Section A (multiple choice)

Question Number	Correct Answer	Mark
1	C	1
Question Number	Correct Answer	Mark
2	D	1
Question Number	Correct Answer	Mark
3	A	1
Question Number	Correct Answer	Mark
4	A	1
Question Number	Correct Answer	Mark
5	B	1
Question Number	Correct Answer	Mark
6	C	1
Question Number	Correct Answer	Mark
7	C	1
Question Number	Correct Answer	Mark
8 (a)	C	1
Question Number	Correct Answer	Mark
8 (b)	D	1
Question Number	Correct Answer	Mark
8 (c)	B	1
Question Number	Correct Answer	Mark
9	A	1
Question Number	Correct Answer	Mark
10 (a)	D	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 18 MARK SCHEME

Question Number	Correct Answer	Mark
$\mathbf{1 0 (b)}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}(\mathbf{c})$	D	$\mathbf{1}$

Question 11: N/A
Question 12: N/A
Question 13: N/A
Question 14: N/A
Question 15: N/A

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (a)(i)	$\mathbf{O}_{\mathbf{2}}:$ first order as increasing [O2] x 2 increases rate $2 /$ as rate is (directly) proportional to oxygen concentration (1) (Experiments 1 and 2 or [NO] constant)	Two correct orders based on stoichiometry	$\mathbf{2}$
NO: second order as increasing [NO] x 2 increases rate $\times 4 /$ by 2 $\mathbf{(1)}^{2}$ (Experiments 2 and 3 or [O $]$ constant) Two correct orders with no explanation (1) only			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ $\mathbf{(a) (i i)}$	Rate $=\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}$ Rate equation must be consistent with answer in (a)(i)	Just $\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}$ i.e. no rate/R	$\mathbf{1}$
Non square brackets			

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 16 \\ & (\mathrm{a})(\mathrm{iii}) \end{aligned}$	$\begin{aligned} & \text { Rate }=\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2} \\ & \mathrm{TE} \text { from }(\mathrm{i}) \\ & \mathrm{k}=\left(\left(5.10 \times 10^{-4}\right) /(0.005)(0.0125)^{2}\right)=652.8 \\ & / 653 / 650 \\ & \mathrm{OR} \\ & \mathrm{k}=\left(\left(10.2 \times 10^{-4}\right) /(0.0100)(0.0125)^{2}\right)=652.8 \\ & / 653 / 650 \\ & \mathrm{OR} \\ & \mathrm{k}=\left(\left(40.8 \times 10^{-4}\right) /(0.0100)(0.025)^{2}\right)=652.8 \\ & / 653 / 650 \\ & \quad(\mathbf{1}) \end{aligned}$ TE for value of k from rate equation given $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ (allow any order) (1)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ $\mathbf{(b) (i)}$	$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$ Allow multiples	Equation not cancelled down eg NO_{3} on both sides.	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (b)(ii)	Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}$ OR Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}[\mathrm{CO}]^{0}$ OR Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}[\mathrm{CO}]^{0}\left[\mathrm{NO}_{3}\right]^{0}$ (1) Only molecules/reactant in slow step are $(2) \mathrm{NO}_{2}$ OR CO appears after the rate determining/slow step (and $2 \mathrm{NO}_{2}$ molecules in slow step) OR CO is not involved in rate determining / slow step OR	Equations involving CO to power other than zero	$\mathbf{2}$
Only the molecules in the slow step are in the rate equation OR Step 1 is slowest so determines rate equation (1) Second mark: No TE on rate equation containing incorrect species. Only allow TE if k missing in correct rate equation			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ $\mathbf{(a) (i)}$	$\Delta \mathrm{S}_{\text {system, }}=((2 \times 192.3)-(2 \times 95.8)-$ $(2 \times 3 \times 65.3)(\mathbf{1)}$ $=\mathbf{- 1 9 8 . 8} / \mathbf{- 1 9 9}\left(\mathrm{J} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}\right)$ Allow $-200(2 \mathrm{SF})$ If units are not those in which data is given, must be correct. $\mathbf{(1)}$ Note check working Correct answer without working (2) Correct choice of multiples and data but wrong answer scores first mark (1) Correct value with wrong sign based on entropy of reactants - entropy of products (giving +199) (1)	198	$\mathbf{2}$
TE for second mark if multiples for hydrogen, nitrogen and ammonia are missed/ incorrect, but correct data used. or multiples correct and one error in data.			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (a)(ii)	If answer to (a)(i) is negative: Disorder decreases / order increases (as reaction goes forward) (1) Reference to order or disorder required for the mark. As number of (gas)molecules/moles/particles decreases (1) OR 4 moles of gas produces 2 moles Ignore comments on number of different types of molecule in equilibrium mixture If answer to (a)(i) is positive: Must say this is unexpected with correct reasons to score 2 marks No marks if the positive answer is expected	Just "entropy decreases"	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (b)(i) } \end{aligned}$	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }}=-(-110.2 \times 1000) / 700 \mathbf{(1)} \\ & (+157.4285) \\ & =(+) \mathbf{1 5 7 . 4} / \mathbf{1 5 7}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & \mathrm{OR}(+) 0.1574 / 0.157 \mathbf{~ k J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{\mathbf{- 1}} \mathbf{(\mathbf { 1 })} \end{aligned}$ Ignore sf except 1 Correct answer without working (2) Correct value with negative sign (1) Use of $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{H} / \mathrm{T}$ but wrong answer (1)		2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (b)(ii) } \end{aligned}$	$\begin{aligned} & \left(\Delta \mathrm{S}_{\text {system }}=\Delta \mathrm{S}_{\text {total }}-\Delta \mathrm{S}_{\text {surr }}\right) \\ & =(-78.7-157.4)) \\ & =-236.1 /-236\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & \text { OR }-0.2361 /-0.236\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & \text { Allow }-235.7 \text { if } 157 \text { used and }-238.7 \text { if } 160 \\ & \text { used } \\ & \text { Ignore units unless value in } \mathrm{kJ} \text { given as J or } \\ & \text { vice versa } \\ & \text { TE from (b)(i) } \end{aligned}$	values in kJ added to values in J	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (b)(iii)	Reactants predominate / more nitrogen and hydrogen (than ammonia)	Just "Equilibrium lies to the left"	$\mathbf{1}$
		Just "no ammonia is present".	
The gases are			
present in ratio			
$1: 3: 2$			

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 17 \\ \text { (c)(i) } \end{array}$	$\mathrm{K}_{\mathrm{p}}=\left(\mathrm{pNH}_{3}\right)^{2} /\left(\mathrm{pN}_{2}\right)\left(\mathrm{pH}_{2}\right)^{3} \text { (1) }$ Can be written in other formats eg $\mathrm{p}^{2} \mathrm{NH}_{3}$ etc $\begin{aligned} & \mathrm{pH}_{2}=(150-21-36)=\mathbf{9 3}(\mathrm{atm}) \mathbf{(1)} \\ & \mathrm{K}_{\mathbf{p}}=\left((36)^{2} /(21)(93)^{3}\right)=(7.6724994 \times \\ & \left.10^{-5}\right) \\ & =\mathbf{7 . 6 7} \times \mathbf{1 0}^{-5} \mathbf{(1)} \end{aligned}$ $\text { Ignore sf except } 1$ TE on incorrect pH_{2} $\mathrm{atm}^{-2} \text { (1) }$ TE for units on incorrect $\mathbf{K}_{\mathbf{p}}$ expression Correct answer including units without quoting K_{p} expression scores 3	Square brackets in first mark No TE for value on incorrect $\mathbf{K}_{\mathbf{p}}$ Expression Units other than atm	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (c)(ii)	(Yield of ammonia is increased) because there are fewer moles / molecules (of gas) on the right	Just `equilibrium moves right'	$\mathbf{1}$
	System tries to reduce the pressure by going to the side with fewer moles/ molecules (of gas) Ignore comments about value of $\mathbf{K p}_{\mathbf{p}}$ changing Ignore comments about more collisions occurring/more molecules having energy greater than or equal to activation energy		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
$\begin{aligned} & * 17 \\ & (c)(i i i) \end{aligned}$	First mark At higher temperature $\Delta \mathrm{S}_{\text {surr }}$ is less positive/ decrease/more negative (1) Second mark making $\Delta \mathrm{S}_{\text {total }}$ more negative / less positive/decreases No TE for $2^{\text {nd }}$ mark if $\Delta \mathrm{S}_{\text {surr }}$ is said to increase. (1) Third mark (so) K_{p} decreases (1) Third mark depends on second mark being correct/neutral answer Fourth mark so equilibrium position further left /in endothermic direction/ in reverse direction OR lower yield of ammonia / reaction is less feasible (1) Fourth mark is a stand alone mark		4
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1 7}$	Rate (of reaching equilibrium)is higher / faster		$\mathbf{1}$
Ic)(iv)	Ignore comments about increasing numbers of successful collisions at higher temperature		
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1 8 (a)}$	$K_{\mathrm{a}}=\left(10^{-10.64}\right)=\mathbf{2 . 3} \times \mathbf{1 0}^{-\mathbf{1 1}} / 2.2909 \times 10^{-11}$ $\left(\right.$ mol $\left.\mathrm{dm}^{-3}\right)$ Ignore sf except 1	$\mathbf{1}$	
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
$\begin{aligned} & 18 \\ & \text { (b)(i) } \end{aligned}$	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]}$ OR written as HCO_{2}^{-}and $\mathrm{HCO}_{2} \mathrm{H}$ OR with $\mathrm{H}_{3} \mathrm{O}^{+}$instead of H^{+} Allow $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}$ if formula of HA and A^{-}given as HCOOH and HCOO^{-}	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$ without also giving full expression	1
Question Number	Acceptable Answers	Reject	Mark
:---	:---	:---	:---
$\mathbf{1 8}$ (b)(ii)	$1.6 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.50} \quad$ (1) $\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.6 \times 10^{-4} \times 0.5$ (1) $\left(=\sqrt{ } 8 \times 10^{-5}=8.94 \times 10^{-3}\right)$ $\mathrm{pH}=(2.048455)=\mathbf{2 . 0 5 ~ / ~ 2 . 0 ~ (1)}$ Correct answer with no working (3) TE for third mark if $\left[\mathrm{H}^{+}\right]$calculated incorrectly No TE from incorrect K_{a} expression Ignore sf except 1$\mathrm{pH}=2$ $\mathrm{pH}=2.1$		
Question Number	Acceptable Answers	Reject	Mark
:---:	:---:	:---:	:---:
$\begin{aligned} & 18 \\ & \text { (b)(iii) } \end{aligned}$	All H^{+}comes from acid / none from water / $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$ OR Dissociation of acid is negligible / very small OR $[\mathrm{HA}]_{\text {initial }}=[\mathrm{HA}]_{\text {equilibrium }}$	K_{a} is measured at 298K Just "dissociation of acid is partial"	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 18 MARK SCHEME

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ $\mathbf{(c) (i)}$	HCOOH		$\mathbf{1}$
	$\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$		
both correct (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ $\mathbf{(c) (i i)}$	$\left(\mathrm{HIO}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\right) \mathrm{H}_{2} \mathrm{IO}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} /$		$\mathbf{1}$
	$\left(\mathrm{HIO}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\right) \mathrm{HIOH}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ Ignore position of positive charges		

Question Number	Acceptable Answers	Reject	Mark
18 (d)	$(\mathrm{pH}=4.9) \text { so }\left[\mathrm{H}^{+}\right]=\left(1.2589254 \times 10^{-5}\right)$		2
	$\frac{\left(\mathrm{K}_{\mathrm{a}}\right.}{\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$		
	$=\frac{1.6 \times 10^{-4}}{1.259 \times 10^{-5}} \text {) }$		
	$\text { = } 12.7 \text { (:1) / 13(:1) (} \mathrm{HCOO}^{-} \text {per }$ HCOOH or base:acid)		
	(12.709252 from unrounded $\left[\mathrm{H}^{+}\right]$ 12.708499 from $\left[\mathrm{H}^{+}\right]$rounded to 1.259×10^{-5} 12.3 from $\left[\mathrm{H}^{+}\right]$rounded to 1.3×10^{-5}) TE from error in $\left[\mathbf{H}^{+}\right.$]		
	Allow 800:63 (1)		
	Correct answer scores 2		
	Accept (0.0786828) $=\mathbf{0} \mathbf{0 . 0 7 9} \mathbf{H C O O H}$ per HCOO ${ }^{-}$for acid:base ratio		
	$(0.0786874)=0.079$ from rounded pH		
	OR $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=3.79$		
	$\begin{equation*} 3.79=4.9-\frac{\log [\text { base }]}{[\text { acid }]} \tag{1} \end{equation*}$		
	$\log \frac{[\text { base }]}{[\text { acid }]}=1.11$		
	$\begin{equation*} \frac{[\text { base }]}{[\text { acid }]}=(12.882496)=\mathbf{1 2 . 9}(: \mathbf{1}) \tag{1} \end{equation*}$		
	Correct answer scores 2		
	Accept 0.0776/ 0.078 HCOOH per HCOO for acid:base ratio (0.0776247)		
	TE from error in pK_{a} Ignore sf except 1		

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 18 MARK SCHEME

Section A (multiple choice)

Question Number	Correct Answer	Mark
19 (a)	D	1

Ouestion Number (b)	Correct Answer	Mark

Ouestion Number	Correct Answer	Mark
(c)	A	1

Ouestion Number	Correct Answer	Mark
20	D	1

Ouestion Number	Correct Answer	Mark
21	D	1

Question Number	Correct Answer	Mark
22	B	1

Ouestion Number	Correct Answer	Mark
23	C	1

Ouestion	Correct Answer	Mark
Number	C	1
24		

Question Number	Correct Answer	Mark
25	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
26	B	1

Question	Correct Answer	Mark
Number	C	$\mathbf{1}$
27		

Question Number	Correct Answer	Mark
28	A	$\mathbf{1}$

Section B

Question Number	Acceptable Answers	Reject	Mark
28 (a)	$\Delta S_{\text {system }}=(3 \times 2 \times 65.3+197.6)-(186.2+188.7)$ Correct data for CH_{4} and CO (186.2 and 197.6) (1) $\begin{align*} & =(+) 214.5 / 215\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & /(+) 0.2145 / 0.215 \mathrm{~kJ}^{\left(\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)} \tag{1} \end{align*}$ Units must be shown if data has been converted to kJ Full marks (2) for correct answer without working Ignore sf except 1 Answer of - 214.5 scores (1) Answer of +18.6 if entropy of H not doubled scores (1) Answer of -46.7 if entropy of H_{2} not tripled scores (1) ALLOW TE in second mark for minor error in data e.g. writing 63.5 instead of 65.3 . No TE if data used is not entropy of compounds.	$\begin{aligned} & 214 \\ & 0.214 \end{aligned}$	2

Question Number	Acceptable Answers	Reject	Mark
(b)	$\left(\Delta S_{\text {surroundings })=\frac{-\Delta H}{T}}^{\text {Expression or use of expression, } \frac{-206.1 \times(1000)(1)}{298}} \begin{array}{l}\text { (1) } \\ =-691.6 ~ J\left(\mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /-0.6916{\mathrm{~kJ}\left(\mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(1)}^{\text {gnore sf except } 1}\end{array}\right.$	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
(c)	$\Delta S_{\text {total }}=(214.5+(-691.6))=-477.1\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) /$ $-0.4771\left(\mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(1)$	(1) ALLOW TE for answer to (a) plus answer to (b). If 214.5 is added to -0.69 no TE unless -0.69 is specified to be in joules. lgnore sf except 1	Addition of value in J to specified value in kJ
Negative / less than zero (so not spontaneous) / would be positive if spontaneous. (1)	Comments on kinetic stability		
ALLOW "feasible" for spontaneous. If answer to calculation is positive, accept comment that it would be expected to be negative if not spontaneous			

Question Number	Acceptable Answers	Reject	Mark
28 (d) (i)	$\begin{equation} K_{\mathrm{p}}=\frac{\left(\mathrm{pH}_{2}\right)^{3} \mathrm{x}(\mathrm{pCO})}{\left(\mathrm{pCCH}_{4}\right)\left(\mathrm{pH}_{2} \mathrm{O}\right)} \tag{1} \end{equation*}$ 4 Correct partial pressures ALLOW partial pressures as fractions $K_{\mathrm{p}}=\frac{(1.125)^{3} \times(0.375)}{(0.25)(0.25)}=8.54 \mathrm{~atm}^{2}$ value of $K_{p}(1)$ unit (1) (Stand alone mark) Correct calculation without working scores the 5 calculation marks. TE from K_{p} expression if inverted Ignore sf except 1 If any partial pressures are incorrect: Calculating total number of moles (6.4) (1) Calculating mole fractions ($0.125,0.125,0.1875$, 0.5625 if total number of moles is correct) (1) Multiplying mole fractions by total pressure (x 2 atm) (1) value of $K_{p}(1)$ unit (1) (stand alone mark) ALLOW TE in value of K_{p} only from incorrect partial pressures, not using values in question as not using equilibrium moles If treated as a K_{c} calculation following K_{p} expression : K_{p} expression (1) units atm 2 (1) Max. mark (2)	Square brackets TE for K_{p} expression with addition, not multiplication	6

Question Number	Acceptable Answers	Reject	Mark		
(d) (ii)	$\Delta S_{\text {total }}=(8.31 \ln 8.54)=(+) 17.8\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$				
Accept any value that rounds to 17.8				\quad	(i)
:---					
TE from value in (i)					
K_{p} value of 87.48 (obtained by treating calculation in (i) as $\left.K_{\mathrm{c}}\right)$ gives $\Delta S_{\text {total }}=37.16 /$ 37.12					

Question Number	Acceptable Answers	Reject	Mark
(d) (iii)	$\begin{align*} & 17.8=225-\frac{206.1 \times 1000}{\mathrm{~T}} \tag{1}\\ & \mathrm{~T}=\frac{\left(\frac{206.1 \times 1000}{207.2}=995 / 990(\mathrm{~K})\right.}{} \tag{1} \end{align*}$ Correct answer with no working shown scores 2 Correct method with wrong answer or missing 10^{3} scores 1 TE from (ii) K_{p} value of 87.48 gives $T=1097$ OR If $\Delta S_{\text {total }}$ is taken as zero $\begin{aligned} & 0=225-\frac{206.1 \times 1000(1)}{T} \\ & T=916 K \quad(1) \\ & K_{p} \text { value of } 87.48 \text { gives } T=916 \end{aligned}$ Ignore sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
*28 (e)	$\Delta S_{\text {surroundings }} \frac{-\Delta H}{T}$ becomes less negative making $\Delta S_{\text {total }}$ more positive (as T increases) OR $\Delta S_{\text {surroundings }} / \frac{-\Delta H}{T}$ becomes less negative making $\Delta S_{\text {total }}$ greater (as T increases) OR (magnitude of) $\Delta S_{\text {surroundings }}$ becomes less / lower making $\Delta S_{\text {total }}$ more positive / greater (as T increases) Because $\Delta S_{\text {total }}$ increases equilibrium constant increases OR value of $\Delta S_{\text {total }}$ at new temperature is more than at 298 K (1) (must be clear that the two $\Delta S_{\text {total }}$ values at the different temperatures have been considered) Because $\Delta S_{\text {total }}$ increases equilibrium constant increases (1)	Le Chatelier statements without reference to entropy changes Just 'as temperature increases $\Delta S_{\text {total }}$ increases'	2

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 18 MARK SCHEME

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 9}$ (a)	$\mathrm{pH}=(-\log 0.25)=0.602 / 0.60 / 0.6$ Ignore significant figures		1

Ouestion	Acceptable Answers	Reject	Mark
(b) (i)	```\[\begin{gathered} \mathrm{K}_{\mathrm{a}} \equiv\left[\mathrm{HH}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right] \\ {\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOOH}\right]} \end{gathered} \] \[\text { ALLOW }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {for }\left[\mathrm{H}^{+}\right] \] \[\text { ALLOW } \quad \mathrm{C}_{2} \mathrm{H}_{5} \text { for } \mathrm{CH}_{3} \mathrm{CH}_{2} \] \[\text { ALLOW }\left[H^{+}\right]\left[A^{-}\right] \text {if HA and } A^{-} \text {identified } \] [HA]```	Wrong / missing charge on $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}$ $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$ unless full expression also given	1

Ouestion	Acceptable Answers	Reject	Mark
(b) (ii)	1. $3 \times 10^{-5}=\left[\mathrm{H}^{+}\right]^{2} /$ rearrangement of this expression $\begin{equation*} \left(\left[\mathrm{H}^{+}\right]=1.8 \times 10^{-3}\right) \tag{1} \end{equation*}$ $\mathrm{pH}=2.74$ Correct answer with no working scores (2) No TE for incorrect $\left[\mathrm{H}^{+}\right]$ Ignore significant figures except 1 Minimum of 1 decimal place needed		2

Ouestion Number	Acceptable Answers	Reject	Mark
(c) (i)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{--} \mathrm{Na}^{(+)}+\mathrm{H}_{2} \mathrm{O}$		
$\mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$			
Accept CH3 $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	Equations for ethanoic acid	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
(c) (ii)	$1.3 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]\left[5 \times 10^{-2}\right]}{\left[7.5 \times 10^{-2}\right]}$ (concentration ratio) OR $1.3 \times 10^{-5}=\frac{\left[H^{+}\right]\left(1 \times 10^{-3}\right)}{\left(1.5 \times 10^{-3}\right)} \quad$ (ratio by moles) (ratio by moles allowed as volumes acid and salt equal) $\begin{align*} & \left(\left[\mathrm{H}^{+}\right]=1.95 \times 10^{-5}\right) \tag{1}\\ & \mathrm{pH}=4.7 / 4.7099654 \tag{1} \end{align*}$ Second mark dependent on first Correct answer with or without working (2) OR $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \left(\frac{1.5 \times 10^{-3}}{1 \times 10^{-3}}\right)$ OR $\begin{equation*} \left.\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\left(7.5 \times 10^{-2}\right.}{5 \times 10^{-2}}\right) \tag{1} \end{equation*}$ $\mathrm{pH}=4.7$ (1) Correct answer with or without working (2) Accept any value which rounds to 4.7		2

Question Number	Acceptable Answers	Reject	Mark
*29 (c) (iii)	Mixture is a buffer (1)		3
	OH^{-}combines with H^{+}in solution	NaOH combines	
	Propanoic acid dissociates to replace H^{+} Correct equations could gain these marks		
	OR		
	OH^{-}reacts with propanoic acid Correct equation could gain this mark		
	Significant quantities of weak acid and salt are both present /ratio of acid and salt does not change		
	ALLOW a reservoir of weak acid and salt are present: Allow conjugate base for salt		

Question Number	Acceptable Answers	Reject	Mark =
(c) (iv)	S-shaped curve, vertical at $25 \mathrm{~cm}^{3}$ (with kink at (1) start) Starting at pH 2-3 (TE from (b)(ii), finishing at pH (1) $12-13$		3
Vertical section between 3 and 6 units high (1) centred round a pH of between 8 and 9 (1) Vertical section should not extend over more than $\pm 2.5 \mathrm{~cm}^{3}$ This section should start between 5.5 and 7.5 and finish between 9.5 and 11.5 but do not penalise for very small differences. Reverse curve maximum 2			

Question Number	Acceptable Answers	Reject	Mark
(c) (v)	Ether Need indicator changing in vertical region of curve / need indicator changing where pH changes sharply / bromocresol green changes before the vertical region Not bromocresol green which changes at 3.8-5.4 OR $\mathrm{pK}_{\text {in }} \pm 1$ must be in vertical section / sharply changing section Not bromocresol green because $\mathrm{pK}_{\text {in }}$ is 4.7 TE from curve with vertical section including pH 3.7-5.7	Just "the equivalence point is outside the bromocresol green range"	2

Question Number	Acceptable Answers	Reject	Mark
(d) (i)	Dilute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H		

Question Number	Acceptable Answers	Reject	Mark
(d) (ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{HCl} /$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{HCl}$ Accept displayed formula	Equations with NaOH or OH	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(d) (iii)	Colour change orange to green / blue		1

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 18 MARK SCHEME

Question Number	Acceptable Answers	Reject	Mark
(e)	Reducing agent /Reduction (of the acid) occurs Li Al H ${ }_{4}$ / lithium tetrahydridoaluminate / lithium aluminium hydride Allow minor error in name if correct formula is given Ignore solvent ALLOW nucleophile AND H for 1 mark	Lithal without correct name or formula	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 0}$ (a)	Quenches reaction / stops reaction / slows (1) reaction / freezes reaction		$\mathbf{2}$
	EITHER by neutralizing the acid / removing the acid / neutralizing the catalyst / removing the catalyst	By neutralizing HI Just "by diluting the reaction mixture" just "by neutralizing the reaction mixture"	
OR that the acid does not react with the (1) Oniosulfate			

Ouestion Number	Acceptable Answers	Reject	Mark
(b)	Starch (solution)		1

Question Number	Acceptable Answers	Reject	Mark
30 (c)	First mark So that [propanone] and [acid] are (virtually) constant OR so that the [propanone] and $\left[\mathrm{H}^{+}\right]$do not affect the rate OR Propanone and acid are in excess so changes in concentration don't affect rate Second mark And therefore rate changes would only depend on [iodine] OR so that the overall order is not determined ALLOW [lodine] is the limiting factor NOTE "so that only the [I_{2}] changes" scores (2) "so that only the I_{2} concentration changes" scores (2) "so that only the I_{2} changes" scores (1)	Propanone and acid are in excess, without reference to further comments	2

Ouestion	Acceptable Answers	Reject	Mark
(d)	Zero order (Gradient =) rate is constant / I_{2} (concentration) doesn't affect rate / rate of change of I_{2} (concentration) doesn't change with time (1)	Just 'straight line' Or just 'gradient is constant' [Thiosulfate] or volume of Thiosulfate is proportional to time without reference to iodine Reference to half life $\left[I_{2}\right]$ is proportional to rate	2

Question Number	Acceptable Answers	Reject	Mark		
(e)	Measuring cylinder quicker / Measuring cylinder can measure a variety of volumes	Just "Measuring cylinder easier to use" Easier to clean	$\mathbf{2}$		
	ALLOW Measuring cylinder can be plastic so unbreakable Comment on lower cost of measuring cylinder if qualified with a reason	Measuring cylinder can be used for large volumes	Pipette more accurate / (graduated) pipette more precise / pipette can be used to extract samples from a reaction mixture (for titration) (1)		Pipette more reliable
:---					
Ignore references to					
easier	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
(f) (i)	To keep (total) volume constant / to make the (total) volume $32 \mathrm{~cm}^{3} /$ to make concentrations proportional to volume of reactant	To keep concentrations constant	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(f) (ii)	First order wrt propanone with explanation First order wrt hydrogen ions/ sulfuric acid, with explanation Explanation can be in terms of experiments 1 and 3 (propanone) or 1 and 2 (acid) and can be in terms of concentration or volume $\begin{align*} & \text { Rate }=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right]\left(\left[\mathrm{II}_{2}\right]^{0}\right) / \\ & \text { Rate }=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]\left(\left[\mathrm{I}_{2}\right]^{0}\right) \tag{1} \end{align*}$ ALLOW names of propanone and sulfuric acid in place of formulae Ignore case of k in rate equation Ignore order wrt iodine even if wrong Third mark is consequential if incorrect orders of propanone and acid given.	Expressions without rate or k Expressions with K_{c} R / r for rate	3

