44-6873-00L- Econometrics for Business and Economics	Dr Amr Algarhi (Miro)
Exercise sheet 2. Simple linear regression model	Department of Management
Week 13	Sheffield Hallam University

Question 1. Based on data for years 1962 to 1977 for the United States, the following demand function for automobiles was obtained

$$\hat{Y}_t = 5807 + 3.24X_t$$

 $R^2 = 0.22$

where Y is the retail sales of passenger cars (in thousands of dollars) and X is the real disposable income (in billions of 1972 dollars) and the subscript t stands for time.

- (a) Interpret the slope parameter.
- (b) How do you interpret the coefficient of determination?

Question 2 (Stata). Download the "*food.dta*" file, which includes data for weekly household food expenditure and weekly household income. The variable *food_exp* is the weekly household food expenditure (in pounds); this is the variable we would like to explain. The variable *income* is the weekly household income (in hundreds of pounds).

- (a) Compute summary statistics for the underlying variables, and then create a scatter diagram.
- (b) Estimate the simple linear regression equation

$$food_exp_i = \hat{\beta}_1 + \hat{\beta}_2 income_i$$

- (c) Interpret the intercept in your equation. Interpret the coefficient of *income*.
- (d) Compute the fitted values and the residuals.
- (e) Plot the fitted regression line.
- (f) Find the predicted $food_exp$ when income = 20.
- (g) How much of the variation in *food_exp* is explained by *income*? Is this a lot in your opinion?

Question 3 (Stata). Use the data in "*sleep75.dta*" from Biddle and Hamermesh (1990) to study whether there is a trade-off between the time spent sleeping per week and the time spent in paid work. We could use either variable as the dependent variable. For concreteness, estimate the model

$$sleep_i = \beta_1 + \beta_2 totwrk_i + u_i$$

where sleep is minutes spent sleeping at night per week and totwrk is total minutes worked during the week.

- (a) Report your results in equation form along with the number of observations and R^2 . What does the intercept in this equation mean?
- (b) If *totwrk* increases by 2 hours, by how much is *sleep* estimated to fall? Do you find this to be a large effect?

<u>Question 4 (Stata).</u> Suppose an economist, who is interested in the relationship between hourly wages (Y) and years of schooling (X), has collected the following data of five individuals.

i	X	Y
		(£)
1	10	4.5
2	12	5
3	14	5.5
4	16	5.8
5	18	6.7

- (a) Compute summary statistics for the underlying variables, then create a scatter diagram.
- (b) Estimate the simple linear regression function.
- (c) Compute the fitted values and plot the sample regression function.

(END)