
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Contract No. DE-AC36-08GO28308 

Rooftop Solar Photovoltaic 
Technical Potential in the United 
States: A Detailed Assessment 
Pieter Gagnon, Robert Margolis,  
Jennifer Melius, Caleb Phillips, and 
Ryan Elmore 
National Renewable Energy Laboratory 

Technical Report 
NREL/TP-6A20-65298 
January 2016 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 

Contract No. DE-AC36-08GO28308 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

 

  

Rooftop Solar Photovoltaic 
Technical Potential in the United 
States: A Detailed Assessment 
Pieter Gagnon, Robert Margolis,  
Jennifer Melius, Caleb Phillips, and  
Ryan Elmore 
National Renewable Energy Laboratory 

Prepared under Task No. SS13.1040 

Technical Report 
NREL/TP-6A20-65298 
January 2016 



 

 

NOTICE 

This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. 

This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

Available electronically at SciTech Connect http:/www.osti.gov/scitech 

Available for a processing fee to U.S. Department of Energy 
and its contractors, in paper, from: 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831-0062 
OSTI http://www.osti.gov 
Phone:  865.576.8401 
Fax: 865.576.5728 
Email: reports@osti.gov 

Available for sale to the public, in paper, from: 

U.S. Department of Commerce 
National Technical Information Service 
5301 Shawnee Road 
Alexandria, VA 22312 
NTIS http://www.ntis.gov 
Phone:  800.553.6847 or 703.605.6000 
Fax:  703.605.6900 
Email: orders@ntis.gov 

Cover Photos by Dennis Schroeder: (left to right) NREL 26173, NREL 18302, NREL 19758, NREL 29642, NREL 19795. 

NREL prints on paper that contains recycled content. 

http://www.osti.gov/scitech
http://www.osti.gov/
mailto:reports@osti.gov
http://www.ntis.gov/
mailto:orders@ntis.gov


iii 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Acknowledgements 
This work was funded by the Solar Energy Technologies Office of the U.S. Department of Energy’s 
Office of Energy Efficiency and Renewable Energy under contract number DE-AC36-08GO28308. 
The authors would like to thank Mike Gleason, Carolyn Davidson, Sean Ong, Rebecca Hott, Steve 
Wade, Eric Boedecker, Paul Denholm, Donna Heimiller, Michael Bolen, Laura Vimmerstedt, and 
Paul Donohoo-Vallett for their reviews and input. We would like to thank Adnan Zahoor, Britney 
Sutcliffe, and Julian Abbott-Whitley for their assistance in processing data. Lastly, we would like to 
thank Jarett Zuboy for his diligence and attention to detail while editing this report.  

  



iv 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

List of Acronyms 
AC alternating current 
ACS American Community Survey 
ANOVA analysis of variance 
CBECS Commercial Building Energy Consumption Survey 
DC direct current 
DHS U.S. Department of Homeland Security 
EIA U.S. Energy Information Administration 
GIS geographic information system(s) 
GW gigawatt 
GWh gigawatt-hour 
kW kilowatt 
kWh kilowatt-hour 
Lidar light detection and ranging 
NCES National Center for Education Statistics 
NLCD National Land Cover Database 
NREL National Renewable Energy Laboratory 
PV photovoltaic 
RMSE root-mean-square error 
SAM System Advisor Model 
TMY3 Typical Meteorological Year 3 
TWh terawatt-hour 
W watt 
ZIP code Zoning Improvement Plan code 
  



v 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Executive Summary  
This report quantifies the technical potential of photovoltaic (PV) systems deployed on rooftops in 
the continental United States, estimating how much energy could be generated by installing PV on 
all suitable roof area. The results do not exclude systems based on their economic performance, and 
thus they provide an upper bound on potential deployment rather than a prediction of actual 
deployment.  

Although methods have been developed to estimate rooftop PV technical potential at the individual 
building level, previous estimates at the regional and national levels have lacked a rigorous 
foundation in geospatial data and statistical analysis. This report helps fill this gap by providing a 
detailed data-driven analysis of U.S. (national, state, and ZIP-code level) rooftop PV availability 
and technical electricity-generation potential. First, we use light detection and ranging (lidar) data, 
geographic information system (GIS) methods, and PV-generation modeling to calculate the 
suitability of rooftops for hosting PV in 128 cities nationwide—representing approximately 23% of 
U.S. buildings—and we provide PV-generation results for a subset of these cities. Second, we 
extend the insights from this analysis of areas covered by lidar data to the entire continental United 
States. We develop two statistical models—one for small buildings and one for medium and large 
buildings—that estimate the total amount of roof area suitable for hosting PV systems, and we 
simulate the productivity of PV modules on the roof area to arrive at the nationwide technical 
potential for PV. 

Our analysis of the trends in the suitability of rooftops for hosting PV systems reveals important 
variations in this key driver of rooftop PV technical potential that have not been captured by 
previous approaches. Figure ES-1 shows the results—from our statistical modeling grounded in 
lidar data—for the percentage of small buildings that are suitable for PV in each ZIP code in the 
continental United States. In the figure we can identify regional trends in the suitability of small 
building rooftops, with high densities of suitable small buildings in California, Florida, and the 
West South Central census division. Such trends are also critical to estimating PV technical 
potential at finer resolution, and our report illustrates this with a high-resolution analysis of 11 
representative cities. 

Figure ES-2 shows the annual energy generation potential from rooftop PV as a percentage of each 
state’s electricity sales in 2013. The estimates of energy generation are based on the rooftop 
suitability of small, medium, and large buildings as well as specific roof orientations, local solar 
resources, PV system performance assumptions, and building footprints.1 

                                                 
1 Because the medium and large building estimates are available only at the state level, the combined results are 
presented at that level. 
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Figure ES-1. Percentage of small buildings suitable for PV in each ZIP code 

 
Figure ES-2. Potential rooftop PV annual generation from all buildings as a percentage of each 

state’s total electricity sales in 2013 
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Figure ES-2 shows that California has the greatest potential to offset electricity use—its rooftop PV 
could generate 74% of the electricity sold by its utilities in 2013. A cluster of New England states 
could generate more than 45% because these states’ low per-capita electricity consumption offsets 
their below-average solar resource. Washington, with the lowest population-weighted solar resource 
in the continental United States, could still generate 27%. Some states with below-average solar 
resource (such as Minnesota, Maine, New York, and South Dakota) have similar or even greater 
potential to offset total sales compared to states with higher-quality resource (such as Arizona and 
Texas).  

The difference between Florida and other South Atlantic states illustrates the interplay between 
variables that affect technical potential. Florida can offset 47% of its total consumption despite 
having an average household consumption of 130% of the national average. This is largely 
explained by significantly below-average electricity consumption outside of the residential sector, 
which makes the state’s total per-capita electricity sales slightly lower than the national average. In 
contrast, the other South Atlantic states range from a potential 23% to 35% of electricity offset 
owing to lower average rooftop suitability (see Figure ES-12), slightly lower quality solar resource, 
and higher per-capita total electricity sales. 

Table ES-1 shows our aggregate results.3 The total national technical potential of rooftop PV is 
1,118 gigawatts (GW) of installed capacity and 1,432 terawatt-hours (TWh) of annual energy 
generation. This equates to 39% of total national electric-sector sales, and it is significantly greater 
than a previous National Renewable Energy Laboratory estimate of 664 GW of installed capacity 
and 800 TWh of annual energy generation (Denholm and Margolis 2008). The difference can be 
attributed to increases in module power density, improved estimation of building suitability, higher 
estimates of the total number of buildings, and improvements in PV performance simulation tools 
that previously tended to underestimated production. 

Although only 26% of the total rooftop area on small buildings (those with a footprint smaller than 
5,000 ft2) is suitable for PV deployment, the sheer number of buildings in this class gives small 
buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of 
PV capacity and generate 926 TWh/year of PV energy, which represents approximately 65% of 
rooftop PV’s total technical potential. Medium and large buildings have a total installed capacity 
potential of 386 GW and energy generation potential of 506 TWh/year, which represents 
approximately 35% of the total technical potential of rooftop PV. 

These results are sensitive to assumptions about module performance, which is expected to continue 
improving over time. For example, this analysis assumed a module efficiency of 16% to represent a 
mixture of various technology types. If a module efficiency of 20% were assumed instead, which 
corresponds to current premium systems, each of the technical potential estimates would increase 
by about 25% above the values stated in this report. Furthermore, our results are only estimates of 
the potential from existing suitable roof planes, and they do not consider the immense potential of 
ground-mounted PV. Actual generation from PV in urban areas could exceed these estimates by 
                                                 
2 Figure ES-1 shows suitability results for only small buildings because more than 99% of medium and large buildings 
have at least one roof plane suitable for a PV system. 
3 Because the relative magnitudes of the results are a strong function of the square footage used as a cutoff between 
building classes, these results should not be presented without that information. 
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installing systems on less suitable roof area, mounting PV on canopies over open spaces such as 
parking lots, or integrating PV into building facades.  

Because our results are estimates of technical potential, they do not consider what would be 
required to use all the potential PV-generated energy. In practice, the integration of a significant 
quantity of rooftop PV into the national portfolio of generation capacity would require a flexible 
grid, supporting infrastructure, and a suite of enabling technologies. 

Table ES-1. Estimated Suitable Area and Rooftop PV Technical Potential by Building Class 

Building Class 
(Building Footprint) 

Total Suitable 
Area (Billions 
of m2) 

Installed 
Capacity 
Potential (GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Annual 
Generation 
Potential (% of 
National Sales) 

Small (< 5,000 ft2) 4.92 731 926 25.0% 

Medium (5,000–25,000 ft2) 1.22 154 201 5.4% 

Large (> 25,000 ft2) 1.99 232 305 8.2% 

All Buildings 8.13 1,118 1,432 38.6% 
 
Many opportunities exist for expanding on the data, methods, and results from this report. Our base 
data set can be combined with numerous other data sets—such as insolation data, market data, and 
end-use electricity consumption data—to provide more precise and actionable information than has 
been available previously. To that end and to encourage municipalities, utility providers, solar 
energy researchers, and other PV stakeholders to use the data for their own purposes, we have 
posted supporting data and documentation of the methods we used to perform our analysis on the 
NSRDB Data Viewer website.4 The models developed here also can be applied generally in areas 
where lidar data may not be available, both for making estimates of rooftop areas for arbitrary 
geographies and in stochastic simulations where statistically representative buildings are needed.  

  

                                                 
4 See maps.nrel.gov/pv-rooftop-lidar. 

http://maps.nrel.gov/pv-rooftop-lidar
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1 Introduction 
Technical potential is a metric that quantifies the generation available from a particular 
technology in a given region; it considers resource availability and quality, technical system 
performance, and the physical availability of suitable area for development. An assessment of 
technical potential provides an established reference point for a renewable technology. For 
example, in 2012, an analysis by the National Renewable Energy Laboratory (NREL) calculated 
the technical potential of 10 technologies for the United States (Lopez et al. 2012).  

Figure 1 illustrates the relationship between technical potential and three other types of potential 
often used to discuss energy technologies: resource potential, economic potential, and market 
potential. Resource potential, the largest of the three types, is the entire amount of energy in a 
particular form for the region under consideration. Technical potential, which is the topic of this 
report, estimates how much of that total resource could actually be captured, given physically 
available area and technology performance without considering economics. Economic potential 
is then the quantity of the possible generation that would result in a positive return on the 
investment of constructing the systems (Brown et al. 2015). Lastly, market potential estimates 
the quantity of energy expected to be generated from the deployment of a technology into the 
market, considering the impact of factors such as policies, competition with other technologies, 
and the rate of adoption on the actual deployment of a technology.  

 
Figure 1. Types of renewable energy potentials 

Source: Brown et al. 2015 
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This report focuses on quantifying the technical potential of photovoltaic (PV) systems deployed 
on existing suitable roof area in the United States.5 Rooftops provide a large expanse of untapped 
area for solar energy generation, and onsite distributed generation could potentially reduce the 
costs and losses associated with the transmission and distribution of electricity. Several existing 
tools and methods can be used to estimate the solar energy potential of a single home or building, 
and these tools are being actively developed to enable firms to market solar systems to individual 
building owners. Although there have been some detailed city- and state-level estimates (Bright 
and Burman 2010; Frantzis et al. 2007; Zhang et al. 2009), a limited number of national-level 
assessments of rooftop PV technical potential have been published to date (Chaudhari et al. 
2004; Denholm and Margolis 2008; Paidipati et al. 2008). Further, most previous estimates have 
relied on rough engineering rules of thumb in estimating the fraction of rooftop area suitable for 
hosting PV systems.  

To help fill these gaps, we provide a detailed data-driven analysis of U.S. (national, state, and 
ZIP-code level) rooftop PV suitability and technical electricity-generation potential. First, we use 
light detection and ranging (lidar) data, geographic information system (GIS) methods, and PV-
generation modeling to calculate the PV suitability of rooftops for 128 cities nationwide—
representing approximately 23% of U.S. buildings—and we provide PV-generation results for a 
subset of these cities. Next, we extend the insights from this analysis of areas covered by lidar 
data to the entire continental United States. We develop two statistical models—one for small 
buildings and one for medium and large buildings—and we populate them with geographic 
variables that correlate with rooftop PV suitability. We evaluate the accuracy of the models by 
comparing model estimates of rooftop suitability with analysis results in areas covered by the 
lidar data. Finally, we convert rooftop suitability into PV generation potential, sum the estimates 
for small, medium, and large buildings, and present nationwide results for rooftop PV technical 
potential. Our results could benefit a broad spectrum of stakeholders, including local 
municipalities, solar energy researchers, planners, utility companies, and policymakers.  

  

                                                 
5 The technical potential of rooftop PV is the amount of energy that could be generated by installing PV modules on 
all the roof area suitable for development. In contrast, resource potential would include all solar energy falling on 
rooftops, economic potential would include all energy generated if all economically viable sites were developed, and 
market potential would estimate energy generation considering factors such as maximum system sizes set by 
utilities. 
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2 Literature Review 
A thorough literature review of more than 70 documents by NREL (Melius et al. 2013) 
identified the existing methods for estimating the fraction of rooftop area suitable for PV 
deployment. These include three main approaches: constant-value methods, manual selection, 
and GIS-based methods.  

Constant-value methods for estimating rooftop suitability simply assume a certain percentage of 
building rooftop area is suitable for hosting PV. For example, a series of reports by Navigant and 
NREL (Chaudhari et al. 2004; Denholm and Margolis 2008; Frantzis et al. 2007; Paidipati et al. 
2008) estimated that 22%–27% of residential rooftop area and 60%–65% of commercial rooftop 
area was suitable for PV. These values were applied to the total building stock to arrive at an 
estimated area available for PV deployment. This method is easy to use and provides results 
quickly, which makes it attractive to many researchers. However, it often has had little validation 
and does not consider specific nuances in the buildings, such as heating, ventilating, and air 
conditioning systems on large commercial buildings or differences in the tree canopy in 
neighborhoods with newer housing versus neighborhoods with older housing. 

Alternatively, at the finest resolution, manual selection evaluates buildings individually to 
determine the total suitable area and potential energy generation. In this method, sources such 
as aerial photography, Google Earth, and NREL’s PVWatts® Calculator provide visual clues to 
rooftop PV installation locations (Ordonez et al. 2010; Bright and Burman 2010; Zhang et al. 
2009; Anderson et al. 2010). Manual selection provides the most precise estimate of the total 
rooftop area available for PV, but it is time consuming and cannot be replicated easily on a large 
scale.  

The most robust methods for large-scale estimation of suitable rooftop area are based on GIS. 
These methods are more precise than constant-value methods, and they can handle much larger 
data sets than manual selection allows. Melius et al. (2013) provide examples of the many ways 
GIS-based methods have been used to derive rooftop suitability (e.g., Hofierka and Kanuk 2009; 
Compagnon 2004; Santos et al. 2011), and they develop and validate a suitability-estimation 
method based on the best practices found in the literature. We use this method for our analysis of 
lidar -covered cities, as shown in Sections 3 and 4. 

  



4 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

3 Processing Lidar Data To Estimate Rooftop Area 
Suitable for PV Deployment 

In this section, we present an overview of our approach to estimating the rooftop area that is 
suitable for PV. The major steps are illustrated in Figure 2. The inputs to the analysis are lidar 
and building footprint data sets. These data are processed to determine the shading, tilt, and 
azimuth of each rooftop at a horizontal resolution of 1 m2. A set of criteria is then applied to 
determine what roof area is suitable for PV deployment. These results can then be aggregated to 
determine the total quantity of rooftop area suitable for PV systems at the building, ZIP code, 
utility service territory, state, or national levels of resolution. The following subsections provide 
details of each step. Complete documentation of every step can be found on the NSRDB Data 
Viewer website.6 

 
Figure 2. Major steps for determining the suitability of roof area for PV 

                                                 
6 The file containing the documentation can be accessed at maps.nrel.gov/pv-rooftop-lidar by selecting the “?” 
button to the right of the lidar Covered Areas raster listing and following the “Lidar Processing Methods” link at the 
bottom of the dialogue box that appears.  

http://maps.nrel.gov/pv-rooftop-lidar
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3.1 Input Data 
The lidar data used in our analysis were obtained from the U.S. Department of Homeland 
Security (DHS) Homeland Security Infrastructure Program for 2006–2014. For each of the 128 
cities in the data set, DHS provided (1) lidar data in raster format at 1-m by 1-m resolution and 
(2) a corresponding polygon shapefile of building footprints. The raster data are based on the 
reflective surface return (first return) of the lidar data, which correlates to the elevation of the 
first object detected and creates a digital surface model for each city. 

The DHS data set also includes detailed data for about 26.9 million buildings and 7.7 billion m2 
of rooftop area, or about 23% of U.S. buildings (EIA 2009; EIA 2012). The area covered, shown 
in Figure 3, represents about 122 million people or 40% of the U.S. population. 
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Figure 3. Lidar data coverage 
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3.2 Shading 
Our first step in processing the lidar data was to run a shading simulation on the digital surface 
model of each city.7 Figure 4 provides an example of output of the simulation, showing how the 
shadows move throughout a single day. Seasonal variation in shading was captured by running 
the simulation for four days: March 21, June 21, September 21, and December 21. The result was 
the number of hours of sunlight each square meter of roof area received on the simulated days.8 
The hours of sunlight for the four days were averaged to determine an average number of hours 
of daily sunlight for each square meter, as shown in Figure 5. We used this metric to exclude 
roof area that is excessively shaded (see Section 3.5).  

 
Figure 4. Example of hourly shading and sunlight availability 

                                                 
7 The standard ArcGIS Hillshade tool (available in the Spatial Analyst extension, ESRI 2014) was used for the 
shading simulation.  
8 For each month, we determined a different threshold of illumination required to classify a cell as being in sunlight; 
March requires 60% illumination (values > 152), June requires 70% illumination (values > 178), September requires 
60% illumination (values > 152), and December requires 50% illumination (values > 127).  
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Figure 5. Example of average daily hours of sunlight 

 
3.3 Tilt 
The orientation of a roof plane is important for determining its suitability for PV and simulating 
the productivity of installed modules. We determined the first component of orientation—the 
tilt—for each square meter of roof area within our lidar data set. To be consistent with many 
roofers’ and PV installers’ definition of flat roofs, we defined all roof area with a tilt less than 
9.5 degrees as “flat”. By comparing actual and predicted hours of sunlight for a subset of roof 
areas, we determined that our predictions underestimated the illumination of roofs with low 
angles of tilt. We determined, through iteration, that applying a multiplier of 1.5 to the estimated 
illumination of all flat roofs compensated for this bias.  

3.4 Azimuth 
We also determined the second component of roof plane orientation—the azimuth (aspect)—for 
each square meter of roof area. Each square meter was categorized into one of nine azimuth 
classes, shown in Figure 6, where tilted roof areas were assigned one of the eight cardinal and 
primary intercardinal directions; area with a tilt less than 9.5 degrees was classified as flat.  

 

 

Figure 6. Nine azimuth classifications 
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The azimuth file was then run through a variety function, which returned the number of different 
values in the 3 × 3 neighborhood surrounding each square meter of roof area. Area bordered by 
more than three unique azimuths was excluded from the data set to remove areas of changing 
roof orientations and excessively noisy data. 

We then used the azimuth values to identify roof planes by assuming contiguous areas of 
identical azimuth class were a unique plane, and we aggregated each of the individual square 
meters of roof area into polygons representing contiguous roof planes. For each of the individual 
roof planes, the ArcGIS Zonal Mean tool was applied to the tilt raster to determine the roof 
plane’s mean tilt. The data set produced through this process consisted of a raster giving a single 
tilt value for each unique roof plane. 

3.5 Application of Suitability Criteria 
To determine the total roof area suitable for PV, we excluded any area that did not meet criteria 
for shading, tilt, azimuth, and a minimum amount of contiguous roof area. To determine what 
roof area met the shading criteria, a minimum allowable number of hours of sunlight was 
determined on a regional basis using the System Advisor Model (SAM), which was developed 
by NREL in collaboration with Sandia National Laboratories and the U.S. Department of 
Energy. For each city, SAM was used to calculate the number of hours a rooftop would need to 
be in sunlight to produce 80% of the energy produced by an unshaded system of the same 
orientation. Roof area that did not meet this shading criterion was excluded. 

Roof planes were also excluded based on their orientation. All roof planes facing northwest 
through northeast (292.5–67.5 degrees; see Figure 7) were considered unsuitable for PV and 
excluded. All tilt values greater than 60 degrees were removed from the data set, based on the 
recommendation of PV installers. 

 
Figure 7. Rooftop azimuths included in final suitable planes data set 
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We also required a PV-suitable roof to have at least one contiguous plane with a projected 
horizontal footprint of 10 m2 or greater that also meets the shading, tilt, and azimuth criteria. 
Doing so provides sufficient area to install a 1.5-kW system, assuming a 15%-efficient panel. 
We selected this minimum size threshold to represent a conservative lower-end estimate of 
viable PV system sizes, based on current PV performance and historical patterns in reported PV 
system sizing. Specifically, we reviewed reported system sizes for small PV systems (< 10 kW) 
through 2013 (Barbose et al. 2014) and determined that 96% of systems in this class were larger 
than 1.5 kW. 

We calculated the area of each suitable roof plane, both as a projected area consistent with the 
building footprint and as a tilted area to determine the actual amount of developable area. 
Ultimately, we used the tilted-area values to calculate the installed PV capacity. 

The final data set contains the suitable area of every roof plane in the 128 cities covered by lidar 
data. This data set can be aggregated to the level of a building, ZIP code, utility service territory, 
state, or any other region to develop summary statistics describing the suitability of the 
geographic region for rooftop PV. 
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4 Analyzing the PV Potential of Lidar-Covered Cities 
This section describes our process for converting suitable roof area values to PV capacity and 
generation potential for the 128 cities covered by our lidar data, and it provides sample results 
from that data set. In Section 5 (small buildings) and Section 6 (medium and large buildings), we 
apply these insights and the same technical assumptions to produce national PV potential 
estimates using statistical models informed by the lidar data. 

4.1 Classification of Suitable Roof Area by Orientation and 
Building Size 

We categorized each roof plane into one of 21 orientation classes based on its tilt and azimuth. 
We defined a set of four tilt classes and a “flat” class, as shown in Figure 8. We modeled all roof 
planes within a given tilt class using a PV panel at the midpoint angle. For example, any roof 
plane with a tilt value between 47.4 and 60.0 degrees was placed in the same 53.7-degree tilt 
class. Because the northwest, north, and northeast azimuths were defined as unsuitable, we 
defined five non-flat azimuth classes (Figure 7).  

 
Figure 8. Tilt classes 

 
To better understand the suitability and technical potential of buildings of various sizes, we 
subdivided all 26.9 million buildings into three classes according to the planar area of their 
footprints: 

 Small: < 5,000 ft2 (94% of buildings, 58% of rooftop area in our sample) 

 Medium: 5,000–25,000 ft2 (5% of buildings, 18% of rooftop area in our sample) 

 Large: > 25,000 ft2 (1% of buildings, 24% of rooftop area in our sample) 

 
Finally, we aggregated the total suitable roof area in each class and building type to the ZIP-code 
level. This enabled analysis, predictions, and ultimately the presentation of results at fine spatial 
resolution. 
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4.2 Trends in Rooftop Suitability for Different Building Sizes 
Based on the lidar data, small buildings—with their more diverse architectures (e.g. roof tilt) and 
more shadowing from trees and neighboring buildings—show substantially more variability in 
rooftop PV suitability than do medium and large buildings. Within the 128 cities covered by our 
lidar data, 83% of small buildings have a suitable PV installation location, but only 26% of the 
total rooftop area of small buildings is suitable for development.9 There is some variability 
among states, with central and southeastern states showing the greatest fraction of suitable 
rooftops. Appendix B provides additional detail on rooftop suitability for small buildings. 

A very high fraction of medium and large buildings have at least 10 m2 of roof area that is 
suitable for a PV system. Across the lidar data set, more than 99% of large and medium 
buildings have at least one qualifying roof plane. The percentage of total rooftop area that is 
suitable is also high relative to small buildings, with 49% suitable for medium buildings and 66% 
for large buildings. Across all building sizes, 32% of total rooftop area is suitable for PV 
deployment.  

4.3 Trends in Rooftop Tilt and Azimuth 
Throughout our entire lidar sample, flat planes are very common on large buildings (93% 
of planes on large building are flat) and medium buildings (74%) but less common on small 
buildings (26%). Most other suitable rooftop planes fall into the 28-degree tilt category, and 
steep rooftops (54 degrees) are an order of magnitude less common than the next category 
(41 degrees). Azimuths facing east, west, and south are most common, particularly among the 
28-degree category of rooftops. These azimuths correspond to the alignment of buildings on a 
cardinal street grid. These observations appear to hold for small, medium, and large buildings 
alike. 

Large cities have the most flat-roofed small buildings, with the fraction decreasing in more 
urbanized areas. Large cities also have a more homogeneous tilt/azimuth distribution than do 
small suburbs. Additional detailed calculations and statistics on roof plane orientation are 
provided in Appendix A. 

4.4 Simulation of PV Productivity on Suitable Rooftop Area 
Our next step was to simulate the productivity of PV modules covering the suitable roof area 
within the 21 different orientation bins for every ZIP code in the lidar data set. These PV 
performance simulations were executed using SAM (version 2015.1.30). SAM is a performance 
and economic model designed to facilitate decision making and analysis for renewable energy 
projects (Gilman and Dobos 2012). It uses hourly meteorological data, a PV performance model, 
and user-defined assumptions to simulate the technical performance of a solar installation.  

The solar resource and meteorological data used for this analysis are from the Typical 
Meteorological Year 3 (TMY3) data set of the National Solar Radiation Database (Wilcox and 

                                                 
9 Because of obstructions, the tilt of a small fraction of roof area within the lidar data set was unknown. Statements 
about the total percentage of suitable roof area therefore assume the obstructed rooftops follow the same distribution 
of tilt as the rest of the stock.  
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Marion 2008). The TMY3 data set includes hourly representative profiles for 1,001 stations 
throughout the United States. For a given simulation, we used the TMY3 station profile closest 
to the boundary of the ZIP code under consideration.10 Because the TMY3 stations are 
frequently located in or near major cities, the average distance from a ZIP code to a station for 
the lidar data set was 9 kilometers.  

In addition to the solar resource varying geographically, the technical performance of PV 
systems can vary depending on the equipment used and design choices of the installer. For this 
analysis, a set of technical assumptions was made to represent the average performance of PV 
systems as they are being installed in 2015, shown in Table 1. We used these values in SAM, in 
conjunction with the TMY3 solar resource and meteorological profiles, to determine the 
electrical output of PV systems.11 

Table 1. Assumptions for PV Performance Simulations 

PV System Characteristics Value for Flat Roofs Value for Tilted Roofs 

Tilt 15 degrees Midpoint of tilt class (Figure 8) 

Ratio of module area to roof area 0.70 0.98 

Azimuth 180 degrees (south facing) Midpoint of azimuth class (Figure 7) 

Module power density 160 W/m2 

Total system losses 14.08% 

Inverter efficiency 96% 

DC-to-AC ratioa 1.2 
a A system’s direct current to alternating current (DC-to-AC) ratio is the ratio of the nameplate 
capacity of the PV modules to the AC-rated capacity of the inverters. For example, a system with 
a DC-to-AC ratio of 1.2 would have 8.33 kW of inverters installed for every 10 kW of nameplate 
PV capacity. 

The power density value used in this analysis corresponds to a module with approximately 16% 
efficiency. This value is the median module efficiency from approximately 48,000 systems 
installed during 2014 (Barbose and Darghouth 2015). This value was selected to represent an 
installed mixture of monocrystalline-silicon, multicrystalline-silicon, and thin-film modules, as 
opposed to universal installation of premium systems.  

The losses from soiling, shading, snow, wiring, and other sources are captured in the total system 
losses parameter, which was chosen to remain at the SAM default value for this analysis. The 
inverter efficiency value also remained at the SAM default level. These levels have been selected 
to be representative of typical systems. A DC-to-AC ratio of 1.2 was selected based on existing 
literature on the optimal sizing of inverters to minimize the cost of PV-generated electricity 
(Mondol et al. 2009).  
                                                 
10 When simulations were performed at state-level resolution—as is described in Section 6 for medium and large 
building predictions—the PV performance values used were a population-weighted average of the PV performance 
values for each TMY3 station within the state. 
11 Documentation of the mathematical models used by SAM can be found internally within the program, under the 
“Help” section. For more information, see sam.nrel.gov.  

https://sam.nrel.gov/
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For flat roofs, the ratio of module area to roof area was assumed to be 0.7 to reflect the row 
spacing necessary to incur only approximately 2.5% losses from self-shading for south-facing 
modules at 15-degree tilt. For tilted roofs, the value was assumed to be 0.98 to reflect 1.27 cm of 
spacing between each module for racking clamps.12 

Using the above assumptions, we ran simulations in SAM to estimate the installed capacity 
and annual energy generation per square meter of PV systems in the 21 orientations described 
in Sections 3 and 4. These productivity values were then multiplied by the total suitable roof 
area, accounting for tilt, within each orientation bin. The results were summed across the 21 
orientation bins to arrive at total production values for a given ZIP code. Appendix C provides 
details about the distribution of rooftop plane sizes in the data. 

4.5 Results for Select Cities: Small Buildings 
To provide additional detail on the various patterns of PV potential, we mapped results for 11 
geographically diverse cities. We chose these cities based on (1) good coverage of the ZIP 
codes within each city’s boundaries and (2) how the cities illustrate the data variation 
geographically. Figure 9 shows the percentage of small buildings that have suitable roof planes 
at the ZIP-code level. Only small building suitability is mapped, because over 99% of medium 
and large buildings have at least one roof plane suitable for PV deployment. Figure 9 and Figure 
10 both show the nominal city boundaries, as defined by the U.S. Census Bureau 2013 
TIGER/Line Shapefiles.  

Figure 9 shows only a weak trend of high building density driving down the suitability of small 
buildings. Most of the highly developed downtown ZIP codes in the 11 cities have suitability 
similar to the suitability in other ZIP codes within the city boundaries, although some suburban 
ZIP codes outside city boundaries do show higher levels of suitability.  

Figure 10 shows the average relative production of small buildings, which is defined here as the 
annual electricity generation potential for an average small building as a percentage of the 
average household annual electricity consumption in that city’s state (EIA 2009). Because the 
national building stock is estimated to contain 78 million single-family households but only 3.2 
million commercial buildings with a footprint less than 5,000 ft2, Figure 10 can be interpreted as 
approximately comparing the potential electricity production of an average single-family 
household in a given ZIP code with the state average household electricity consumption.13 This 
metric should not be confused with the ability of small building PV to offset a state’s total 
electricity sales, which is given in Section 5. Furthermore, because this metric includes buildings 
unsuitable for PV and presents an average for each ZIP code, it should not be interpreted as 

                                                 
12 Representative spacing between modules for racking clamps was obtained from a SnapNrack Series 100 UL 
installation manual, a SunFix Plus Installation Guide, and an IronRidge Roof Mountain System Design Guide. 
These racking systems are meant to illustrate existing products; mentioning them does not constitute an 
endorsement. 
13 Because the consumption value is a state average, it is constant across all ZIP codes for a given city and therefore 
does not capture household-level variation in consumption that would be driven by socioeconomic status, building 
size, or other household-specific factors. Therefore, the average relative production value mapped in Figure 10 
should only be interpreted as a simple estimation of the potential ability for a group of households in a given ZIP 
code to offset its consumption. 



15 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

predicting the productivity of individual buildings, which would vary significantly within each 
ZIP code.  

Figure 10 shows strong regional variation in the average relative production of small buildings. 
The average productivity of households within a ZIP code is driven by average suitability, 
household footprint, and solar resource. The average relative production is then also a function of 
the state average household consumption. For example, high-quality solar resource and low state 
average household energy consumption lead to a high average relative production for small 
buildings in Los Angeles. However, the outcome of the interaction among these four drivers is 
not always obvious. For example, although Colorado has low state average household 
consumption (7.4 MWh/year or 65% of the national average), low suitability, moderate solar 
resource, and moderate household sizes lead to generally low average relative production for 
small buildings within the city boundaries of Denver. In contrast, despite Florida’s relatively 
high state average household consumption of 14.8 MWh/year (130% of the national average) and 
low state average square footage per housing unit (85% of the national average), Miami’s high 
suitability and good solar resource result in generally high average relative production for small 
buildings. This demonstrates that one or even two metrics are not sufficient for predicting the 
ability of aggregations of households to offset their consumption. 

Although it is generally understood that a household with adequate roof area can generate greater 
than 100% of its annual energy consumption with PV, the variation in rooftop suitability and 
building characteristics makes it less obvious whether that trend holds for groups of buildings. 
This analysis suggests that in many parts of the United States ZIP-code-sized aggregations of 
households can collectively generate enough electricity to offset their expected annual 
consumption. However, notable exceptions include Atlanta and Portland, which have relatively 
few ZIP codes in which annual energy generation would match expected consumption as 
estimated by state average household consumption. 
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Figure 9. Percent of small buildings with at least one plane suitable for PV by ZIP code 

in 11 select cities 
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Figure 10. Small building average relative production for 11 select cities 

(average small building PV production / state average household consumption) 
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4.6 Results for Select Cities: All Buildings 
To summarize the technical potential of the lidar regions at an accessible resolution level, the 
ZIP code results were aggregated for 47 cities whose ZIP codes all have at least some coverage 
by the DHS lidar data and have ZIP code boundaries that approximately align with city 
boundaries (U.S. Census Bureau 2013 TIGER/Line Shapefiles). In contrast to the previous 
section, which only explored data for small buildings, the results here aggregate the productivity 
of all building sizes. Table 2 gives the estimated total installed capacity and annual energy 
generation potential for the 47 cities. Many cities have lidar data that extend beyond official city 
boundaries. Zip codes outside the city boundaries were not included in calculations of the total 
capacity and energy estimates. 

To enable a simple estimation of the ability of these cities to offset their electricity consumption 
with PV, each state’s total electric-industry sales were distributed to its cities by population 
weight. For example, Florida has 222 TWh of annual sales, and 1.5% of Florida’s population 
lives within the boundaries of Tampa; therefore, the estimated consumption of Tampa is 
3.33 TWh. This approximation will overestimate the potential for PV to meet a city’s actual 
consumption for cities that consume more per capita than the state average, and it 
will underestimate the potential for cities that consume less.  

Owing to their size and building density, the cities with the largest potential installed capacity are 
Los Angeles and New York, with 9.0 GW and 8.6 GW, respectively—illustrating that, even in 
dense urban areas, shading from buildings does not prevent appreciable installation of PV. Even 
with large potential capacities in these dense cities, however, PV cannot meet the same 
percentage of city electricity demand as can be met in some smaller cities. For example, 
Syracuse and New York City have similar solar resources, but Syracuse can generate 57% of its 
associated consumption with rooftop PV, whereas New York City can generate only 18%. The 
total percentage of roof area suitable for PV is similar in the two cities (48% in Syracuse and 
46% in New York City), suggesting the difference is driven by low roof area per capita in New 
York City.  

Mission Viejo has relatively high per capita production, driven in part by a low proportion of 
multi-unit households (which constitute only 15% of total housing units, as compared to an 
average of 30% throughout the rest of California), resulting in a high quantity of residential roof 
area per resident. When combined with a relatively low average state per capita consumption 
and high quality solar resource, the city can generate 88% of its estimated consumption using 
rooftop PV.  

The values in Table 2 for installed capacity and annual generation are the technical potential of 
existing rooftops that meet our criteria for suitability. The potential to install PV capacity within 
any of these cities could go beyond these estimates by deploying PV on less suitable roof area, 
mounting PV on canopies over open spaces such as parking lots, or integrating PV into building 
facades. Furthermore, continued increases in PV module performance and innovations in racking 
could increase the technical potential in these cities over time.  
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Table 2. Technical Potential of Rooftop PV from all Building Sizes within Boundaries of Cities 
Completely Covered by Lidar Data 

City Installed Capacity 
Potential (GW) 

Annual Generation 
Potential (GWh/year) 

Ability of PV to meet 
Estimated 
Consumption 

Mission Viejo, CA 0.4 587 88% 

Concord, NH 0.2 194 72% 

Sacramento, CA 1.5 2,293 71% 

Buffalo, NY 1.2 1,399 68% 

Columbus, GA 1.1 1,465 62% 

Los Angeles, CA 9.0 13,782 60% 

Tulsa, OK 2.6 3,590 59% 

Tampa, FL 1.4 1,952 59% 

Syracuse, NY 0.6 657 57% 

Amarillo, TX 0.7 1,084 54% 

Charlotte, NC 2.6 3,466 54% 

Colorado Springs, CO 1.2 1,862 53% 

Denver, CO 2.3 3,271 52% 

Carson City, NV 0.2 386 51% 

San Antonio, TX 6.2 8,665 51% 

San Francisco, CA 1.8 2,684 50% 

Little Rock, AR 0.8 1,099 47% 

Miami, FL 1.4 1,959 46% 

Birmingham, AL 0.9 1,187 46% 

St. Louis, MO 1.5 1,922 45% 

Cleveland, OH 1.7 1,881 44% 

Toledo, OH 1.4 1,666 43% 

Providence, RI 0.5 604 42% 

Worcester, MA 0.5 643 42% 

Atlanta, GA 1.7 2,129 41% 

New Orleans, LA 2.1 2,425 39% 

Hartford, CT 0.4 404 38% 

Baltimore, MD 2.0 2,549 38% 

Bridgeport, CT 0.4 435 38% 

Detroit, MI 2.6 2,910 38% 

Portland, OR 2.6 2,811 38% 

Milwaukee, WI 2.1 2,597 38% 

Boise, ID 0.5 760 38% 
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City Installed Capacity 
Potential (GW) 

Annual Generation 
Potential (GWh/year) 

Ability of PV to meet 
Estimated 
Consumption 

Des Moines, IA 0.8 1,026 36% 

Cincinnati, OH 1.0 1,176 35% 

Norfolk, VA 0.8 1,047 35% 

Wichita, KS 1.1 1,537 35% 

Newark, NJ 0.6 764 33% 

Philadelphia, PA 4.3 5,289 30% 

Springfield, MA 0.3 370 29% 

Chicago, IL 6.9 8,297 29% 

St. Paul, MN 0.8 903 27% 

Pittsburgh, PA 0.9 907 27% 

Minneapolis, MN 1.0 1,246 26% 

Charleston, SC 0.3 407 25% 

New York, NY 8.6 10,742 18% 

Washington, DC 1.3 1,660 16% 
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5 Modeling to Extend Small-Building PV Suitability 
and Technical Potential Estimates Nationwide 

In the previous section, we presented results for regions where we have lidar coverage. The 
remaining sections show how we leveraged these data to build predictive models and estimate 
PV’s technical potential for larger regions where lidar coverage is incomplete or non-existent. 
The overall model, described in its complete form in Appendix D, is composed of three major 
component models: 

 Azimuth-tilt (Appendix A) 

 Rooftop suitability (Appendix B) 

 Rooftop plane area (Appendix C) 

These models predict average and upper and lower bound estimates for suitable rooftop area. 
Upper and lower estimates include the combined model uncertainty at the 95% confidence level. 
This section exclusively presents the results for small buildings, predicted at the ZIP-code level 
for the entire nation. The observation that, within the regions covered by our lidar data, 58% of 
all roof area came from small buildings, suggests that small buildings contribute significantly to 
the total national potential of rooftop PV. Medium and large buildings are discussed in Section 6. 

Previous estimations of U.S. rooftop PV technical potential focused on estimating results at a 
regional or national level (Denholm and Margolis 2008). However, here we find significant 
variation in the percentage of small buildings that are suitable across the various census divisions 
and locale types. Our predictive model leverages this variability—along with additional 
attributes such as ground cover classification, population density, and spatial characteristics—to 
tune our predictions at fine resolution.  

5.1 Modeled Estimates of National Small Building Rooftop Suitability 
We used our statistical model and building-count data from the 2011 U.S. Census American 
Community Survey (ACS) to calculate the percentage of small buildings that are suitable for 
PV by ZIP code throughout the continental United States. The resulting map is presented in 
Figure 11. Where actual lidar data exist (as shown in Figure 3), the map shows actual data.14 

Developable area for rooftop PV is, by its nature, highly correlated geographically with 
population. Most potential for PV energy generation is condensed in the relatively small fraction 
of the country’s land space that is developed. National maps such as the one shown in Figure 11, 
therefore, overemphasize the weight of rural regions if used to approximate visually the impact 
of a given statistic on the magnitude of total national rooftop PV potential. Nonetheless, such 
maps can be useful for observing broad geographic trends. For example, the low suitability of 
northern Minnesota has little impact on the state’s total technical potential, but it does illustrate 
the effect of heavy forestation on rooftop suitability. 

                                                 
14 For the small fraction of ZIP codes with no predictor information, the model assumed the predictor of the ZIP 
code’s nearest neighbor. This assumption had little impact on the results, because the ZIP codes with missing 
predictor information covered less than 0.01% of the country’s population. 
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Figure 11 confirms the existence of meaningful regional trends in small building suitability, as 
suggested previously in our detailed city maps (Figure 9). The highest densities of high-
suitability ZIP codes are in southern California, Florida, Louisiana, and Texas. The percentage of 
small buildings that are suitable tends to be higher in regions without significant tree canopy 
coverage; for example, the relatively unforested southeast portion of Washington has a higher 
percentage of suitability than the northeastern region of the state.  

 
Figure 11. Percentage of small buildings suitable for PV in each ZIP code in the continental 

United States 

The results shown in Figure 11 are used as a key input in calculating rooftop PV technical 
potential. Furthermore, the figure demonstrates the importance of using a high spatial resolution 
for small buildings when estimating rooftop PV technical potential. Capturing the considerable 
variation in rooftop suitability is critical for understanding how rooftop PV potential varies on 
local, regional, and national levels. Previous estimates of rooftop PV technical potential typically 
used a single national value or a few regional values to estimate suitability nationwide. Figure 11 
represents a significant step forward in understanding the suitability of small building rooftops 
for PV deployment at fine geographic resolution throughout the United States. 

5.2 Estimated National PV Technical Potential from Small Buildings 
We used the complete model described in Appendix D—which combines statistical models for 
rooftop suitability, plane size, tilt, and azimuth—to estimate the total amount of suitable rooftop 
area in each of the 21 orientation classes for small buildings, on a ZIP-code level across the 
country. The same technical assumptions and simulation approach described in Section 4 for the 
lidar-covered cities were used to estimate the installed-capacity and energy-generation potential 
of modules installed on the predicted small building rooftop area nationwide. 
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Figure 12 shows the average estimated rooftop PV production per small building at the ZIP-code 
level.15 For comparison, Figure 13 shows the simulated energy generation from generic 
hypothetical PV panels tilted at latitude, illustrating the varying intensity of the U.S. solar 
resource. Broadly speaking, average small building production strongly correlates with the solar 
resource; however, there exists significant local variation driven by average household footprint 
and suitability. For example, the simulated average production in Florida is 12,100 kWh/year per 
small building (130% of the national average), owing to an above-average solar resource, but it 
ranges from 5,300 kWh/year to 30,100 kWh/year on a ZIP-code level because of variation in 
suitability and building footprint. 

Differences in suitability can drive differences in total productivity between regions with similar 
solar resource. For example, lower suitability in the South Atlantic states (see Figure 11) leads to 
lower average small building productivity than on the Florida peninsula, despite a solar resource 
of similar quality. 

 
Figure 12. Average rooftop PV production per small building at the ZIP-code level 

                                                 
15 This average includes non-suitable small buildings. For example, if half of the buildings in a given ZIP code had 
an annual PV generation of 10,000 kWh/year, and the other half were completely unsuitable for PV deployment, the 
average small building PV generation potential of that ZIP code would be 5,000 kWh/year. 
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Figure 13. U.S. solar resource 

 

Figure 14 shows the average relative production of small buildings at the state level, which is 
considered here to be the annual rooftop PV generation of an average small building as a 
percentage of each state’s average annual household consumption. This metric was considered 
previously for the 11 cities shown in Figure 10.  

These results show that a relatively poor solar resource does not preclude the residential sector 
from offsetting a significant percentage of its consumption. An average small building across all 
of New England’s states except Rhode Island could generate greater than 90% of the electricity 
consumed by an average household in the region. This is driven by the low average household 
consumption of 8,011 kWh/year in the region (70% of the national average), which is due in part 
to high use of natural gas and oil for heating as well as relatively low summer cooling 
requirements. 
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Figure 14. Small building average relative production at the state level 

(average small building PV production / state average household consumption) 

Table 3 gives each state’s small-building installed capacity potential, annual energy generation 
potential, and total area suitable for PV deployment. Also given is the potential electricity 
generation of small buildings as a percentage of each state’s total electricity sales from the 
electric industry in 2013.16 For example, Colorado has an estimated potential to offset 27% of its 
total electricity sales with rooftop PV generation from small buildings. This differs from the 
average relative production of small buildings that was shown in Figure 14, and it instead 
presents their ability to offset their state’s total sales of electricity. 

Mirroring the trend in small-building average relative production in Figure 14, Table 3 shows 
that California, New Mexico, Florida, Arizona, and several New England states can offset the 
highest percentage of their states’ total electricity sales. In contrast, states such as North Dakota 
and Wyoming, which have moderate average relative production from their small buildings, have 
some of the lowest potential to offset total state sales, presumably owing to an above-average 
proportion of their electricity consumption happening outside the residential sector. Nineteen 
states can generate 25% or more of their annual electric sales with rooftop PV, and 40 states can 
generate 20% or more.  
                                                 
16 The quantity of electricity sold was obtained from the U.S. Energy Information Administration’s (EIA’s) “Retail 
Sales of Electricity (Megawatthours) by State by Sector by Provider” data file (EIA 2014). The quantities are 
calculated from utility companies’ responses to Form EIA-861 and estimates derived from Form EIA-861S. The 
quantities, therefore, closely approximate total demand, because they represent all generation except the small 
quantity of electricity generated on site by consumer-owned systems. Data from 2013 were used because 2013 was 
the most recent year with data available. 
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Table 3. Estimated Rooftop PV Technical Potential for Small Buildings by State 

State 
Annual 
Generation 
Potential 
(% of sales) 

Installed 
Capacity 
Potential (GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Total Roof Area 
Suitable for PV 
Deployment 
(millions of m2) 

43.6% 76.8 114.0 525.5 

40.3% 2.0 2.3 13.6 

40.0% 4.2 4.7 28.0 

32.8% 4.6 7.6 32.6 

32.4% 3.2 3.6 21.5 

31.6% 15.0 23.9 103.1 

31.2% 2.1 2.4 14.0 

30.6% 28.3 31.5 189.2 

30.3% 50.3 67.3 343.4 

29.5% 2.9 3.6 19.2 

28.1% 18.8 23.5 126.3 

27.6% 7.2 8.2 48.2 

27.6% 16.3 19.0 109.0 

27.4% 12.2 16.4 80.9 

27.3% 8.2 10.9 55.3 

27.1% 10.0 14.5 67.4 

26.7% 3.0 3.7 20.1 

25.5% 12.3 14.1 82.8 

25.1% 5.4 7.7 36.2 

24.9% 15.6 18.6 104.6 

24.9% 9.8 11.6 65.8 

24.8% 31.3 36.7 210.0 

23.6% 28.4 33.5 192.4 

23.5% 23.9 30.6 160.1 

23.4% 9.7 11.2 65.3 

23.2% 29.6 33.9 198.8 

23.1% 31.0 34.7 206.5 

23.0% 13.9 15.8 92.7 

22.5% 8.3 10.5 55.7 

22.2% 4.0 5.4 26.7 

22.1% 2.0 2.5 13.7 

22.0% 62.7 83.2 424.6 

California 

Vermont 

Maine 

New Mexico 

New Hampshire 

Arizona 

Rhode Island 

Michigan 

Florida 

South Dakota 

Missouri 

Connecticut 

Wisconsin 

Oklahoma 

Kansas 

Colorado 

Montana 

Massachusetts 

Utah 

New Jersey 

Iowa 

New York 

Illinois 

North Carolina 

Oregon 

Pennsylvania 

Ohio 

Minnesota 

Arkansas 

Idaho

Delaware 

Texas 

Tennessee 22.0% 17.0 21.3 114.6 
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State 
Annual 
Generation 
Potential 
(% of sales) 

Installed 
Capacity 
Potential (GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Total Roof Area 
Suitable for PV 
Deployment 
(millions of m2) 

Nevada 21.6% 4.8 7.6 32.9 

Georgia 21.6% 22.4 28.1 149.6 

Maryland 21.4% 10.9 13.3 72.1 

Virginia 20.6% 18.3 22.8 121.6 

Mississippi 20.5% 7.8 10.0 51.7 

Indiana 20.3% 18.3 21.4 122.1 

Nebraska 19.9% 4.8 6.1 32.1 

Alabama 19.1% 13.2 16.8 88.1 

South Carolina 18.9% 11.4 14.9 76.2 

Louisiana 18.3% 12.5 15.7 83.5 

North Dakota 18.3% 2.4 2.9 16.2 

Washington 18.2% 15.7 16.9 105.6 

West Virginia 17.3% 4.8 5.4 32.3 

Kentucky 16.0% 11.6 13.6 77.6 

Wyoming 12.5% 1.5 2.1 10.2 

Washington, DC 4.2% 0.4 0.5 2.8 

Continental U.S. Total 25.0% 731.1 926.4 4,922.3 

5.3 Model Validation 
To characterize the accuracy of the small building predictions, we carried out a validation 
experiment for ZIP codes that have lidar data. We trained the complete model on the 3,312 ZIP 
codes with 90% or greater lidar coverage, predicted the results from these same ZIP codes using 
the fitted model, and analyzed the difference between the predicted and actual values. This 
validation experiment is a best-case performance method, because it is predicting the same data 
on which it is trained and cannot be used to estimate the combined error in areas where ground-
truth data are not available. This model validation is also limited to small buildings, because key 
input data for large and medium buildings are only available at a census division scale; thus, 
large and medium buildings do not have sufficiently fine-resolution input data to enable a 
comparison to ZIP-code-level aggregated lidar data.  

Figure 15 shows the error in predictions of suitable area for each azimuth and tilt combination. 
The black bars in the histogram correspond with differences between the mean prediction and the 
actual observed value. The smaller red bars are size of error outside of the predicted range (lower 
and upper predictions) when the actual observed value is above our upper prediction or below 
our lower prediction. The 54-degree tilt category has been removed, because it is sparely 
represented in the data. The bars are skewed to the left, because the predicted range is a 
conservative estimate and generally under-predicts the true value.  



28 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Figure 15. Histogram of error process for each azimuth and tilt category for small building 
area predictions 

Black bars are the mean prediction error. Red (lighter) bars are the error outside of the 
estimated range (lower/upper). 

The average error per ZIP code in each tilt and azimuth category is 317 m2 and is approximately 
normally distributed, with some skew to the left. The average error per ZIP code across all tilt 
and azimuth combinations is 6,603 m2. Larger aggregations come closer to the true values owing 
to a balance in under- and over-predictions (as seen visually by the symmetry in Figure 15). The 
total error for all 3,312 ZIP codes is 21.9 km2, which is a relative error of 2.55%. Table 4 gives 
relative error percentage for each tilt/azimuth combination. 

Table 4. Relative Error for Each Tilt/Azimuth Combinationa 

Region 15° 28° 41° 54° 

East 27.3% 1.6% -1.7% -149.7%

Southeast 18.4% -6.3% -11.7% -93.1%

South 25.2% 1.8% -4.8% -62.4%

Southwest 19.3% -6.2% -12.4% -101.2%

West 28.9% -0.1% -1.6% -131.4%
a The error for flat roofs is 4%. 
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From the table, it is clear that some tilt/azimuth combinations come much closer to the true 
values than others. The flat area case and several other cases have less than 5% relative error, 
including tilt of 28 degrees and azimuth of east, south, and west—and tilt of 41 degrees and 
azimuth of south, east, and west. The errors for the 54-degree tilt category appear inflated, 
because there are so few rooftops with that tilt in each ZIP code. The overall error of the range is 
0.47% (4.0 km2), with an average error per ZIP code of 1,215 m2 and per azimuth/tilt category 
of 58 m2. Based on these validation results, future studies that use ZIP-code-level estimates can 
use the upper and lower bounds to provide a range of estimates of suitable area. 
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6 Modeling to Extend Medium- and Large-Building PV 
Suitability and Potential Estimates Nationwide 

In contrast to the previous section, which presented the technical potential of PV on small 
buildings, this section presents the estimated technical potential of PV on medium and large 
buildings. Medium buildings have a footprint between 5,000 ft2 and 25,000 ft2, and large 
buildings have a footprint larger than 25,000 ft2. Estimates of suitable rooftop area for these size 
classes were obtained using the same model framework as with small buildings, leveraging what 
was observed in the lidar data set to make predictions in areas not covered by lidar data. We then 
use the same set of technical assumptions and simulation method as before to predict the 
nationwide technical potential of PV on medium and large buildings. 

6.1 Modeled Estimates of Total Developable Area from Medium and 
Large Building Rooftops Nationwide 

In contrast to the small building rooftop area estimates, the number of medium and large 
buildings per ZIP code is not available as a model input. As an input for these medium and large 
building predictions, we used Commercial Building Energy Consumption Survey (CBECS) 
building count data, which are available on a census division scale. Because greater than 99% of 
medium and large buildings within the lidar data had at least one suitable plane, we assumed that 
all medium and large buildings were suitable. Estimates of the total suitable area on each 
building were then derived using the same modeling process used for small buildings and 
described in full in Appendix D, with constituent models described in Appendices A–C. 

To allow state-level predictions, we distributed the estimated rooftop area in a census division to 
its states by population weight.17 This method of distribution assumes that medium and large 
building counts are linearly related to population at a sufficiently large enough geographic scale. 
The actual number of buildings in states with above-average building counts per capita would 
therefore be underestimated, and states with below-average building counts per capita would be 
overestimated.18  

6.2 Estimated National PV Technical Potential from Medium and 
Large Buildings 

Figure 16 shows the total annual rooftop PV generation potential for medium and large buildings 
geographically. The total installed capacity, annual energy generation, suitable roof area, and 
annual energy generation as a percentage of state electricity sales are shown in Table 5. Across 
all states, small buildings have greater potential than the combined potential of medium and large 
buildings. On the national level, medium and large buildings have the potential to generate 

17 To leverage what was known about existing medium and large building counts from the lidar data, known 
building counts within a census division were subtracted from CBECS estimates of building count. The rooftop area 
from the remaining buildings was then distributed among states, weighted by the population of the state that was not 
covered by the lidar data. Because approximately half of the country’s estimated medium and large buildings were 
covered by lidar data, this significantly improved the final state-level estimates.  
18 Because it is not possible to thoroughly evaluate the error introduced with this weighting, we caution the reader to 
consider state-level estimates as a visualization only. 



31 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

506 TWh/year of electricity (14% of total national electricity sales), which is about half of the 
small building potential of 926 TWh/year (25% of total national sales). 

Differences in potential between building size classes can largely be explained by the total 
suitable roof area and the utilization of the available space. Despite the higher percentage of 
medium and large building roof area suitable for PV deployment,19 the far smaller numbers of 
these buildings resulted in a lower total developable area (3.2 billion m2) compared to small 
buildings (4.9 billion m2). Additionally, the generally tilted roof area on small buildings could be 
used more efficiently than the predominantly flat roofs of large buildings, because flat roofs 
require greater spacing between modules to prevent excessive losses from shading. As 
innovative racking and module-packing techniques are developed for flat roofs, the technical 
potential from medium and large buildings could increase.  

Figure 16. Annual rooftop PV generation potential for medium and large buildings 

The relative magnitudes of the state-level results for medium and large buildings (Table 5) 
largely reflect the small building results (Table 3), with a few differences. Washington, D.C. can 
offset a much greater percentage of its total sales from medium and large buildings, because it 
differs from all the lower 48 states by having more developable area on medium and large 
buildings than on small buildings. Relative to other states, Arizona, Idaho, New Mexico, and 
Utah have less potential generation from these building classes than from small buildings, driven 
primarily by fewer large buildings per capita in that region compared with the national average. 

19 Within the lidar data, the roof area suitable for development as a fraction of total roof area was 66% for large 
buildings, 49% for medium buildings, and 26% for small buildings. 
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Table 5. Estimated Rooftop PV Technical Potential of Medium and Large Buildings by State 

State 
Annual 
Generation 
Potential 
(% of sales) 

Installed 
Capacity 
Potential 
(GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Total Roof Area 
Suitable for PV 
Deployment 
(millions of m2) 

30.6% 52.2 80.0 435.3 

25.4% 1.6 2.0 13.7 

22.1% 5.6 6.6 46.3 

21.5% 10.1 11.9 82.4 

21.0% 2.0 2.3 16.5 

20.1% 2.1 2.4 16.7 

19.7% 1.0 1.1 7.9 

18.0% 3.9 6.4 33.8 

17.3% 8.5 10.7 70.4 

16.9% 6.1 9.0 51.9 

16.7% 7.2 10.0 59.5 

16.2% 25.9 35.9 213.6 

15.5% 9.3 11.6 79.0 

15.4% 9.1 10.6 75.7 

15.3% 13.7 15.8 114.1 

14.5% 9.4 12.1 78.1 

14.3% 4.2 5.7 34.7 

14.2% 3.3 4.4 27.7 

13.4% 15.7 19.0 131.6 

12.7% 35.1 48.1 289.9 

12.6% 15.3 18.6 129.7 

12.6% 7.3 8.7 60.2 

12.2% 15.8 18.3 131.3 

12.2% 12.2 15.9 101.9 

11.8% 10.2 13.1 83.9 

11.6% 7.6 9.9 62.6 

11.4% 11.1 14.7 92.3 

11.3% 14.0 16.5 116.8 

10.9% 1.0 1.2 8.1 

10.8% 4.4 5.1 35.6 

10.8% 3.9 5.0 31.9 

California 

Rhode Island 

Connecticut 

Massachusetts 

New Hampshire 

Maine 

Vermont 

Nevada 

Maryland 

Colorado 

Oklahoma 

Florida 

New Jersey 

Minnesota 

Michigan 

Missouri 

Kansas 

Nebraska 

Illinois 

Texas 

New York 

Wisconsin 

Ohio 

Georgia 

Virginia 

Louisiana 

North Carolina 

Pennsylvania 

Washington DC 

Oregon 

Arkansas 

Alabama 10.7% 7.2 9.4 58.6 
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State 
Annual 
Generation 
Potential 
(% of sales) 

Installed 
Capacity 
Potential 
(GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Total Roof Area 
Suitable for PV 
Deployment 
(millions of m2) 

Iowa 10.7% 4.1 5.0 33.5 

Mississippi 10.6% 3.9 5.2 31.8 

New Mexico 10.6% 1.5 2.4 12.6 

Tennessee 9.9% 7.4 9.6 60.4 

South Dakota 9.3% 0.9 1.1 7.1 

Kentucky 9.2% 6.4 7.8 52.9 

Indiana 9.2% 8.0 9.7 65.9 

Utah 9.1% 1.9 2.8 16.2 

Delaware 9.0% 0.8 1.0 6.6 

Washington 8.5% 7.1 7.8 57.9 

South Carolina 6.6% 3.8 5.2 31.4 

North Dakota 6.3% 0.8 1.0 6.7 

West Virginia 5.6% 1.5 1.8 12.5 

Idaho 4.2% 0.7 1.0 6.1 

Arizona 2.8% 1.3 2.1 10.9 

Wyoming 1.8% 0.2 0.3 1.7 

Montana 1.3% 0.1 0.2 1.2 

Continental U.S. Total 13.6% 386.5 506.0 3,207.4 
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7 Estimated National PV Technical Potential for 
All Buildings 

In this section, we present the combined PV technical potential estimates for small buildings 
(from Section 0) and medium and large buildings (from Section 6) to produce an estimate of the 
total national installed capacity and generation potential of rooftop PV. Because the medium and 
large building estimates are only available at the state level, the combined results are presented at 
that level. Table 6 shows potential installed PV capacity, rooftop area suitable for development, 
and annual generation (in terawatt-hours and as a percentage of total electricity sales in 2013) by 
state. Figure 17 and Figure 18 (at the end of this section) map the potential generation results. 

The total nationwide technical potential of PV across all buildings is 1,118 GW of installed 
capacity and 1,432 TWh of annual energy generation, which equates to 39% of total national 
electric sales. This is significantly greater than a previous NREL estimate of 664 GW of installed 
capacity and 800 TWh of annual energy generation (Lopez et al. 2012).20 The difference can be 
attributed to increases in module power density,21 improved estimation of building suitability, 
higher estimates of the total number of buildings, and improvements in PV performance 
simulation tools that previously tended to underestimate productivity.  

Table 6 shows California with the greatest potential to offset use—PV on its rooftops could 
generate 74% of the electricity sold by its utilities in 2013. A cluster of New England states 
could generate more than 45%, despite these states’ below-average solar resource. Washington, 
with the lowest population-weighted solar resource in the continental United States, could still 
generate 27%. The best-performing six states—in terms of potential PV generation as a percent 
of total state sales—all have significantly below-average household consumption, suggesting the 
role an energy-efficient residential sector could play in achieving a high penetration of energy 
from rooftop PV. 

Wyoming has the lowest potential for offsetting statewide electricity sales with rooftop PV, at 
14%, because it has the highest per-capita electricity sales of any state at 30.3 MWh/year/person 
(250% of the national average), driven by very high electricity use in the industrial sector (60% 
of retail electricity sales). Washington D.C. has the second-lowest potential to offset electricity 
sales, at 15%; lidar data indicate that this unique, almost entirely urban district has only 17.4 m2 
of developable roof area per capita, which is much lower than the average of 24.9 m2 per capita 
throughout the rest of the lidar -covered regions.  

Some states with below-average solar resource (such as Minnesota, Maine, New York, and South 
Dakota) have similar or even greater potential to offset total sales than states with higher-quality 
resource (such as Arizona and Texas). This highlights the observation that solar resource is only 
one of several factors that determine the offset potential.  

                                                 
20 Lopez et al. (2012) draw most of their rooftop PV results from the analysis carried out by Denholm and 
Margolis (2008).  
21 Our analysis assumed a panel power density of 160 W/m2, whereas Lopez et al. (2012) assumed 135 W/m2. 
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Florida can offset 47% of its total consumption, despite having an average household 
consumption that is 130% above the national average. This is largely explained by significantly 
below-average electricity consumption outside of the residential sector, which makes total per-
capita state sales slightly lower than the national average, plus high-quality solar resource and a 
high percentage of buildings suitable for PV. In contrast, the other south Atlantic states range 
from a potential 23% to 35% of electricity offset, owing primarily to lower average suitability 
and higher per-capita electricity sales. 

Table 6. Total Estimated Technical Potential (All Buildings) for Rooftop PV by State 

State 
Annual 
Generation 
Potential 
(% of sales) 

Installed 
Capacity 
Potential (GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Total Roof Area 
Suitable for PV 
Deployment 
(millions of m2) 

California 74.2% 128.9 194.0 961 

Maine 60.0% 6.3 7.1 45 

Vermont 60.0% 3.0 3.4 21 

Rhode Island 56.6% 3.8 4.4 28 

New Hampshire 53.4% 5.3 5.9 38 

Connecticut 49.8% 12.8 14.8 95 

Massachusetts 47.0% 22.5 26.0 165 

Florida 46.5% 76.2 103.2 557 

Michigan 45.9% 42.1 47.3 303 

Colorado 44.0% 16.2 23.5 119 

Oklahoma 44.1% 19.3 26.4 140 

New Mexico 43.4% 6.1 10.0 45 

Missouri 42.7% 28.3 35.6 204 

Kansas 41.7% 12.5 16.6 90 

Nevada 39.6% 8.7 13.9 67 

New Jersey 40.4% 24.9 30.1 184 

Wisconsin 40.1% 23.6 27.7 169 

Maryland 38.7% 19.3 23.9 142 

Minnesota 38.5% 23.1 26.4 168 

South Dakota 38.7% 3.8 4.7 26 

New York 37.4% 46.6 55.3 340 

Illinois 37.0% 44.1 52.5 324 

Ohio 35.3% 46.8 53.0 338 

Iowa 35.5% 14.0 16.6 99 

Texas 34.6% 97.8 131.2 715 

North Carolina 34.9% 35.0 45.3 252 
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State 
Annual 
Generation 
Potential 
(% of sales) 

Installed 
Capacity 
Potential (GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Total Roof Area 
Suitable for PV 
Deployment 
(millions of m2) 

Pennsylvania 34.5% 43.6 50.4 316 

Nebraska 34.1% 8.2 10.5 60 

Utah 34.3% 7.2 10.4 52 

Oregon 34.2% 14.1 16.3 101 

Georgia 33.8% 34.6 44.1 251 

Arizona 34.4% 16.3 26.1 114 

Arkansas 33.3% 12.2 15.5 88 

Virginia 32.4% 28.5 35.8 205 

Tennessee 31.9% 24.4 30.9 175 

Mississippi 31.2% 11.7 15.2 84 

Delaware 31.0% 2.9 3.5 20 

Louisiana 29.8% 20.1 25.6 146 

Alabama 29.8% 20.4 26.2 147 

Indiana 29.5% 26.3 31.1 188 

Montana 28.0% 3.2 3.9 21 

Washington 26.6% 22.8 24.7 164 

Idaho 26.4% 4.7 6.4 33 

Kentucky 25.2% 18.0 21.4 131 

South Carolina 25.5% 15.2 20.0 108 

North Dakota 24.6% 3.3 3.9 23 

West Virginia 22.9% 6.3 7.2 45 

Washington DC 15.1% 1.3 1.7 11 

Wyoming 14.2% 1.7 2.4 12 

Continental U.S. Total 38.6% 1,118 1,432 8,130 



37 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

 
Figure 17. Total annual energy generation potential from rooftop PV for all building sizes 

 

  
Figure 18. Potential rooftop PV annual generation from all buildings as a percentage of state total 

2013 electricity sales 
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8 Conclusions and Future Research Directions 
In this report, we considered the technical potential of PV systems installed on existing, suitable 
roofs within the continental United States. We evaluated the technical potential of rooftop PV 
within 47 cities—with a detailed analysis for 11 cities—by using a DHS lidar data set (covering 
40% of the national population and 23% of the building stock) to estimate roof area suitable for 
PV deployment. We also leveraged the DHS lidar data to build models for predicting the total 
amount of suitable roof area in regions for which lidar data do not exist. 

Using statistical models and ACS building counts, we made nationwide ZIP-code-level estimates 
of the number and characteristics of small buildings, showing broad regional trends in both the 
suitability and electric-generation potential of rooftops. Although only 26% of the total rooftop 
area on small buildings is suitable for PV deployment, the sheer number of buildings in this class 
gives small buildings the greatest technical potential. Small building rooftops could 
accommodate 731 GW of PV capacity and generate 926 TWh of PV energy annually, which 
represents approximately 65% of the total technical potential of rooftop PV.  

Using statistical models and CBECS building counts, we made nationwide estimates of the 
number and characteristics of medium and large buildings on the census division level and then 
distributed them to the state level by population weight. Medium and large buildings have a total 
installed capacity potential of 386 GW and energy generation potential of 506 TWh/year, 
approximately 35% of the total technical potential of rooftop PV. 

The total national technical potential of rooftop PV is 1,118 GW of installed capacity and 
1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector 
sales. Table 7 summarizes the total rooftop area suitable for PV and technical potential metrics, 
by building class for the nation. Because the relative magnitudes of the results are a strong 
function of the square footage used as a cutoff between divisions, these results should not be 
presented without that information.  

Table 7. Nationwide Estimated Suitable Area and Technical Potential by Building Class 

Building Class (building 
footprint) 

Total Suitable 
Area (billions 
of m2) 

Installed 
Capacity 
Potential (GW) 

Annual 
Generation 
Potential 
(TWh/year) 

Annual Generation 
Potential (% of 
national sales) 

Small (< 5,000 ft2) 4.92 731 926 25.0% 

Medium (5,000–25,000 ft2) 1.22 154 201 5.4% 

Large (> 25,000 ft2) 1.99 232 305 8.2% 

All Buildings 8.13 1,118 1,432 38.6% 

 
These results are also sensitive to assumptions about module performance, which is expected to 
continue improving. For example, for this analysis we assumed a module power density of 
160 W/m2, corresponding to a module efficiency of approximately 16%. If a power density of 
200 W/m2 were assumed instead, corresponding to a module efficiency of approximately 20%, 
each of the technical potential estimates would increase about 25% above the values stated in 
this report. Furthermore, these are only estimates of the potential from existing, suitable roof 
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planes; they do not consider the immense potential of ground-mounted PV. Actual generation 
from PV in urban areas could exceed these estimates by installing systems on less suitable roof 
area, by mounting PV on canopies over open spaces such as parking lots, or by integrating PV 
into building facades.  

Because our results are estimates of technical potential, they do not consider what would be 
required to use all the potential PV-generated energy. In practice, the integration of a significant 
quantity of rooftop PV into the national portfolio of generation capacity would require a flexible 
grid, supporting infrastructure, and a suite of enabling technologies. 

8.1 Data for Public Use 
The data set developed by NREL contains a significant amount of information specific to 
rooftops suitable for PV installation. The data were developed with the intention of providing a 
much-improved starting point for PV research regionally and nationwide. This base data set can 
be combined with numerous other data sets—such as data sets of insolation data, market data, or 
electricity consumption data—to provide more precise and actionable information than has been 
available previously.  

There are many possible directions for future analyses, and it is the author’s hope that the data 
will be used creatively by municipalities, utility providers, solar energy researchers, and anyone 
else interested in using rooftop data to advance PV deployment. We have posted supporting data 
on the NSRDB Data Viewer website.22 Data layers include a regional summary and ZIP-code-
level summary for all areas where lidar data are available as well as national coverage of ZIP 
code estimates as predicted by the methods described in this report. Detailed documentation of 
each step in our analysis, including scripts for running the GIS tools, are linked to in the 
metadata section of each layer. This information can be accessed by clicking the question mark 
icon next to each layer in the table of contents in the Data Viewer.  

8.2 Future Work 
Within the DHS lidar data set used in this analysis, approximately 30 cities have multiple years’ 
worth of data, and this type of multiyear data likely will continue to grow. Growth of these data 
could enable analysis to be performed over time to examine whether or how rooftop PV 
technical potential changes over time. 

The estimates of PV electricity production from small buildings within this report were made on 
the ZIP-code level, and they could be aggregated to any useful administrative region. For 
example, capacity and electricity-production estimates could be aggregated for a given utility 
service territory to inform utilities of the quantity and spatial distribution of distributed 
generation potential within their territories. Information on the quantity and temporal 
characteristics of distributed generation within a service territory could help guide the design of 
new rate structures that accurately track services rendered, as the grid continues to modernize.  

Using the DHS lidar data, we made building-level estimates of potential productivity from 
rooftop PV. Combining these results with modeled energy consumption within the same regions 
                                                 
22 See maps.nrel.gov/pv-rooftop-lidar. 

http://maps.nrel.gov/pv-rooftop-lidar
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would enable analysis of the ability of PV to offset consumption at the building level. This could 
provide information on how local distribution requirements could change under increasing levels 
of distributed PV adoption. If paired with a technology-diffusion model, such as NREL’s 
Distributed Generation Market Demand Model (dGen), customer-adoption behavior could be 
incorporated, and a timetable for such changes could be estimated.  

We could improve our model predictions by leveraging raw orthoimagery (satellite images) to 
classify potential areas for PV installations and thoroughly explore geostatistical methods on a 
national scale. Although the result of doing so cannot approach the accuracy of the lidar analysis 
described here, it may provide a finer-resolution estimate where fine-resolution orthoimagery is 
available but lidar data are not. 
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Appendix A: Rooftop Tilt and Azimuth Model 
In this appendix, we explore the distribution of rooftop planes in each tilt and azimuth category 
to understand the practical tilt and orientation of planes in the data set. Using that information, 
we develop a predictive model that can be used to infer the distribution of planes in an area 
where lidar data are not available. 

Figure A-1 gives the fraction of buildings for each ZIP code grouped according to four tilt 
classes and five azimuth classes.23 These classes, combined with a single class for flat roofs, 
create 21 different orientation bins that can be used to characterize rooftops. Most developable 
rooftop planes fall into the 28-degree tilt category, and steep rooftops (54 degrees) are an order 
of magnitude less common than the next category (41 degrees). Azimuths east, south, and west 
are most common, particularly among the 28-degree category of rooftops. These azimuths 
correspond to buildings aligned on a cardinal street grid. These observations appear to hold for 
small, medium, and large buildings alike. 

FigureA-2 shows the fraction of flat rooftops in ZIP codes for each class of buildings. Nearly all 
large buildings provide flat planes. Approximately three in four medium buildings have suitable 
flat planes, while less than one in four small buildings have suitable flat planes. Figure A-3 
groups the fraction of small buildings with flat planes according to the ZIP code locale type, 
showing that large cities have the most flat-roofed small buildings and that the fraction decreases 
in more urban areas. The same trend appears to be true of homogeneity when a chi-squared test 
is applied to the contingency distribution of building planes in each tilt and azimuth combination; 
17% of ZIP codes labeled “small suburb” show statistically significant heterogeneity among their 
tilt/azimuth distribution, while only 7.2% of large cities are significantly heterogeneous.24 

                                                 
23 The five azimuth bins are 45 degrees each, covering 67.5 degrees to 292.5 degrees, as defined in Figure 6. The 
four tilt bins equally split the 50.5 degree range from 9.5 degrees to 60 degrees. Anything less than 9.5 degrees is 
considered flat.  
24 The  chi-squared test was performed with factored building plane counts and alpha = 0.05. 
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Figure A-1. Fraction of suitable rooftop planes in each tilt and azimuth category for 

small, medium, and large buildings 

 

 
Figure A-2. Fraction of flat suitable rooftop planes for small, medium, and large buildings 
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Figure A-3. Fraction of small buildings with flat planes grouped by locale type 

 

 
Figure A-4. Probability distribution functions for each combination of azimuth and tilt for 

small buildings 

Figure A-4 shows the probability density function for each combination of tilt and azimuth for 
small buildings alone. This plot is log-scaled and makes clear the long tail on each distribution 
(also apparent in the box plots in Figure A-1) and lognormal shape. Using this observation, we 
can formulate average “characteristic” matrices by using the lognormal mean: 
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=   

=  

. . = 1 
 
where T is the “characteristic” 2-D matrix describing the average distribution of a number of 
matrices. T is normalized to 1 so that the fractions form a complete distribution.  

Using this method, national average distribution can be calculated for each building class, 
providing insight into the distribution of azimuth and tilt in each class (Table A-1, Table A-2, 
and TableA-3). 

Table A-1. National Average Tilt/Azimuth Distribution for Planes on Large Buildings 

 Flat E SE S SW W 

0° 0.93      

15°  0.01  0.01  0.01 

28°  0.01  0.01  0.01 

41°       

54°       

 
Table A-2. National Average Tilt/Azimuth Distribution for Planes on Medium Buildings 

 Flat E SE S SW W 

0° 0.74      

15°  0.02 0.01 0.04 0.01 0.02 

28°  0.03 0.02 0.05 0.02 0.03 

41°    0.01   

54°       

 
Table A-3. National Average Tilt/Azimuth Distribution for Planes on Small Buildings 

 Flat E SE S SW W 

0° 0.26      

15°  0.03 0.02 0.06 0.02 0.03 

28°  0.09 0.06 0.18 0.06 0.09 

41°  0.02 0.02 0.03 0.01 0.02 

54°       

 
Confidence interval estimates can be generated for each fitted mean using the Cox method 
(Olsson 2005; Land 1971): 
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where z is the distribution parameter for the desired confidence level. 

As a final method to understand sources of variability in this data set, we perform a principle 
components analysis on the 21 categorical fractions (20 azimuth and tilt combinations, plus 
fraction flat) for small buildings. TableA-4 provides the loadings for the first three components, 
which cumulatively describe 90% of the total variance observed. In the table, the dominant 
loadings have been bolded. The first component is dominated by the fraction of flat roofs. The 
second component most strongly measures the degree to which a ZIP code has southwest and 
southeast azimuths (most rare in the data), and the third component measures the fraction of 
south-facing azimuths (next most rare). 

Table A-4. Principle Component Loadings for Tilt/Azimuth 

 Component 1 Component 2 Component 3 

Flat 0.94 -0.09 0.07 

E, 15° -0.02 -0.12 -0.20 

E, 28° -0.14 -0.20 -0.33 

E, 41° -0.04 -0.02 -0.08 

E, 54°    

SE, 15° -0.01 0.10 0.02 

SE, 28° -0.09 0.51 0.17 

SE, 41° -0.03 0.17 0.01 

SE, 54°    

S, 15° -0.02 -0.25 0.13 

S, 28° -0.22 -0.48 0.72 

S, 41° -0.06 -0.05 0.05 

S, 54°    

SW, 15° -0.01 0.11 0.03 

SW, 28° -0.08 0.50 0.15 

SW, 41° -0.03 0.16 0.01 

SW, 54°    

W, 15° -0.02 -0.10 -0.18 

W, 28° -0.14 -0.22 -0.46 

W, 41° -0.04 -0.03 -0.10 

W, 54°    
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Appendix B: Small Building Suitability Model 
This appendix describes our model for determining how many small buildings in a given area are 
suitable for PV installation. It combines an analysis of rooftop suitability (fraction of suitable 
rooftops in a given area) with a method for estimating the total number of small buildings. When 
combined, the total expected number of small suitable buildings can be determined. 

FigureB-1 and FigureB-2 show the distribution of fraction of suitable rooftops at the state level. 
Small building suitability at the state level appears to be normally distributed. On average, per-
state suitability is 79% (median: 79.39%, minimum: 58.70%, maximum: 92.93%, standard 
deviation: 7.21%). 

 
Figure B-1. Distribution of suitable percentage among small buildings (within states) 

 
Figure B-2. Suitable percentage among small buildings (within states) and 95% confidence 

intervals 
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Aggregating instead by ZIP codes reveals finer-scale variability, particularly among urban and 
rural regions. Looking at ZIP codes in the aggregate as seen in FigureB-3, we see a skewed 
distribution, with a tail to the left. To address this tail, we find that ZIP-code-level statistics can 
be more harmoniously described by partitioning using National Center for Education Statistics 
(NCES) locale description and U.S. census division. FigureB-4 gives the percentage of small 
suitable buildings in each ZIP code, grouped according to these variables, and TableB-1 gives 
the complete statistics for every combination of categories. 

 
Figure B-3. Distribution of the percentage of small suitable buildings by ZIP code 
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Figure B-4. Percentage of small buildings containing a flat area with at least 10 m2 suitable for PV, 

by census division and aggregated locale description 
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Table B-1. Suitable Percentage of Small Buildings by Locale/Division 

Locale Type Census Division Mean Median Min Max N 

City Large East North Central 80.32 81.80 12.50 100.00 222.00 

City Midsize East North Central 79.36 78.38 65.57 100.00 65.00 

City Small East North Central 81.06 81.70 71.01 100.00 39.00 

Rural Distant East North Central 87.51 88.03 61.54 100.00 15.00 

Rural Fringe East North Central 84.67 88.16 52.63 100.00 61.00 

Suburb Large East North Central 84.06 84.62 47.68 100.00 286.00 

Suburb Midsize East North Central 76.55 79.67 69.48 80.50 3.00 

Suburb Small East North Central 100.00 100.0 100.0 100.00 1.00 

Town Fringe East North Central 81.78 84.62 50.00 97.06 17.00 

City Large East South Central 84.16 83.08 70.72 100.00 46.00 

City Midsize East South Central 81.93 84.82 47.34 100.00 53.00 

Rural Distant East South Central 85.76 84.30 74.30 97.39 8.00 

Rural Fringe East South Central 88.13 91.11 63.92 100.00 18.00 

Suburb Large East South Central 72.20 74.12 33.33 96.28 29.00 

Suburb Midsize East South Central 92.89 92.89 91.12 94.67 2.00 

Town Distant East South Central 87.72 87.72 87.72 87.72 1.00 

Town Fringe East South Central 88.88 88.31 78.90 100.00 4.00 

City Large Middle Atlantic 82.37 84.08 40.52 100.00 273.00 

City Midsize Middle Atlantic 77.00 77.15 45.45 93.75 22.00 

City Small Middle Atlantic 84.81 84.62 70.69 100.00 54.00 

Rural Distant Middle Atlantic 84.15 84.37 66.67 100.00 11.00 

Rural Fringe Middle Atlantic 84.95 85.31 66.67 100.00 56.00 

Suburb Large Middle Atlantic 80.62 81.65 25.00 100.00 523.00 

Suburb Midsize Middle Atlantic 75.00 75.00 75.00 75.00 1.00 

Suburb Small Middle Atlantic 82.67 81.63 80.00 87.43 4.00 

Town Fringe Middle Atlantic 84.34 84.54 67.44 92.59 9.00 

City Large Mountain 77.10 80.39 46.07 100.00 89.00 

City Midsize Mountain 71.54 73.71 55.02 89.02 22.00 

City Small Mountain 79.75 84.82 61.54 94.26 9.00 

Rural Distant Mountain 76.41 77.40 58.55 85.31 8.00 

Rural Fringe Mountain 88.93 90.04 78.77 98.68 5.00 

Rural Remote Mountain 66.61 66.61 61.79 71.44 2.00 

Suburb Large Mountain 74.25 74.20 33.33 100.00 147.00 

Suburb Small Mountain 65.83 68.73 42.11 78.08 11.00 
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Locale Type Census Division Mean Median Min Max N 

Town Distant Mountain 72.89 72.89 71.71 74.07 2.00 

Town Fringe Mountain 78.97 77.28 72.26 91.07 8.00 

Town Remote Mountain 86.31 86.31 86.31 86.31 1.00 

City Midsize New England 74.71 80.92 28.90 94.96 45.00 

City Small New England 78.86 79.08 71.59 85.57 18.00 

Rural Distant New England 71.31 70.81 44.44 83.11 12.00 

Rural Fringe New England 67.69 71.48 38.46 89.39 14.00 

Rural Remote New England 89.58 89.58 89.58 89.58 1.00 

Suburb Large New England 74.97 78.38 31.09 100.00 122.00 

Suburb Midsize New England 77.25 77.02 70.00 84.46 6.00 

Town Distant New England 73.80 73.52 59.63 87.95 7.00 

Town Fringe New England 74.12 71.81 66.94 84.52 6.00 

City Large Pacific 87.29 89.16 49.48 100.00 244.00 

City Midsize Pacific 87.10 89.94 46.41 98.17 93.00 

City Small Pacific 89.86 91.09 57.14 100.00 38.00 

Rural Distant Pacific 80.13 80.13 76.04 84.21 2.00 

Rural Fringe Pacific 80.14 77.89 64.72 94.72 12.00 

Suburb Large Pacific 89.47 91.48 53.85 100.00 186.00 

Suburb Midsize Pacific 90.20 90.49 80.34 96.58 7.00 

Suburb Small Pacific 80.10 84.89 60.00 92.34 10.00 

Town Distant Pacific 82.15 82.15 82.15 82.15 1.00 

Town Fringe Pacific 74.83 78.35 60.00 88.86 12.00 

City Large South Atlantic 80.40 81.12 49.44 100.00 155.00 

City Midsize South Atlantic 80.92 80.53 27.21 100.00 185.00 

City Small South Atlantic 77.02 83.12 41.82 100.00 4.00 

Rural Distant South Atlantic 76.77 81.11 43.28 100.00 16.00 

Rural Fringe South Atlantic 79.51 81.95 28.30 100.00 44.00 

Suburb Large South Atlantic 85.66 87.80 25.29 100.00 534.00 

Suburb Midsize South Atlantic 87.28 88.95 50.00 100.00 42.00 

Suburb Small South Atlantic 85.47 85.44 74.93 95.06 18.00 

Town Distant South Atlantic 71.43 71.43 71.43 71.43 1.00 

City Large West North Central 76.50 75.38 55.51 100.00 133.00 

City Midsize West North Central 72.67 71.94 48.61 100.00 46.00 

City Small West North Central 77.58 77.51 62.02 100.00 29.00 

Rural Distant West North Central 84.18 84.88 57.14 100.00 21.00 
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Locale Type Census Division Mean Median Min Max N 

Rural Fringe West North Central 85.04 88.51 37.68 98.99 45.00 

Suburb Large West North Central 79.14 80.20 54.46 98.74 146.00 

Suburb Midsize West North Central 77.62 85.79 57.42 89.65 3.00 

Suburb Small West North Central 82.95 84.78 71.03 93.53 6.00 

Town Distant West North Central 84.92 84.92 84.02 85.83 2.00 

Town Fringe West North Central 83.16 86.74 48.78 98.59 14.00 

Town Remote West North Central 75.37 75.37 73.00 77.73 2.00 

City Large West South Central 88.90 89.24 61.66 100.00 207.00 

City Midsize West South Central 82.30 82.68 56.90 100.00 66.00 

City Small West South Central 84.79 85.71 66.67 97.55 18.00 

Rural Distant West South Central 84.88 84.94 75.43 96.46 8.00 

Rural Fringe West South Central 87.11 90.31 25.84 100.00 44.00 

Suburb Large West South Central 90.17 91.99 40.00 100.00 101.00 

Suburb Small West South Central 86.96 89.53 63.04 95.30 7.00 

Town Distant West South Central 94.99 96.38 91.25 97.34 3.00 

Town Fringe West South Central 89.65 89.53 80.91 98.25 10.00 

 
B.1 Predictive Regression Model 
As a basis for prediction in a multiple regression model, we gathered geospatial data from the 
U.S. National Land Cover Database (NLCD 2006), NCES (2006), and U.S. Census Bureau. At 
the outset of model building, we expected different regions of the country may have different 
characteristics with respect to PV suitability. We also expected, based on our understanding of 
the shading process, building density is likely well correlated with suitability.  

In the search for the best-performing model for this data set, we tried combinations several 
variables. The variables that appear well correlated with PV suitability are: 

Locale Description: NCES (2006) locale description (e.g., Small Town, Remote Rural) 
of each ZIP code area. 

Census Division: The U.S. Census divides the country into nine divisions: East North 
Central, East South Central, West North Central, West South Central, Middle Atlantic, 
South Atlantic, New England, Pacific, and Mountain (FigureB-5). 

Land Cover Classification Percentage: NLCD (2006) percentages for each ZIP code. 
Those that appeared to be particularly useful and are included in our model include: 
Developed Open Space, Developed Low Intensity, Developed Medium Intensity, 
Developed High Intensity, Forest, and Scrub. 

Population Density: 2010 population density per square mile from the U.S. Census 
Bureau was used. 
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Location: We found meaningful correlations between northing (or latitude) and 
suitability, while easting (or longitude) did not appear significantly correlated. In this 
work, we use projected coordinates25 for easy comparability and convenient (meters-
based) scale. 

Lidar Coverage: When fitting a regression model, substantial improvements were 
obtained by weighting ZIP codes by their coverage in the lidar data. Both the total 
number of buildings detected and the fraction of the area covered were tested, with the 
former proving more useful. 

 

 
Figure B-5. Census divisions 

Additional variables that were considered but not ultimately used owing to low correlation with 
small building rooftop suitability or for having too coarse of a resolution include the Residential 
Energy Consumption Survey, Commercial Building Energy Consumption Survey (CBECS), 
American Housing Survey, U.S. Economic Census, and Zillow building and sales data. 

We constructed several models using combinations of the variables above, and we “trained” each 
model using a randomly selected subset of 75% of the original lidar data set. We then assessed 
the predictive accuracy of our models using the remaining 25% of the data by predicting the 
percentage of buildings that are small and suitable for PV and comparing those predictions to 
their actual values. We found that reducing our best-performing model by removing the three 

                                                 
25 Common Web Mercator (EPSG 3857) was used for the spatial projection. 
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least useful variables provided a simplified version that sacrificed little in terms of accuracy. 
This reduced model served as our final model. About 60% of our final model’s predictions were 
within 10% of the observed lidar values, and about 80% of the predictions were within 20% of 
the observed values. 

Table B-2 shows fit statistics for a subset of the small building models evaluated. In each case 
the root-mean-square error (RMSE) is evaluated via 100-fold cross validation, withholding 25% 
of the training data to test against. The Basic Model fits against only locale description and 
census division. The Large model adds land cover and canopy information (classes 10, 20, 40, 
and 50 and their subclasses) along with population density. The States Model adds the U.S. state 
name, for a modest improvement, but has the consequence of causing undesirable transitions at 
state boundaries. Finally, the Spatial Model incorporates the northing of the ZIP code centroid 
being fitted.  

Table B-2. Model Tuning and Performance, Final (Reduced) Model Marked with an Asterisk  

Model Degrees of Freedom AIC BIC RMSE 

Basic 81 -4,585.853 -4,067.163 0.142 

Large 86 -5,016.133 -4,465.425 0.135 

States 64 -5,399.268 -4,989.439 0.130 

Spatial 90 -5,981.261 -5,404.939 0.121 

Weighted 90 -6,515.968 -5,939.646 0.041 

Reduced* 86 -6,430.093 -5,879.386 0.042 

 
Although these models perform well (RMSE 12%–14%), substantial additional gains can be 
obtained with the Weighted Model, in which a least squares regression is augmented with 
weights from the number of buildings detected during the lidar GIS processing. This weighted 
least squares (WLS) approach has the effect of up-weighting dense urban areas with good lidar 
coverage in our data set while down-weighting ZIP areas with few buildings or poor lidar 
coverage. For instance, Table B-3 provides statistics for four outliers common to the prior 
models, whose poor coverage seemingly affects the quality of the fit. For simplicity, we also 
present a Reduced Model in which the three least useful variables have been removed. This 
reduced model performs nearly as well, with 4.2% RMSE. TableB-4 and TableB-5 provide 
analysis of variance (ANOVA) results for these models and their parameters. 
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Table B-3. Examples of Outliers in Unweighted Regression 

ZIP Code City State Total 
Buildings 

lidar 
Coverage 
(%) 

Population 
Density 
(pop./mi2) 

True 
Suitability 
(%) 

20560 Washington DC 3 100 7.5 0 

63045 St Louis MO 171 100 69.1 7 

90095 Los Angeles CA 8 100 15,165.0 0 

50061 Des Moines IA 261 28 87.3 79 

 
Table B-4. ANOVA on Weighted Model 

Source Df SS MS F P-value 

Locale Description 11 0.26 0.02 13.15 0.0000 

Census Division 8 2.29 0.29 162.59 0.0000 

NLCD21 1 0.28 0.28 157.93 0.0000 

NLCD22 1 0.01 0.01 2.86 0.0910 

NLCD23 1 0.00 0.00 0.89 0.3453 

NLCD24 1 0.65 0.65 369.04 0.0000 

NLCD11 1 0.02 0.02 13.93 0.0002 

NLCD40 1 0.34 0.34 190.98 0.0000 

NLCD50 1 0.01 0.01 7.59 0.0059 

Population Dens. 1 0.01 0.01 2.88 0.0898 

Northing 1 0.68 0.68 386.60 0.0000 

Locale Desc. * Census Division 60 0.47 0.01 4.43 0.0000 

Residuals 4,374 7.72 0.00 — — 

 
Table B-5. ANOVA on Reduced (Final) Model 

Source Df SS MS F P-value 

Locale Description 11 0.26 0.02 12.89 0.0000 

Census Division 8 2.29 0.29 159.35 0.0000 

NLCD21 1 0.28 0.28 154.78 0.0000 

NLCD24 1 0.53 0.53 296.69 0.0000 

NLCD11 1 0.04 0.04 23.44 0.0000 

NLCD40 1 0.32 0.32 176.76 0.0000 

Northing 1 0.69 0.69 381.41 0.0000 

Locale Desc. * Census Division 60 0.44 0.01 4.41 0.0000 

Residuals 4,378 7.88 0.00 — — 
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The proportion of predictions within 10% and 20% of their actual values using the final full 
(weighted) model was 59.4% and 83.3%, respectively. Similarly, the proportion of predictions 
within 10% and 20% of the actual values using the final reduced model was 59.4% and 83.1%, 
respectively. Therefore, we suggest using the reduced model—henceforth referred to as the final 
model—as the basis for future predictions and analyses because it does not sacrifice predictive 
capability and it is more parsimonious.  

B.2 Spatial Correlation 
To understand whether prediction errors might be correlated in space, we computed Moran’s I 
on the underlying process and the regression residuals. As is standard, we computed Moran’s I 
using the network of eight nearest neighbors. The underlying process has an accumulated 
Moran’s I of 0.56 with p-value << 0.05, suggesting a significant spatial autocorrelation. By 
comparison, the post-fit residuals have an aggregate Moran’s I of 0.42 with p-value << 0.05. 
FigureB-6 provides correlograms plotting Moran’s I as a function of lag distance for both the 
actual values and the regression residuals. Lag distance is defined as the number of “hops” on the 
nearest neighbor network.  
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Figure B-6. Spatial autocorrelation of percentage of buildings that are small and suitable for PV, 

with data aggregated into ZIP codes, both before and after regression fitting 

These results suggest that, while the regression can capture some spatial relationships in the data, 
there is still substantial spatial dependency that might be used to better fit the model. There is 
also a relatively strong spatial autocorrelation for ZIP codes within one to three lags, but the 
autocorrelation falls off at greater distances. Based on this result, we explore geostatistical 
modeling as a potential extension to the national regression model. 
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B.3 Regression Kriging 
As an optional extension to the linear regression model, we explored regression Kriging as a 
method for further increasing predictive accuracy. Kriging is a geostatistical interpolation 
originally developed for mapping in resource extraction and mine valuation. Today Kriging is 
finding a foothold in diverse applications mainly owing to its favorable properties as an 
interpolation method; (1) it is an exact method, so the map of predictions will always map to 
ground truth at locations where data exist and (2) it provides a notion of uncertainty around 
predictions by reporting the Kriging variance at each estimated point. In regression Kriging, the 
residual error from a regression model is the basis for training a geostatistical model that 
attempts to make an additional fine-tuning correction. Although regression Kriging is a powerful 
method, it is also computationally costly. In the present study, we limit our analysis to Colorado, 
leaving the task of performing a nationwide prediction to later work. 

The first step in geostatistical modeling involves characterizing the semivariogram function. The 
semivariogram is a plot of half the difference between points separated by some distance. Based 
on our analysis of spatial autocorrelation, we understand that there is the highest degree of spatial 
dependency with 2–3 lags. For this reason, we focus our semivariogram model on urban areas by 
truncating the model at a maximum of 40 km between points. In the Colorado data, this appears 
to be a reasonable heuristic that maximizes generalizability while preserving model fidelity. 
FigureB-7 (top) shows an empirical semivariogram for Colorado using an exponential 
semivariogram model. The semivariogram model is used by the Kriging process to find optimal 
weights when predicting additional points. 
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Figure B-7. Fitted semivariogram using an exponential semivariogram model (top) and residual 

error of regression Kriging model (bottom) 

To evaluate this method, we perform a standard cross-validation where 25% of the data are 
withheld while the model is trained on the remaining 75%. The distribution of residual error of 
the Kriging-corrected regression model is given in FigureB-7 (bottom). We see an overall 
improvement of approximately 2%, from 12% error in the basic regression model to 10%. 
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FigureB-8 compares the maps generated with this method with the predictions of the final 
regression model. Error is substantially reduced from the prior model in locations where data are 
available because regression Kriging matches the prediction values at those points. While these 
data do not permit us to approximate the value of regression Kriging in rural areas, accounting 
for and explicitly fitting the spatial dependency in residuals does appear to increase fidelity in the 
predictions within urban areas. Because this model builds on the regression model, it can be 
optionally applied when higher-resolution predictions are desired for a particular city or set of 
metropolitan areas, particular when partial lidar data may be available, which allows for per-
urban-area model training and interpolation. 

 
Figure B-8. Performance of Regression Kriging model for Colorado 

Figure shows actual values (top left), regression-Kriging predictions (bottom left), regression 
predictions (bottom right), and error for regression Kriging (top right). 
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B.4 Prediction of the Number of Buildings 
As a final consideration, to predict the number of suitable buildings in a given region, we must 
have a notion of how many buildings are present (suitable or not). Because these data are not 
readily available, we make a similar prediction using a regression model: 

=  +  + + + + +   

where locale is the NCES locale, region is the census division, nlcd is the fraction of land cover 
for the given classes, northing is the Universal Transverse Mercator northing (converted from 
degrees latitude), and  is the number of single-unit detached housing according to the 2011 
ACS. This model was evaluated against the data set using 10-fold cross validation with 25% of 
data withheld for testing (Tableb-6). We censored 1,922 ZIP codes with less than 90% coverage 
during fitting, because this produced a more harmonious fit. 

Table B-6. Predictive Accuracy of Predicted Variables for National Potential Model 

Model RMSE 2.5th Percentile 
Error 

97.5th Percentile 
Error 

Median 
Error  

Proportion 
within 10% 

Proportion 
within 20% 

 870 -1,939 1,676 69 49% 72% 

 
In practice, owing to the large variability, predicting the number of buildings poses challenges 
for fitting. Nonlinear methods for prediction (e.g., Multiple Adaptive Regression Splines or 
Support Vector Machines) do not appear to perform appreciably better. In this work, we proceed 
with the given model for , treating its errors directly and accepting that future work may 
improve this component of the estimate (e.g., with finer estimates of building counts from 
commercial data). 
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Appendix C: Rooftop Plane Area Model 
To estimate the suitable area per building we must create model-based estimates for both the 
number of planes per building and the size of each of those planes. As input to a data-driven 
model, we perform a uniform random sample of one million small buildings across all ZIP codes 
where lidar data are available. This results in a sample of 1.86 million planes, which form the 
basis for our model derivation (Figure C-1). 

Figure C-1. Distributions of plane sizes and plane numbers for small buildings 

Figure C-1 shows that, for small buildings, the size of each plane and the number of planes per 
building are well characterized by an exponential distribution. Total suitable flat area size for 
small buildings is a Weibull-distributed random variable with a shape parameter of 1.4 (standard 
error = 0.01) and a scale parameter of 62.0 (standard error = 0.47). For the number of planes per 
building, 99.6% of small buildings have six or fewer planes, and 50% have only one plane. We 
use these fractions directly, normalized to 1.0 in the model (TableC-1). 

Table C-1. Building Planes: Small Buildings 

1 plane 2 planes 3 planes 4 planes 5 planes 6 planes 

50% 28% 14% 5% 2% 1% 

The per-plane area is similar for small buildings with two to six planes. However, small 
buildings with only one plane generally have a larger single plane. To account for this, we build 
exponential fits for one-plane buildings separately from multiple (six or fewer) plane buildings. 
Figure C-2 shows the fits obtained, which are exceptionally close to the observed values. 
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Figure C-2. Exponential fits 



65 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

The fitted probability density function is: 

( ) =  +  

where  is the fitted rate of decay of the exponential process and  is an optional location 
parameter, which we set to = 10, the minimum plane size in our data. For small buildings, we 
find = 0.042 and = 0.071. The mean of each distribution can be calculated directly: 

=
1

+  

Lower and upper bounds for the mean area in each category are computed as the 95th percentile 
range (2.5% to 97.5%): 

=
log (0.975)

,
log (0.025)

+  

An identical method is used to obtain fits for medium and large buildings. For medium buildings, 
98.2% of buildings have 14 or fewer suitable planes. As before, a truncated distribution is used 
such that the smallest category is at least 1% of all buildings (TableC-2). 

Table C-2. Building Planes: Medium Buildings 

1 plane 2 planes 3 planes 4 planes 5 planes 6 planes 7 planes 

21% 14% 13% 12% 10% 8% 6% 

8 planes 9 planes 10 planes 11 planes 12 planes 13 planes 14 planes 

5% 3% 2% 2% 1% 1% 1% 

 
In the medium building class, the distribution for single-plane buildings starts farther to the right, 
which is accommodated by setting = 300 (i.e., the minimum practical size of a single-plane 
rooftop is 300 m2): 

= 0.002, = 300 
= 0.046, = 10 

Large buildings have as many as 32 planes in our model (TableC-3). 
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Table C-3. Building Planes: Large Buildings 

1 plane 2 planes 3 planes 4 planes 5 planes 6 planes 7 planes 8 planes 

14% 7% 6% 5% 5% 5% 5% 4% 

9 planes 10 planes 11 planes 12 planes 13 planes 14 planes 15 planes 16 planes 

4% 4% 3% 3% 3% 3% 3% 3% 

17 planes 18 planes 19 planes 20 planes 21 planes 22 planes 23 planes 24 planes 
2% 2% 2% 2% 1% 1% 1% 1% 

25 planes 26 planes 27 planes 28 planes 29 planes 30 planes 31 planes 32 planes 
1% 1% 1% 1% 1% 1% 1% 1% 

 
= 0.0005, = 2,000 

= 0.055, = 0 
 
The large buildings are least well modeled using this method, largely because there is no simple 
dichotomy between buildings with one plane and buildings with two or more planes. As 
FigureC-3 demonstrates, one-plane buildings are clearly exponential; however, buildings with 2–
10 planes appear bimodal. By assuming that all buildings in the model have a first plane selected 
from the one-plane distribution, we account for this multimodality. One goal for future work is 
to fit a continuous model that accounts for the relationship between size of panel and number 
of panels. 

To understand how this model compares to assumptions of suitable rooftop area used in prior 
studies, we compared the expected average suitable rooftop size from our model for medium and 
large buildings to the average sizes from a previous NREL report on economic potential (Brown 
et al. 2015). In that study, medium buildings were assumed on average to have 1,487 m2 of 
suitable rooftop area, while in our model the mean is 929 m2. Also, that study assumed large 
buildings had on average 5,471 m2 of suitable rooftop space, while our model predicts 4,178 m2. 
FigureC-4 and FigureC-5 show these figures overlayed as vertical lines on the actual observed 
distribution of suitable building areas in the lidar data set. For this data set, the nonparametric 
modeling approach used here seems to better account for the heavy-tailed nature of the 
underlying distribution and it better models the true central tendency in the data. 
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Figure C-3. Observed size of suitable planes for buildings with 1–32 planes in lidar data 

 
Figure C-4. Distribution of large building suitable areas (total usable rooftop area) in lidar data 
compared to model-calculated mean (green line) and assumed constant value in prior NREL 

studies (red line) 

Plot is in log-scale for better visibility. 
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Figure C-5. Distribution of medium building suitable areas (total usable rooftop area) in lidar data 
compared to model calculated mean (green line) and assumed constant value from prior NREL 

studies (red line) 
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Appendix D: Combined Suitable Area Model 
This appendix describes the complete model, which combines component models from 
Appendices A, B, and C for inferring suitability, number of buildings, tilt and azimuth of rooftop 
planes, and number and size of those planes. This combined model can predict the total suitable 
area for all buildings in a region where lidar data are not available. 

Total suitable area  in each tilt and azimuth class as the sum of per-region areas  are 
calculated as follows: 

=  

 

= 2  

 
=     ,    

 
where: 

Z is the set of geographies, S is the set of slope categories (tilts), and A is the set of azimuth 
(aspect) categories. 

 : is a matrix containing the suitable area in each azimuth and tilt class as a cell in the matrix.  

 : Predicted number of buildings in region I (see Appendix B, Section B.4) 

 For small buildings, prediction is based on a fitted least squares multiple regression: 
= + ( ) + ( ) + ( ) + ( ) +

( ) + ( 1  ) + (  ) . Lower and 
upper estimates are given using 95% confidence intervals on the fitted parameters. 

 For medium and large buildings, CBECS per-census-division building counts are used 
directly. For state-level estimates, population-weighted proportions are assigned to states. 
CBECS standard error values are used to calculate 95% confidence intervals. 

 
: Predicted fraction of buildings in region i with suitable rooftops (see Appendix B, Section 

B.1) 

 For small buildings, prediction is based on a fitted least squares multiple regression: 
= + ( ) ( ) + ( ) + ( ) +

 ( ) + ( ) +  ( ) . This model is identical to the one 
developed in Section 0 for predicting ZIP-code-level national suitability for small 
buildings. Lower and upper estimates are given using 95% confidence intervals on the 
fitted parameters. 
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 For medium and large buildings, a constant value of 1 is used (assuming that 100% of 
medium and large buildings have at least one suitable plane) 

 
 : Expected fraction of buildings with exactly i suitable planes 

 Derived from per-class (i.e., small, medium, and large) random sample corresponding to 
the actual fractions seen in the data. 

 
 : Expected size of suitable plane space in square meters for the ith suitable plane (see Appendix 

C) 
 Defined as the mean of a fitted exponential distribution using a per-class random sample. 

 The first plane (i = 1) is fitted separately from successive planes (i = 2..m) because 
substantial variation exists between these classes. 

 = + , where l is the location parameter (threshold) and r is the return rate of the 
fitted exponential. 

 
  : Expected fraction of rooftop planes on a surface with tilt class i and azimuth class j (see 

Appendix A) 
 For small buildings, per-locale-type average values are used from a lognormal fit of data 

in each azimuth and tilt class combination. 

 For medium and large buildings, national average lognormal fitted values are used. 

 In both cases, the matrix is normalized such that = = 1. 

 = /  where  and  are the fitted parameters of each lognormal distribution, as 
described in Appendix A. 

 
In the equation for ,  is the predicted number of buildings,  is the number of planes in 
each planes-per-building category, and the dot product of   and  gives the total suitable 
predicted area in azimuth/tilt combination j/k for the ith geography. 


	Acknowledgements
	List of Acronyms
	Executive Summary 
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	3 Processing Lidar Data To Estimate Rooftop Area Suitable for PV Deployment
	3.1 Input Data
	3.2 Shading
	3.3 Tilt
	3.4 Azimuth
	3.5 Application of Suitability Criteria

	4 Analyzing the PV Potential of Lidar-Covered Cities
	4.1 Classification of Suitable Roof Area by Orientation and Building Size
	4.2 Trends in Rooftop Suitability for Different Building Sizes
	4.3 Trends in Rooftop Tilt and Azimuth
	4.4 Simulation of PV Productivity on Suitable Rooftop Area
	4.5 Results for Select Cities: Small Buildings
	4.6 Results for Select Cities: All Buildings

	5 Modeling to Extend Small-Building PV Suitability and Technical Potential Estimates Nationwide
	5.1 Modeled Estimates of National Small Building Rooftop Suitability
	5.2 Estimated National PV Technical Potential from Small Buildings
	5.3 Model Validation

	6 Modeling to Extend Medium- and Large-Building PV Suitability and Potential Estimates Nationwide 
	6.1 Modeled Estimates of Total Developable Area from Medium and Large Building Rooftops Nationwide
	6.2 Estimated National PV Technical Potential from Medium and Large Buildings

	7 Estimated National PV Technical Potential for All Buildings
	8 Conclusions and Future Research Directions
	8.1 Data for Public Use
	8.2 Future Work

	References
	Appendix A: Rooftop Tilt and Azimuth Model
	Appendix B: Small Building Suitability Model
	B.1 Predictive Regression Model
	B.2 Spatial Correlation
	B.3 Regression Kriging
	B.4 Prediction of the Number of Buildings

	Appendix C: Rooftop Plane Area Model
	Appendix D: Combined Suitable Area Model



