Question Number	Correct Answer	Mark
(a)	A	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
1 (b)	A	$\mathbf{1}$

Question	Correct Answer	Mark
Number		
1 (c)	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
2	B	$\mathbf{1}$

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 28 MARK SCHEME

Question Number	Correct Answer	Mark
3	D	$\mathbf{1}$

Question	Correct Answer	Mark
Number	C	$\mathbf{1}$
4		

Question Number	Correct Answer	Mark
5	D	1

Question Number	Correct Answer	Mark
6	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
7	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
8	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
9	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
10	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
11.	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
12	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
13	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
14	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$: 15$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
16	D	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
17 (a)	Q: $\mathrm{O}-\mathrm{H}$ ALLOW OH $\begin{equation*} -\mathrm{O}-\mathrm{H} \tag{1} \end{equation*}$ $\mathrm{R}: \quad \mathrm{C}=0$ ALLOW $\begin{equation*} -C=0 \tag{1} \end{equation*}$ IGNORE names ACCEPT answers written on spectrum	Just ‘alcohol’ $-\mathrm{OH}$ Just 'carbonyl' C-O	2

Ouestion Number	Acceptable Answers	Reject	Mark
(b) (i) Y	$=$ methanol $/ \mathrm{CH}_{3} \mathrm{OH}$ (1)		
	Any two of the following: $\mathrm{Colecular}^{+}=15$ $\mathrm{CH}_{3}=15$ $\mathrm{CH}_{3} \mathrm{O}^{+} / \mathrm{CH}_{2} \mathrm{OH}^{+}=31$ $\mathrm{CHOH}^{+} / \mathrm{CH}_{2} \mathrm{O}^{+}=30$ $\mathrm{COH}^{+}=29$ $\mathrm{CO}^{+}=28$		$\mathbf{2}$
	Charges not required TE in second mark for two correct possible peaks from an incorrect compound.		

Question Number	Acceptable Answers	Reject	Mark
17 (b) (ii)	Two (1) This mark may be scored if two shifts are given. Any two shifts correctly identified: - OH at 2.0-4.0 / any value in this range $\mathrm{H}-\mathrm{C}-\mathrm{O}$ at 3.0-4.2 / any value in this range H in $\mathrm{CH}_{3} \mathrm{OH}$ at 3.39 (ppm) Allow TE for ethanol with three peaks and three correct shift values: - OH at 2.0-4.0 / any value in this range $\mathrm{H}-\mathrm{C}-\mathrm{O}$ at 3.0-4.2 / any value in this range CH in an alkane at 0.1-1.9	CH in an alkane at 0.1-1.9 Just $\mathrm{CH}_{3} \mathrm{OH}$ at 3.39	2

Ouestion Number	Acceptable Answers	Reject	Mark
(c) (i)	Z contains two -OH/ one alcohol + one acid ALLOW two alcohol groups / is a diol		$\mathbf{1}$

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Ouestion } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { (c) (ii) } & \mathrm{Z} \text { is an acid / contains -COOH / contains }-\mathrm{CO}_{2} \mathrm{H} / \\ \text { contains a carboxylic acid group / contains } \mathrm{H}^{+}\end{array}\right)$

Ouestion Number	Acceptable Answers	Reject	Mark
(c) (iii)	Z is a secondary alcohol/ a ketone is formed from Z / Z contains -C-OH (1) I	Z is a ketone	1

Ouestion Number	Acceptable Answers	Reject	Mark
(c) (iv)	(lodoform produced) so \mathbf{Z} contains $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-$		
TE if Z is identified as a ketone in (iii): Z contains $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O} / \mathrm{Z}$ is a methyl ketone		1	

Question Number	Acceptable Answers	Reject	Mark
17 (d)	Answers will be based on several pieces of information (molecular formula, products of ester hydrolysis, answers to (c)) which may be contradictory if errors have been made. ALLOW TE marks for formulae which are chemically possible (ie no 5 bonded carbons etc) and based on most of the deductions but not necessarily all. Z is $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOH}$ Stand alone mark ALLOW TE for an acid with OH in wrong position in \mathbf{Z} if oxidation product identified as aldehyde TE for $\mathbf{Z}=\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOH}$ if identified as ketone in (iii) X is $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ Stand alone mark TE for a methyl ester of Z		2

Ouestion Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (a) (i	Transesterification Ethanol transesterification	Substituted esterification	$\mathbf{1}$

nıactinn Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (a) (ii)	To prevent hydrolysis/ to stop fatty acids forming / to stop breakdown of esters / water reacts with esters/ water is a better nucleophile than ethanol	To dilute ethanol Ethanol would react with water A reaction would Occur (unspecified)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 8 (b)}$	(Vegetable) Fats/ oils are renewable (crude oil is not) / biodiesel comes from a renewable source / doesn't use up fossil fuel resources/ carbon footprint is less / (closer to) carbon neutral / growing vegetables absorb CO2	Juste from plants" Just "crude oil is not sustainable" Less polluting produces less greenhouse gases / less CO2 Burns more cleanly Requires less energy for production	$\mathbf{1}$		
If more than one answer is given, and one is					
incorrect, no mark					
lgnore comments on biodegradability				\quad	
:---					

Ouestion Number	Acceptable Answers	Reject	Mark		
(c)	Substances to be separated have different (forces of) attraction to / affinity for / solubilities in / adsorption to one or both of the mobile and (1) stationary phases OWTTE	Different retention times without a reason why ALLOW absorption	5		
Different volatilities				\quad	Different masses
:---					
GC: mobile phase a (inert / unreactive) gas					
OR					
GC: mobile phase nitrogen / helium / argon / (1)					
other named inert gas					
GC: Stationary phase a liquid (on an (inert) solid)					
/ a solid					
HPLC: stationary phase a solid / silica					
HPLC: mobile phase a liquid (1)					

TOTAL FOR SECTION C = 20 MARKS

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (i)}$	C 60/12 $=5$		$\mathbf{1}$
	H 8/1 $=8$		
	O 32/16 $=2$ ALLOW 1 mol $=100 \mathrm{~g}$ So $60 \% \mathrm{O}=\mathrm{C}_{5}$ etc		

Ounction	Acceptable Answers	Reject	Mark
(a)(ii)	$\mathrm{C}=\mathrm{C}$		4
	Test : add bromine water/ $\mathrm{Br}_{2}(\mathrm{aq})$ (1)	Bromine/ $\mathrm{Br}_{2} / \mathrm{Br}_{2}(\mathrm{I})$	
	Result: From yellow/brown/redbrown/orange to colourless/decolorises	clear for colourless	
	OR		
	Test : add (acidified) potassium manganate((VII)) (solution) (1)	clear for colourless	
	Result: goes from pink/purple to colourless/brown		
	Test : add alkaline potassium manganate((VII)) (solution) (1)	$\mathrm{PCl}_{5} / \mathrm{LiAlH}_{4}$ as test	
	Result: goes green (1)	$\mathrm{NaOH} / \mathrm{NaOH}(\mathrm{aq})$	
	COOH:		
	Test : add $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3} /$ sodium carbpnate (solution)	evolved	
	Result:		
	Fizzes/bubbles/large volume neutralized		

Question Number	Reject	Mark	
$\mathbf{1 9 (b) (i)}$	Explanation of precedence/priority in terms of atomic numbers/masses of the attached groups	Both $\mathrm{CH}_{3} /$ methyl groups on the same side so Z $(0 / 2)$	$\mathbf{2}$
	OR Highest-precedent/priority groups on each carbon are on opposite sides of the molecule E-/entgegen	(1)	(1)

Oupation	Acceptable Answers	Reject	Mark
(b)(ii)	45 $\mathrm{COOH}^{+} / \mathrm{CO}_{2} \mathrm{H}^{+}$ 55 $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$ OR $\begin{equation*} \mathrm{C}_{3} \mathrm{OH}_{3}{ }^{+} \tag{1} \end{equation*}$ ALLOW Structural/displayed formulae of ions Absence of + charge (1 max)		2
	Acceptable Answers	Reject	Mark
(b)(iii)	If they say yes (0) (No) (Cleavage of the $\mathrm{C}-\mathrm{COOH}$ bond in) both compounds gives fragment(s) of the same mass OR Both give the same peak(s)/fragment(s) Both give $\mathrm{CO}_{2} \mathrm{H}^{+} / \mathrm{C}_{4} \mathrm{H}_{7}^{+}$fragments The mark can be scored by referring to just one of the	'No' on its own	1

fragments/peaks/masses.

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & \text { *19(c)(i) } \tag{2}\\ & \text { QWC } \tag{2} \end{align*}$	C is $\mathrm{CH}_{3} \mathrm{CHO}$ (alone) D is $\mathrm{CH}_{3} \mathrm{COCOOH}$ (alone) so tiglic acid must be B tiglic acid mark can only be awarded if correct structures of either \mathbf{C} or \mathbf{D} are given. Any one of the following C must be an aldehyde D is a ketone Mention that $\mathrm{CH}_{3} \mathrm{CO}$ present in either/both compounds (because of formation of iodoform) If one or both of the structures are incorrect any of the last 3 marks can be awarded $\max 5$ If C and D are fully correct, but the wrong	$\mathrm{CH}_{3} \mathrm{COH} 1$ max	6

nıoctinn Number	Acceptable Answers	Reject	Mark
$\mathbf{(c) (i i) ~ D o e s n ' t ~ d i s t i n g u i s h ~ E - \quad i s o m e r ~ f r o m ~ Z - ~}$			
isomer/geometric isomers (so no)	Just isomers/ stereoisomers/ enatiomers	$\mathbf{1}$	
OR Doesn't distinguish which sides of C=C functional groups are on			

Question Number	Acceptable Answers	Reject	Mark
(d)(i)	$\mathrm{CH}_{3} \mathrm{CHO}$ ACCEPT displayed or skeletal Step 1 (heat)using acidified potassium dichromate/or $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ distil (product as formed) conditional on dichromate Step 2 HCN with KCN OR KCN with $\mathrm{H}^{+} /$acid OR KCN with (cold) $\mathrm{NaOH}(\mathrm{aq}) /$ alkali (1) ALLOW HCN with $\mathrm{NaOH} /$ alkali For step 2 Ignore conditions e.g. any references to heat	$\begin{equation*} \mathrm{CH}_{3} \mathrm{COH} \tag{1} \end{equation*}$ Manganate $\mathrm{VII} / \mathrm{KMnO}_{4}$ Reflux HCN alone	4

Question Number	Acceptable Answers	Reject	Mark
(d)(ii)	Nucleophilic addition	Any recognisable spelling of 'philic' and addition, either order	Nutrophilic addition
Both words needed	Any other or additional words		

Question Number	Acceptable Answers	Reject	Mark
*19(d)(iii) QWC	Ethanal is planar (at the reaction site)	Intermediate is planar Square planar	$\mathbf{2}$
	OR Attack (from CN		
Cyanohydrin) is (equally likely) from either side/above or below/from both sides (of the molecule) (so a racemic mixture is formed) Mark independently	Can attack carbocation from either side/any reference to SN1/SN2	(1)	

nınctinn Number	Acceptable Answers	Reject	Mark
	(d)(iv) Receptors for the compound in the body are often stereospecific so only one stereoisomer is pharmacologically active OR Body recognises one (stereo)isomer ALLOW Only one (stereo)isomer is active OR One/the other isomer may be toxic/dangerous/harmful OR One isomer destroys body cells OR (Different) isomers have different biological/pharmacological/biochemical properties	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (a) (i)}$	Formula showing $-\mathrm{NH}_{3}{ }^{+}$and $-\mathrm{COO}^{-}$ $/-\mathrm{CO}_{2}^{-}$ Charges can be anywhere on functional group	$\mathbf{1}$	
	Rest of the molecule must be correct ALLOW displayed/part displayed formula		

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	 Correct peptide link Minimum two residues and extension to the rest of the molecule ALLOW $\begin{equation*} -\mathrm{NHCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CO}- \tag{2} \end{equation*}$ Drawn the other way round, i.e. starting with the carbonyl group Brackets around outside with ' n ' ie (.....) $)_{n}$		2

Question Number	Acceptable Answer	Reject	Mark
*20(b) QWC	Key Points KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram KP2 Marker spots of known aminoacids/measure R_{f} KP3 Run in (suitable) solvent/discussion of comparative solubilities in phases KP4 (Spray with) ninhydrin (and heat) [Stand alone mark] KP 5 Marker spots and the unknown spots correspond ALLOW Compare R_{f} values of marker spots with hydrolysate spots OR If 2-d chromatography used (2 different solvents run in two directions at right angles): KP1 Spot (of hydrolysate) on paper/tlc/thin layer chromatogram KP2 Run in (suitable) solvent in one direction KP3 Develop in suitable/different solvent at right angles OR discussion of comparative solubilities in phases KP4 Spray with ninhydrin (andheat) KP5 Compare hydrolysate spots with same experiment for known amino acids OR	Spot one amino acid/protein Water alone as solvent acid	5

S

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (a) (i) ~}$	Not knowing the structure of the molecule (means that the reactions/reagents/reactants needed to make it are also unknown)	$\mathbf{1}$	
ALLOW Structure not known			

Ouection	Acceptable Answers	Reject	Mark
(a)(ii)	Credit any reasonable arguments for example:		2
	First mark		
	No longer any demand for madder/indigo		
	OR		
	Cheaper alternatives available (1)		
	Second mark		
	So the growing industries collapsed		
	OR		
	no market for crops		
	OR		
	farmers had to grow alternative crops		
	OR		
	decreased employment		
	OR		
	economic damage		
	OR		
	decreased GDP		
	OR		
	Loss of export		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	First mark Double bonds expected to react with bromine water turning it colourless OR Bromine water remained yellow/orange/red/brown Second mark So benzene does not contain double bonds OR Double bonds not normal/not simply double bonds/any indication that double bonds are different OR His representation incorrect		2
	Acceptable Answers	Reject	Mark
(b)(ii)	p/pi-/п/6 electrons (of carbon) OR п system (1) Electrons are delocalised around the ring Which gives the molecule greater stability/need more energy to break the bonds in benzene (and hence a less exothermic hydrogenation enthalpy) Allow it is more stable (1)	Harder to break/disrupt [alone]	3

Question Number	Acceptable Answers	Reject	Mark
21(c)	$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \quad \mathrm{NO}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$		4
	$2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \quad \mathrm{NO}_{2}+\mathrm{H}_{3} \mathrm{O}+2 \mathrm{HSO}_{4}$		
	OR		
	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$		
	OR		
	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-} \text {and }$ $\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$		
	$\mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}$		
	Charges are needed for first mark		
	Attack on nitronium ion arrow must start on or in the benzene		
	Wheland intermediate		
	Can be a part, but not complete circle, in correct place inside ring BUT part circle must cover minimum of 3 carbon atoms AND must not include where nitro group is attached and must positive charge somewhere		
	Either but only one of first two marks can be lost if bond is clearly to oxygen		
	Arrow from H bond into the ring to produce either H^{+}or $\mathrm{H}_{2} \mathrm{SO}_{4}$ and return to aromaticity		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 (d) (i)}$	$<0^{\circ}$ C/temperature too low: reaction too slow/insufficient energy to overcome activation energy	Will not take place	$\mathbf{2}$
	$>10^{\circ}$ C/temperature too high: diazonium ion decomposes/produces phenol		

Question Number	Acceptable Answers	Reject	Mark
(d)(ii)	\oplus	$\mathbf{1}$	
	Positive charge can be on either N Cl^{-}may be given as well hydrogens/carbons displayed OR		
OR ---N=N + Is acceptable providing charge is on the end N	Positive charge on wrong N		

Question Number	Acceptable Answers	Reject	Mark
21 (e)	First mark		2
	$-\mathrm{SO}_{3}{ }^{-}$are solvated / hydrated		
	Can be drawn with polar H of water		
	OR	Just sodium ions attracted to water	
	Negative ion bonds with/attracted to water		
	Second mark		
	Nitrogen/oxygen atoms hydrogen-bonded (to water)		
	Can be drawn (1)		

