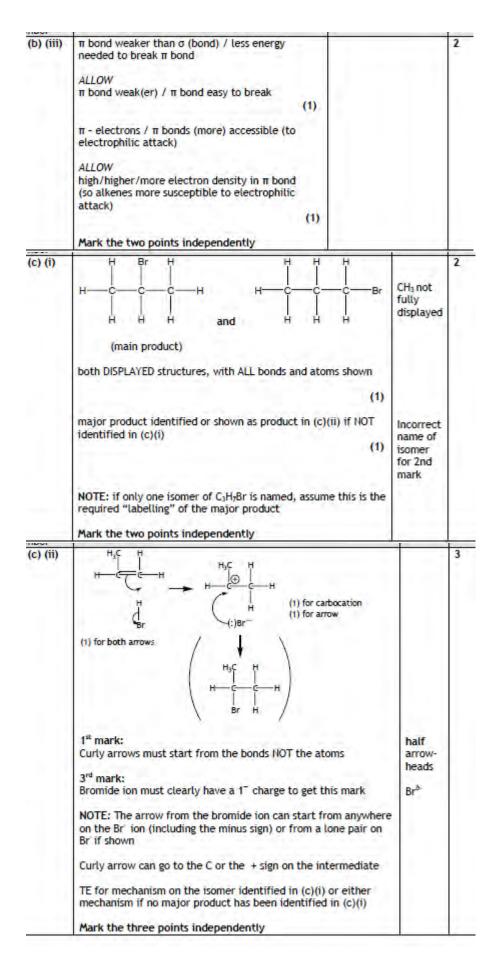
_	
A	
A D	-


12)	0.0.00.00.00		1
(a) (i)	$H_2O + CO_2 \rightarrow H_2CO_3$ (Allow atoms in H_2CO_3 in any order) Or $H_2O + CO_2 \rightarrow H^* + HCO_3^-$ Or $H_2O + CO_2 \rightarrow 2H^* + CO_3^{2-}$ Or H_3O^* in place of H [*] IGNORE STATE SYMBOLS EVEN IF INCORRECT		i.
estion nber	Acceptable Answers	Reject	Mar
(a) (ii)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_2CO_3 as a product $H^* + CO_3^{2^-} \rightarrow HCO_3^-$ Any other ions including spectator ions (e.g. Ca ²⁺ , Cl ⁻) in the equation scores zero	2
estion	Acceptable Answers	Reject	Mar
mber		Contraction of the second	
(b) (i)	dilute hydrochloric acid measung cylinder weasung cylinder (1) Conical flask and a delivery tube leaving the conical flask and a delivery tube leaving the conical flask (1) IGNORE "heat" beneath conical flask Inverted measuring cylinder with collection over water shown and cylinder above mouth of delivery tube (1)		2
	ALLOW collection over water to be shown/implied in the diagram without labels or		

(b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	-1-
estion mber	Acceptable Answers	Reject	Mar
(b) (iii)	(224 ÷ 24000 =) 0.009333/9.333 x 10 ⁻³ (mol) Ignore SF except 1 SF Ignore any incorrect units	"0.009" as answer	1
estion nber	Acceptable Answers	Reject	Mari
(b) (iv)	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2 (g/aq)$ ALL FOUR state symbols must be correct for this mark		1
estion mber	Acceptable Answers	Reject	Mari
(b) (v)	(Mass of 1 mol CaCO ₃ = 40 + 12 + 3 x 16) = 100 g ALLOW just "100" ALLOW any incorrect units ALLOW "100.1 g " OR just "100.1" (Reason: this uses the Periodic Table value of A _r = 40.1 for Ca)		1
(b) (vi)	(Mass of CaCO ₃ = 100 x 0.009333) = 0.9333 (g) (1) <i>IGNORE</i> sig figs including 1 sf here NOTE: Moles of CaCO ₃ consequential on answers to (b)(iii) and (b)(v) [NOTE: if A_r = 40.1 used for Ca, then the answer = 0.9339 (g)] Percentage of CaCO ₃ in the coral = 100 x 0.9333 /1.13 = 82.6% (1) NOTE: If mass CaCO ₃ used is 0.93, final answer is 82.3% [NOTE: if A_r = 40.1 used for Ca, then the answers = 0.9339 (g) and 82.7%]	Final % answer is not given to 3 sf	2
(b) (vii)	(Different samples of) coral have different amounts of CaCO ₃ /different proportions of CaCO ₃ / different "levels" of CaCO ₃ ALLOW "calcium carbonate" for CaCO ₃ OR Only one sample of coral (was) used	Answers that do not include any mention of CaCO ₃ References to solubility of CO ₂ in water References to	1
_		repeating the experiment at a different temperature	

First Mark:	2
EITHER Magnesium reacts with chlorine to form only magnesium chloride/	
magnesium reacts with chlorine to form only one product /	
magnesium reacts with hydrochloric acid to form hydrogen (as well as magnesium chloride) /	
magnesium reacts with hydrochloric acid to form more than one product /	
magnesium reacts with hydrochloric acid to form a waste product	
OR	
Both equations $Mg + Cl_2 \rightarrow MgCl_2$ and $Mg + 2HCl \rightarrow MgCl_2 + H_2$	
IGNORE state symbols, even if incorrect. (1)	
Second Mark:	
EITHER The reaction with chlorine has an atom economy which is higher /100%	
ALLOW "high"	
OR	
Any mention of numbers comparing 100 % v. 97.9% (1)	
IGNORE any comments about yield	
Mark the two points independently	

(a)	$C_{10}H_{22} \rightarrow C_7H_{16} + C_3H_6$	1
	ALLOW structural or displayed formulae instead of molecular formulae	
	IGNORE any state symbols, even if incorrect	

(b) (i)			4
(0) (1)	diagram for the G -bond e.g.		
	First Mark: EITHER Diagram shows overlap of any-shaped orbitals along the line between the two nuclei	Just a line between the	
	OR Mentions/implies rotation around a sigma/single bond (1)	two nuclei	
	Second Mark: Any written mention, or clear evidence from the diagram (e.g. shading), of the resultant (high) electron density (along the line) between the two nuclei (1)		
	diagram for the π-bond e.g.		
	EITHER		
	88		
	OR		
	Third Mark: EITHER	Just curved	
	Diagram shows two dumb-bell shaped (p-) orbitals(these can be separate dumb-bells or the diagram can show the p-orbitals overlapping sideways) OR Restricted /lack of /no rotation about a pi/double bond	lines above and below the two nuclei	
	(1) Fourth Mark: Any written mention, or clear evidence from the diagram (e.g. shading), of the resultant (high) electron density above and below (the line between) the two nuclei		
	(1)		
(b) (ii)	Electrophilic addition		1
	BOTH words needed		
	born nords needed		

(c) (iii)	Secondary carbocation (named or described or	Answers just in terms	2
	drawn) (1)	of Markownikoff's rule	
	more stable (than primary) (1)		
	Mark the two points independently	1.0	
	NOTE: Zero awarded if primary carbocation thought to be more stable		
	alought to be more stable		-
(d) (i)	$nC_{3}H_{6} \rightarrow H_{H}$		3
	Two "n's" in the equation and a correct formula (molecular or structural) for propene on left hand side of the equation (1)	"x" instead of "n"	
	Correct repeating unit, with a methyl branch shown (1)		
	ALLOW CH ₃ fully displayed or just as CH ₃		
	Continuation bond at each end (with or without bracket shown in equation) (1)		
	Unsaturated polymer scores max (1)		
	Mark the three points independently		
(d) (ii)	(Advantage):	"Can be recycled" (0)	2
(a) (ii)	polypropene will decompose (naturally)	for first scoring point	1
	ALLOW "rot" or "break down"		
	OR	Biodegradable for 1 st mark	
	polypropene will not require landfill (as it can decompose in sunlight)	Oldik	
	OR		
	no need to incinerate /burn		
	IGNORE "good for environment" / "no pollution" (1)		
	(Disadvantage): poly(propene) cannot be used when exposed to (bright) sunlight / UV / outdoors	Answers which do not imply exposure to UV/sunlight	
	OR	· · · · · · · · · · · · · · ·	
	OR cannot be recycled / cannot be reused (1)	Biodegradable for 2 nd mark	

15) (a) (i)	(q = 250 x (31.5 - 21.0) x 4.18 =) 10972.5 (J)	10000 (J)	11
(4) (1)	IGNORE sf except 1 sf IGNORE units even if incorrect IGNORE any sign at this stage		
	ALLOW 10.97 (kJ)		-
estion mber	Acceptable Answers	Reject	Mai
(a) (ii)	(M, ethanol) = 46 (1) (Mass ethanol burned = 63.21 - 62.47 =) 0.74 (g) ALLOW 63.21 - 62.47 as alternative to 0.74 (1) (Amount of ethanol = 0.74 ÷ 46 =) 0.0161 (mol) (1) NOTE: Moles of ethanol are CQ on molar mass and /or mass of ethanol burned IGNORE sf except 1 sf NOTE: Correct answer with no working /limited working scores (3) Mark the three points independently	0.02 (mol) ethanol	3
estion	Acceptable Answers	Reject	Mai
mber	noceptate hisners	Nejece	
(a) (iii)	Answer (i) ÷ (1000 x answer (ii)) (1) NOTE: Be aware of numbers held in calculator not corresponding to what is written in answer Value and negative sign (1) <i>IGNORE</i> sf except 1 sf NOTE: Answer consistent with (a)(i) and (a)(ii) with no working scores (2) <u>E.g.</u> 10.9725 ÷ (0.74 ÷ 46) = - 682 (kJ mol ⁻¹) <i>ALLOW</i> Just kJ as the units NOTE: If correct answer is given in J mol ⁻¹ , the	Correct answer in J	2
	units of J mol ⁻¹ must be clearly given for the	instead of 3 mot	
(b) (i)	second mark to be awarded, 100 x (1370 - Answer to (iii)) ÷ 1370 = value	Incorrect rounding of	

b) (ii)	Any three from:		
	Heat loss (from the beaker)/beaker not insulated/heat loss as no lid on beaker (containing the water) /no stirring		More accurate thermometer
		(1)	Just "experimental /human error"
	Incomplete combustion (of the		
	alcohol)/formation of soot (on beaker)	(1)	Experiment carried out at a different
	Not all of the energy from the flame is us heat the beaker and/or the water	ed to	(laboratory) temperature
	OR		
	Too large a distance between flame and t no draught excluder	eaker /	
		(1)	
	Heat capacity of the beaker is neglected/	beaker	
	absorbs heat/glass absorbs heat	(1)	
	Evaporation of the (hot) alcohol	(1)	
	Evaporation of the (hot) water	(1)	

16)

(a) (i)	Moles N =14.42 = 1.03	3
	14	
	Moles H = 3.09	
	Moles S= 33.06 = 1.03 (1)	
	32.1	1
	ALLOW Moles S= 33.06 = 1.03	1
	32	
	Moles O = 49.43 = 3.09 (1)	
	16	1
	(Ratio 1:3:1:3)	1
	IGNORE sf/rounding for moles	
	NH ₃ SO ₃ any order (1)	
	Correct answer, no working (3)	
		1
	If O omitted, giving NH ₃ S (2)	

iestion imber	Acceptable Answers	Reject	Mar
' (a) (ii)	NH ₃ SO ₃ (any order) since molar mass = empirical formula mass/ since empirical formula mass =97/ with some other justification TE from (i) N ₂ H ₆ S ₂₁ as empirical formula mass =49, approx half molecular mass		1

b) (i)	Look for workable method. Don't penalise lack of labels on simple equipment eg test tubes.		2
	Workable way of making and collecting gas eg flask or tube + connection/ below inverted funnel with tube of water above Labelling of reactants not needed (1)	2	
	Suitable (labelled) apparatus for measuring volume eg Gas syringe/ inverted burette or measuring cylinder containing water (1)	Uncalibrated tubes	

lestion Imber	Acceptable Answers	Reject	Mark
(b) (ii)	$(\underline{66}) = 2.75 \times 10^3 / 0.00275 / 0.0028$ 24 000	0.003	1

estion mber	Acceptable Answers	Reject	Mari
' (b) (ііі)	1 mol sulfamic acid → 0.5 mol H ₂ OR ratio sulfamic acid : hydrogen gas = 2:1 OR 5.5 (\times 10 ⁻³)(moles) = (2 \times 2.75 (\times 10 ⁻³)) (moles) OR TE using ratio calculated from (ii) (1) Each H ₂ comes from 2 H [*] (So 1 sulfamic acid → 1 H [*])(1)	ratio sulfamic acid : hydrogen ions = 2:1	2