Section A (multiple choice)

Question Number	Correct Answer	Mark
1	С	1

Question Number	Correct Answer	Mark
2	D	1

Question Number	Correct Answer	Mark
3	A	1

Question Number	Correct Answer	Mark
4	A	1

Question Number	Correct Answer	Mark
5	В	1

Question	Correct Answer	Mark
Number		
6	С	1

Question Number	Correct Answer	Mark
7	C	1

Question Number	Correct Answer	Mark
8 (a)	С	1

Question Number	Correct Answer	Mark
8 (b)	D	1

Question	Correct Answer	Mark
Number		
8 (c)	В	1

Question Number	Correct Answer	Mark
9	A	1

Question Number	Correct Answer	Mark
10 (a)	D	1

Number	
10 (b) A	1

Question Number	Correct Answer	Mark
10 (c)	D	1

Question 11: N/A Question 12: N/A Question 13: N/A

Question 14: N/A

Question 15: N/A

Question Number	Acceptable Answers	Reject	Mark
16 (a)(i)	O_2 : first order as increasing $[O_2] \times 2$ increases rate x 2 / as rate is (directly) proportional to oxygen concentration (1) (Experiments 1 and 2 or [NO] constant) NO: second order as increasing [NO] x 2 increases rate x 4/ by 2 ² (1) (Experiments 2 and 3 or $[O_2]$ constant) Two correct orders with no explanation (1) only	Two correct orders based on stoichiometry	2

Question Number	Acceptable Answers	Reject	Mark
16 (a)(ii)	Rate = $k [O_2][NO]^2$ Rate equation must be consistent with answer in (a)(i)	Just k [O ₂][NO] ² i.e. no rate/R Non square brackets	1

Question Number	Acceptable Answers	Reject	Mark
16 (a)(iii)	Rate = $k[O_2][NO]^2$ TE from (i) k=((5.10 x 10 ⁻⁴)/(0.005)(0.0125)^2) = 652.8 / 653/650 OR k=((10.2 x 10 ⁻⁴)/(0.0100)(0.0125)^2) = 652.8 / 653/650 OR k=((40.8 x 10 ⁻⁴)/(0.0100)(0.025)^2) = 652.8 / 653/650 (1) TE for value of k from rate equation given dm ⁶ mol ⁻² s ⁻¹ (allow any order) (1)		2

Question Number	Acceptable Answers	Reject	Mark
16 (b)(i)	$NO_2 + CO \rightarrow NO + CO_2$ Allow multiples	Equation not cancelled down eg NO ₃ on both sides.	1

Question Number	Acceptable Answers	Reject	Mark
16 (b)(ii)	Rate = $k[NO_2]^2$ OR Rate = $k[NO_2]^2[CO]^0$ OR Rate = $k[NO_2]^2[CO]^0[NO_3]^0$ (1)	Equations involving CO to power other than zero	2
	Only molecules/reactant in slow step are (2)NO ₂		
	OR		
	CO appears after the rate determining/slow step (and $2NO_2$ molecules in slow step)		
	OR		
	CO is not involved in rate determining / slow step		
	OR		
	Only the molecules in the slow step are in the rate equation		
	OR		
	Step 1 is slowest so determines rate equation (1)		
	Second mark: No TE on rate equation containing incorrect species. Only allow TE if k missing in correct rate equation		

Question Number	Acceptable Answers	Reject	Mark
17 (a)(i)	$\Delta S_{\text{system},} = ((2 \times 192.3) - (2 \times 95.8) - (2 \times 3265.3))$ (1)	198	2
	= -198.8 / -199 (J mol ⁻¹ K ⁻¹) Allow – 200 (2 SF)		
	If units are not those in which data is given, must be correct. (1)		
	Note check working		
	Correct answer without working (2)		
	Correct choice of multiples and data but wrong answer scores first mark (1)		
	Correct value with wrong sign based on entropy of reactants – entropy of products (giving +199) (1)		
	TE for second mark if multiples for hydrogen, nitrogen and ammonia are missed/ incorrect, but correct data used. or multiples correct and one error in data.		

Question Number	Acceptable Answers	Reject	Mark
17 (a)(ii)	If answer to (a)(i) is negative: Disorder decreases / order increases (as reaction goes forward) (1) Reference to order or disorder required for the mark.	Just "entropy decreases"	2
	As number of (gas)molecules/moles/particles decreases (1) OR 4 moles of gas produces 2 moles		
	Ignore comments on number of different types of molecule in equilibrium mixture		
	If answer to (a)(i) is positive: Must say this is unexpected with correct reasons to score 2 marks		
	No marks if the positive answer is expected		

Question Number	Acceptable Answers	Reject	Mark
17 (b)(i)	$\Delta S_{surr} = -(-110.2 \times 1000) / 700 (1) (+157.4285) = (+) 157.4 / 157 (J mol-1 K-1) OR (+) 0.1574 / 0.157 kJ mol-1 K-1 (1)$		2
	Ignore sf except 1		
	Correct answer without working (2)		
	Correct value with negative sign (1)		
	Use of $\Delta S_{surr} = -\Delta H/T$ but wrong answer (1)		

Question Number	Acceptable Answers	Reject	Mark
17 (b)(ii)	$(\Delta S_{\text{system}} = \Delta S_{\text{total}} - \Delta S_{\text{surr}})$ =(-78.7-157.4)) = -236.1/ -236 (1 mol ⁻¹ K ⁻¹)		1
	OR -0.2361 / -0.236 (kJ mol ⁻¹ K ⁻¹) Allow -235.7 if 157 used and -238.7 if 160 used Ignore units unless value in kJ given as J or	values in kJ added	
	TE from (b)(i)	to values in J	

Question Number	Acceptable Answers	Reject	Mark
17 (b)(iii)	Reactants predominate / more nitrogen and hydrogen (than ammonia)	Just "Equilibrium lies to the left" Just "no ammonia is present". The gases are present in ratio 1:3:2	1

Question Number	Acceptable Answers	Reject	Mark
17 (c)(i)	$K_p = (pNH_3)^2 / (pN_2)(pH_2)^3$ (1) Can be written in other formats eg p ² NH ₃ etc pH ₂ = (150 -21 -36) = 93 (atm) (1)	Square brackets in first mark	4
	$K_{\mathbf{p}} = ((36)^2 / (21)(93)^3) = (7.6724994 \times 10^{-5})$ = 7.67 x 10⁻⁵ (1) Ignore sf except 1	No TE for value on incorrect <i>K</i> p Expression	
	TE on incorrect pH_2 atm ⁻² (1) TE for units on incorrect K_p expression Correct answer including units without quoting K_p expression scores 3	Units other than atm	

Question Number	Acceptable Answers	Reject	Mark
17 (c)(ii)	(Yield of ammonia is increased) because there are fewer moles / molecules (of gas) on the right	Just `equilibrium moves right'	1
	OR		
	System tries to reduce the pressure by going to the side with fewer moles/ molecules (of gas)		
	Ignore comments about value of K_p changing Ignore comments about more collisions occurring/more molecules having energy greater than or equal to activation energy		

Question Number	Acceptable Answers	Reject	Mark
*17 (c)(iii)	First mark At higher temperature ΔS_{surr} is less positive/ decrease/more negative (1)		4
	Second mark making ΔS_{total} more negative / less positive/decreases		
	No TE for 2^{nd} mark if ΔS_{surr} is said to increase. (1)		
	Third mark (so) K _p decreases (1) Third mark depends on second mark being correct/neutral answer		
	Fourth mark so equilibrium position further left /in endothermic direction/ in reverse direction		
	OR		
	lower yield of ammonia / reaction is less feasible (1) Fourth mark is a stand alone mark		

Question Number	Acceptable Answers	Reject	Mark
17 (c)(iv)	Rate (of reaching equilibrium)is higher / faster Ignore comments about increasing numbers		1

Question Number	Acceptable Answers	Reject	Mark
18 (a)	$K_{a} = (10^{-10.64}) = 2.3 \times 10^{-11} / 2.2909 \times 10^{-11}$ (mol dm ⁻³)		1
	Ignore sf except 1		

Question Number	Acceptable Answers	Reject	Mark
18 (b)(i)	$\begin{aligned} \mathcal{K}_{a} &= \underbrace{[\text{HCOO}^{-}][\text{H}^{+}]}_{[\text{HCOOH}]} \\ \text{OR written as HCO}_{2}^{-} \text{ and HCO}_{2}\text{H} \\ \text{OR with H}_{3}\text{O}^{+} \text{ instead of H}^{+} \\ \text{Allow} \\ \mathcal{K}_{a} &= \underbrace{[\text{A}^{-}][\text{H}^{+}]}_{[\text{HA}]} \\ \text{if formula of HA and A}^{-} \text{ given as} \\ \text{HCOOH and HCOO}^{-} \end{aligned}$	$K_a = \frac{[H^+]^2}{[HCOOH]}$ without also giving full expression	1

Question	Acceptable Answers	Reject	Mark
Number			
18	$1.6 \times 10^{-4} = [H^+]^2$		3
(b)(ii)	0.50 (1)		
	$[H^+] = \sqrt{1.6 \times 10^{-4} \times 0.5} $ (1)		
	$(=\sqrt{8}\times10^{-5}$ = 8.94 x 10 ⁻³)		
	pH = (2.048455) = 2.05 / 2.0 (1)	pH =2	
	Correct answer with no working (3)	pri -2.1	
	TE for third mark if [H ⁺] calculated incorrectly		
	No TE from incorrect K_a expression Ignore sf except 1		

Question Number	Acceptable Answers	Reject	Mark
Hamber			
18 (b)(iii)	All H ⁺ comes from acid / none from water / [H ⁺] = [HCOO ⁻] OR [H ⁺] = [A ⁻] OR Dissociation of acid is negligible / very small OR	<i>K</i> _a is measured at 298K Just "dissociation	1
1	$ [\Pi A]$ initia $= [\Pi A]$ equilibrium	i or aciu is partial	

Question Number	Acceptable Answers	Reject	Mark
18 (c)(i)	HCOOH CH ₃ COOH ₂ ⁺ both correct (1)		1

Question Number	Acceptable Answers	Reject	Mark
18 (c)(ii)	$(HIO + CH_3COOH \Rightarrow) H_2IO^+ + CH_3 COO^- /$		1
	(HIO + CH ₃ COOH \Rightarrow) HIOH ⁺ + CH ₃ COO ⁻ Ignore position of positive charges		

Question Number	Acceptable Answers	Reject	Mark
18 (d)	$(pH = 4.9) \text{ so } [H^+] = (1.2589254 \times 10^{-5})$ =1.259 x 10 ⁻⁵ (1)		2
	$\begin{pmatrix} \underline{K_a} = \underline{[HCOO^-]}\\ [H^+] & [HCOOH] \end{pmatrix}$		
	$= \frac{1.6 \times 10^{-4}}{1.259 \times 10^{-5}} $		
	= 12.7 (:1) / 13(:1) (HCOO ⁻ per HCOOH or base:acid)		
	(12.709252 from unrounded $[H^+]$ 12.708499 from $[H^+]$ rounded to 1.259 x10 ⁻⁵ 12.3 from $[H^+]$ rounded to 1.3 x10 ⁻⁵) TE from error in [H⁺]		
	Allow 800:63 (1)		
	Correct answer scores 2		
	Accept (0.0786828) = 0.079 HCOOH per HCOO ⁻ for acid:base ratio		
	(0.0786874) = 0.079 from rounded pH		
	OR $pK_a = -\log K_a = 3.79$		
	$3.79 = 4.9 - \log [base]$ (1) [acid]		
	log <u>[base]</u> = 1.11 [acid]		
	<pre>[base] = (12.882496) = 12.9 (:1) (1) [acid]</pre>		
	Correct answer scores 2		
	Accept 0.0776/ 0.078 HCOOH per HCOO for acid:base ratio (0.0776247)		
	TE from error in pK _a Ignore sf except 1		

Section A (multiple choice)

Question Number	Correct Answer	Mark
19 (a)	D	1

Ouestion Number	Correct Answer	Mark
(b)	В	1

Ouestion Number	Correct Answer	Mark
(c)	Δ	1

Ouestion Number	Correct Answer	Mark
20	D	1

Ouestion Number	Correct Answer	Mark
21	D	1

Ouestion Number	Correct Answer	Mark
22	В	1

Ouestion Number	Correct Answer	Mark
23	С	1

Ouestion Number	Correct Answer	Mark
_24	C	1

Question Number	Correct Answer	Mark
25	A	1

Question Number	Correct Answer	Mark
26	В	1

Question Number	Correct Answer	Mark
27	С	1

Question Number	Correct Answer	Mark
28	Α	1

Section **B**

Question Number	Acceptable Answers	Reject	Mark
28 (a)	ΔS_{system} = (3x2x65.3 +197.6) - (186.2 + 188.7) Correct data for CH ₄ and CO (186.2 and 197.6) (1)		2
	= (+) 214.5 / 215 (J mol ⁻¹ K ⁻¹) / (+) 0.2145 / 0.215 kJ (mol ⁻¹ K ⁻¹) (1)	214 0.214	
	Units must be shown if data has been converted to kJ		
	Full marks (2) for correct answer without working Ignore sf except 1		
	Answer of -214.5 scores (1)		
	Answer of +18.6 if entropy of H not doubled scores (1)		
	Answer of -46.7 if entropy of H_2 not tripled scores (1)		
	ALLOW TE in second mark for minor error in data e.g. writing 63.5 instead of 65.3. No TE if data used is not entropy of compounds.		

Question Number	Acceptable Answers	Reject	Mark
(b)	$(\Delta S_{surroundings}) = \frac{-\Delta H}{T}$ Expression or use of expression, $\frac{-206.1x(1000)}{298}$ (1) = -691.6 J (mol ⁻¹ K ⁻¹)/ -0.6916 kJ (mol ⁻¹ K ⁻¹) (1) Ignore sf except 1		2

Question Number	Acceptable Answers	Reject	Mark
(c)	$\Delta S_{\text{total}} = (214.5 + (-691.6)) = -477.1 \text{ (J mol}^{-1} \text{ K}^{-1}) / - 0.4771 \text{ (kJ mol}^{-1} \text{ K}^{-1}) \text{ (1)}$		2
	ALLOW TE for answer to (a) plus answer to (b). If 214.5 is added to -0.69 no TE unless -0.69 is specified to be in joules. Ignore sf except 1	Addition of value in J to specified value in kJ	
	Negative / less than zero (so not spontaneous) / would be positive if spontaneous. (1) ALLOW "feasible" for spontaneous.	Comments on kinetic stability	
	If answer to calculation is positive, accept comment that it would be expected to be negative if not spontaneous		

Question Number	Acce	ptable	Answe	rs			Reject	Mark
*28 (d) (i)	К _р =	$= (pH_2)^3$	x(pCO))		(1)	Square brackets	6
	4.5		(pri20)			(1)		
	4 Co	rrect pa	artial p	co	H	(3)		
			1120		112			
	рр	0.25	0.25	0.375	1.125			
	ALLC)W part	ial pre	ssures as	fraction	IS		
	<i>K</i> _p =	<u>(1.125)</u> (0.2	³ x (0.3 5)(0.25	8 <u>75)</u> = 8.)	54 atm²			
	value	e of K _p	(1)					
	unit	(1) (Sta	and alo	ne mark)			
	Corro calcu	ect calo ulation	culation marks.	n withou	t workin	g scores the 5		
	TE fr Ignor	rom K _p e re sf ex	express cept 1	ion if inv	/erted		TE for K_p expression with addition, not multiplication	
	If any partial pressures are incorrect: Calculating total number of moles (6.4) (1)				matiplication			
	Calco 0.562	ulating 25 if to	mole f tal nun	ractions nber of r	(0.125, noles is o	0.125, 0.1875, correct) (1)		
	Multi atm)	iplying (1)	mole fi	ractions	by total	pressure (x 2		
	value	e of K _p	(1)					
	unit	(1) (sta	and alo	ne mark))			
	ALLC parti not u	OW TE i ial pres using ec	n value sures, I quilibrii	e of K _p o not using um mole	nly from g values s	incorrect in question as		
	lf tre expr <i>K</i> _p ex units	eated as ession : kpression atm ² (s a <i>K</i> _c c : on (1) 1)	alculatio	on follow	ring $K_{\rm p}$		
	Max.	mark ((2)					

Question Number	Acceptable Answers	Reject	Mark
(d) (ii) ∆ <u>s</u>	$K_{total} = (8.31 \text{ ln } 8.54) = (+)17.8 \text{ (J mol}^{-1} \text{ K}^{-1})$ Accept any value that rounds to 17.8 TE from value in (i) K_{p} value of 87.48 (obtained by treating calculation in (i) as K_{c}) gives $\Delta S_{total} = 37.16 \text{ /}$ 37.12		1

Question Number	Acceptable Answers	Reject	Mark
(d) (iii) 1	7.8 = 225 - 20 <u>6.1 x 1000</u> (1) T T = (206.1×1000) = 995 / 990 (K) (1) 207.2 Correct answer with no working shown scores 2 Correct method with wrong answer or missing 10 ³ scores 1 TE from (ii) K_p value of 87.48 gives T = 1097 OR If ΔS_{total} is taken as zero 0 = 225 - 206.1×1000 (1) T T = 916K (1) K_p value of 87.48 gives T = 916 Ignore sf except 1		2
	Ignore sf except 1		

Question Number	Acceptable Answers	Reject	Mark
*28 (e)	$\Delta S_{\text{surroundings}} \frac{/ -\Delta H}{T}$ becomes less negative making ΔS_{total} more positive (as T increases) OR $\Delta S_{\text{surroundings}} \frac{/ -\Delta H}{T}$ becomes less negative making ΔS_{total} greater (as T increases) OR (magnitude of) $\Delta S_{\text{surroundings}}$ becomes less / lower making ΔS_{total} more positive / greater (as T increases) OR (magnitude of) $\Delta S_{\text{surroundings}}$ becomes less / lower making ΔS_{total} more positive / greater (as T increases) I Because ΔS_{total} increases equilibrium constant increases (1)	Le Chatelier statements without reference to entropy changes	2
	OR value of ΔS_{total} at new temperature is more than at 298K (1) (must be clear that the two ΔS_{total} values at the different temperatures have been considered) Because ΔS_{total} increases equilibrium constant increases (1)	Just 'as temperature increases ΔS_{total} increases'	

Question Number	Acceptable Answers	Reject	Mark
29 (a)	pH = (-log 0.25) = 0.602 / 0.60 / 0.6 Ignore significant figures		1

Ouestion A Number	Acceptable Answers	Reject	Mark
(b) (i) ($K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]}$ ALLOW [H_{3}O^{+}] for [H^{+}] ALLOW C_{2}H_{5} for CH_{3}CH_{2} ALLOW [H^{+}][A^{-}] if HA and A ⁻ identified [HA]	Wrong / missing charge on $CH_3CH_2COO^{-1}$ $K_a = \frac{[H^+]^2}{[CH_3CH_2COOH]}$ unless full expression also given	1

Ouestion Number	Acceptable Answers		Reject	Mark
(b) (ii) 1	$3 \times 10^{-5} = [H^+]^2$ / rearrangement of this expressi 0.25	on (1)		2
	$([H^+] = 1.8 \times 10^{-3})$	(-)		
	pH = 2.74	(1)		
	Correct answer with no working scores (2) No TE for incorrect [H ⁺]			
	Ignore significant figures except 1 Minimum of 1 decimal place needed			

Ouestion Number	Acceptable Answers	Reject	Mark
(c) (i) C	$H_{3}CH_{2}COOH + NaOH \rightarrow CH_{3}CH_{2}COO^{(-)}Na^{(+)} + H_{2}O$ $OR CH_{3}CH_{2}COOH + OH^{-} \rightarrow CH_{3}CH_{2}COO^{-} + H_{2}O$	Equations for ethanoic acid	1
	Accept $CH_3CH_2CO_2H$, C_2H_5COOH , $C_2H_5CO_2H$		

Question	Acceptable Answers	Reject	Mark
Number			
(c) (ii) 1	$3 \times 10^{-5} = [H^{+}][5 \times 10^{-2}]$ (concentration ratio) [7.5 x 10 ⁻²]		2
	OR		
	$1.3 \times 10^{-5} = [H^+](1 \times 10^{-3})$ (ratio by moles) (1.5 x 10^{-3})		
	(ratio by moles allowed as volumes acid and salt equal) (1)		
	([H⁺] = 1.95 x 10 ⁻⁵)		
	pH = 4.7 / 4.7099654 (1)		
	Second mark dependent on first Correct answer with or without working (2)		
	OR		
	pH = pK _a -log (1.5×10^{-3}) 1 x 10 ⁻³		
	OR		
	pH = pK _a -log $(\frac{7.5 \times 10^{-2}}{5 \times 10^{-2}})$ (1)		
	pH = 4.7 (1)		
	Correct answer with or without working (2)		
	Accept any value which rounds to 4.7		

Question Number	Acceptable Answers		Reject	Mark
*29 (c) (iii)	Mixture is a buffer	(1)		3
	EITHER			
	OH^{-} combines with H^{+} in solution	(1)	NaOH combines	
	Propanoic acid dissociates to replace H ⁺ Correct equations could gain these mark	(1) s		
	OR			
	OH ⁻ reacts with propanoic acid Correct equation could gain this mark	(1)		
	Significant quantities of weak acid and sa both present /ratio of acid and salt does change	alt are not (1)		
	ALLOW a reservoir of weak acid and salt present: Allow conjugate base for salt	are		

Ouestion Number	Acceptable Answers	Reject	Mark =
(c) (iv) S	shaped curve, vertical at 25 cm ³ (with kink at start) (1) Starting at pH 2-3 (TE from (b)(ii), finishing at pH 12 -13 (1) Vertical section between 3 and 6 units high centred round a pH of between 8 and 9 (1) Vertical section should not extend over more than ± 2.5 cm ³ This section should start between 5.5 and 7.5 and finish between 9.5 and 11.5 but do not penalise for very small differences.		3
	Reverse curve maximum 2		

Question Number	Acceptable Answers		Reject	Mark
(c) (v) E	ther Need indicator changing in vertical region of curve / need indicator changing where pH changes sharply / bromocresol green changes before the vertical region Not bromocresol green which changes at 3.8 - 5.4 OR	s (1) (1)	Just "the equivalence point is outside the bromocresol green range"	2
	pK _{in} ±1 must be in vertical section / sharply changing section Not bromocresol green because pK _{in} is 4.7 TE from curve with vertical section including 3.7 - 5.7	(1) (1) pH		

Question Number	Acceptable Answers	Reject	Mark
(d) (i) D	lute acid / dilute strong named acid or formula / NaOH(aq) followed by dilute acid /water plus dilute acid / water plus H⁺	NaOH alone water any weak acid concentrated sulfuric acid HCN acid hydrolysis alone	1

Question Number	Acceptable Answers	Reject	Mark
(d) (ii)	$\begin{array}{l} CH_3CH_2COCl + H_2O \rightarrow CH_3CH_2COOH + HCl \ / \\ C_2H_5COCl + H_2O \rightarrow C_2H_5COOH + HCl \end{array}$	Equations with NaOH or OH ⁻	1
	Accept displayed formula		

Question Number	Acceptable Answers	Reject	Mark
(d) (iii)	Colour change orange to green / blue		1

Question Number	Acceptable Answers	Reject	Mark
(e)	Reducing agent /Reduction (of the acid) occurs (1)		2
	Li Al H ₄ / lithium tetrahydridoaluminate / lithium aluminium hydride (1)	Lithal without correct name or formula	
	Allow minor error in name if correct formula is given		
	Ignore solvent		
	ALLOW nucleophile AND H ⁻ for 1 mark		

Question Number	Acceptable Answers	Reject	Mark
30 (a)	Quenches reaction / stops reaction / slows reaction / freezes reaction (1) EITHER by neutralizing the acid / removing the acid / neutralizing the catalyst / removing the catalyst	By neutralizing HI Just "by diluting the reaction mixture" just "by neutralizing the reaction mixture"	2
	OR So that the acid does not react with the thiosulfate (1)		

Ouestion Number	Acceptable Answers	Reject	Mark
(b)	Starch (solution)		1

Question Number	Acceptable Answers	Reject	Mark
30 (c)	First mark So that [propanone] and [acid] are (virtually) constant OR so that the [propanone] and [H ⁺] do not affect the rate	Propanone and acid are in excess, without reference to further comments	2
	OR Propanone and acid are in excess so changes in concentration don't affect rate (1)		
	Second mark And therefore rate changes would only depend on [iodine]		
	OR so that the overall order is not determined		
	ALLOW [Iodine] is the limiting factor (1)		
	NOTE "so that only the $[I_2]$ changes" scores (2)		
	"so that only the I2 concentration changes" scores (2)		
	"so that only the I_2 changes" scores (1)		

Ouestion Number	Acceptable Answers		Reject	Mark
(d)	Zero order	(1)		2
	(Gradient =) rate is constant / I ₂ (concentra doesn't affect rate / rate of change of I ₂ (concentration) doesn't change with time	ation) (1)	Just 'straight line' Or just 'gradient is constant' [Thiosulfate] or volume of Thiosulfate is proportional to time without reference to iodine Reference to half life [l ₂] is proportional to	
	Mark independently			

Question Number	Acceptable Answers	Reject	Mark
(e)	Measuring cylinder quicker / Measuring cylinder can measure a variety of volumes (1) ALLOW Measuring cylinder can be plastic so unbreakable Comment on lower cost of measuring cylinder if qualified with a reason Pipette more accurate / (graduated) pipette more precise / pipette can be used to extract samples from a reaction mixture (for titration) (1)	Just "Measuring cylinder easier to use" Easier to clean Measuring cylinder can be used for large volumes Pipette more reliable Ignore references to easier	2

Question	Acceptable Answers	Reject	Mark
Number			
(f) (i)	To keep (total) volume constant / to make the	To keep	1
	(total) volume 32 cm ³ / to make concentrations	concentrations	
	proportional to volume of reactant	constant	

Question Number	Acceptable Answers	Reject	Mark
(f) (ii) F	rst order wrt propanone with explanation (1)		3
	First order wrt hydrogen ions/ sulfuric acid, with explanation (1)		
	Explanation can be in terms of experiments 1 and 3 (propanone) or 1 and 2 (acid) and can be in terms of concentration or volume		
	Rate = $k[CH_3COCH_3][H^+]([I_2]^0) /$ Rate = $k[CH_3COCH_3][H_2SO_4]([I_2]^0)$ (1)	Expressions without rate or k	
		Expressions with K_c	
	ALLOW names of propanone and sulfuric acid in place of formulae	R / r for rate	
	Ignore case of k in rate equation		
	Ignore order wrt iodine even if wrong		
	Third mark is consequential if incorrect orders of propanone and acid given.		