin{tabular}{l}
\[
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \rightarrow\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}
\] \\
The number of particles increases / changes from 4 to 7 \\
So the entropy change is positive / disorder increases / entropy increases
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
Do not allow en in equation, allow \(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\) \\
Can score M2 and M3 even if equation incorrect or missing provided number of particles increases.
\end{tabular} \\
\hline 8(b)(ii) \& \begin{tabular}{l}
Minimum for M1 is 3 bidentate ligands bonded to Co \\
Ligands need not have any atoms shown but diagram must show 6 bonds from ligands to Co, 2 from each ligand \\
Minimum for M2 is one ligand identified as \(\mathrm{H}_{2} \mathrm{~N}-----\mathrm{NH}_{2}\) \\
Minimum for M3 is one bidentate ligand showing two arrows from separate nitrogens to cobalt
\end{tabular} \& 1

1

1 \& | Ignore all charges for M1 and M3 but penalise charges on any ligand in M2 |
| :--- |
| Allow linkage as -C-C- or just a line. |

\hline
\end{tabular}

8(c)	Moles of cobalt $=(50 \times 0.203) / 1000=\underline{0.01015} \mathrm{~mol}$	1	Allow 0.0101 to 0.0102
	Moles of $\mathrm{AgCl}=4.22 / 143.4=0.0294$	1	Allow 0.029
			If not $\mathrm{AgCl}\left(\mathrm{eg} \mathrm{AgCl} 2\right.$ or $\left.\mathrm{AgNO}_{3}\right)$, lose this mark and can only score M1, M4 and M5
	Ratio $=\mathrm{Cl}^{-}$to $\mathrm{Co}=2.9: 1$	1	Do not allow $3: 1$ if this is the only answer but if 2.9:1 seen somewhere in answer credit this as M3
	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ (square brackets not essential)	1	
	Difference due to incomplete oxidation in the preparation	1	Allow incomplete reaction.
			Allow formation $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ etc.
			Some chloride ions act as ligands / replace NH_{3} in complex.
			Do not allow 'impure sample' or reference to practical deficiencies.

