Section A (multiple choice)

Question Number	Correct Answer	Mark
1 (a)	D	1

Question Number	Correct Answer	Mark
1 (b)	В	1

Question Number	Correct Answer	Mark
1 (c)	Α	1

Question Number	Correct Answer	Mark
2	В	1

Question Number	Correct Answer	Mark
3	D	1

Question Number	Correct Answer	Mark
4 (a)	В	1

Question Number	Correct Answer	Mark
4 (b)	С	1

Question Number	Correct Answer	Mark
4 (c)	A	1

Question Number	Correct Answer	Mark
5 (a)	В	1

Question Number	Correct Answer	Mark
5 (b)	D	1

Question Number	Correct Answer	Mark
5 (c)	С	1

Question Number	Correct Answer	Mark
6	С	1

Question Number	Correct Answer	Mark
7	Α	1

Question Number	Correct Answer	Mark
8	В	1

Question	Correct Answer	Mark
Number		
9 (a)	A	1

Question Number	Correct Answer	Mark
9 (b)	C	1

Question Number	Correct Answer	Mark
9 (c)	D	1

Question Number	Correct Answer	Mark
10	С	1

Question Number	Correct Answer	Mark
11	D	1

Question Number	Correct Answer	Mark
12	С	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
13 (a)(i)	$CH_3CI / CH_3Br / CH_3I$ Ignore name and state symbols	Name alone	1
	Allow displayed formula		

Question Number	Acceptable Answers	Reject	Mark
13 (a)(ii)	$CH_3CI + AICI_3 \rightarrow CH_3^+ + AICI_4^-$ Allow $CH_3^{\delta+} AICI_4^{\delta-}$ and other halogens	$CH_3^{\delta^+}$ -AICI $_3^{\delta^-}$ + CI ⁻	1
	Ignore state symbols and curly arrows		

Question Number	Acceptable Answers	Reject	Mark
13 (a)(iii)	H CH ₃ Ignore curly arrows and use of wedges/dashes Ignore attempts to complete mechanism if intermediate is correct Must show reasonable delocalisation over at least 3 carbon atoms Allow positive charge anywhere inside benzene ring Allow delocalization shown as dashed line e.g H CH ₃ Allow correct Kekulé structure	Complete circle of delocalization 'Upside down' delocalization e.g.	1

Question Number	Acceptable Answers	Reject	Mark
13 (b)(i)	(Methyl group) donates/increases electron density to the ring/feeds electrons into ring Allow the methyl group is electron releasing	Donates lone pair of electrons Ring becomes more electronegative Just 'inductive effect'	1

Question Number	Acceptable Answers	Reject	Mark
13 (b)(ii)	(Methylbenzene) is more susceptible to electrophilic attack/attack by positive species/makes it a stronger nucleophile Ignore comments about ring stability Allow methyl group stabilizes carbocation		1

Question Number	Acceptable Answers	Reject	Mark
13 (c)(i)	$C_{6}H_{5}COCH_{3} / J = 0$ $Kekulé$ $C_{6}H_{5}COCH_{3} / J = 0$ $Kekulé$ $H_{3}C_{0} = 0$		1

Question Number	Acceptable Answers	Reject	Mark
13 (c)(ii)	Any 2 from 4 Lower energy input (to heat reaction)/less heat losses/more efficient heating (1) Electrical energy can be obtained from renewable resources whereas gas is non renewable (1) Easier separation of catalyst/(easier to) re- use catalyst (1)	Faster reaction because using a catalyst Just 'uses less fuel'	2
	Involves less chlorine/chlorine compounds (1) Ignore any comments regarding carbon dioxide level/global warming	Just uses less toxic/harmful chemicals	

Question Number	Acceptable Answers	Reject	Mark
13 (d)	Fuming sulfuric acid / oleum / sulfur trioxide (dissolved) in concentrated sulfuric acid Allow fuming $H_2SO_4/H_2S_2O_7/SO_3$ (dissolved) in concentrated H_2SO_4	Just sulfuric acid or sulfur trioxide	1

Question Number	Acceptable Answers	Reject	Mark
14 (a)(i)	Conc. Nitric acid (1)		2
	Conc. Sulfuric acid (1) Allow correct formulae		
	Ignore state symbols Sulfuric acid and nitric acid with no mention of concentrated scores (1)		

Question Number	Acceptable Answers	Reject	Mark
14 (a)(ii)	Pear shaped/round bottomed flask & heat source (1) Allow vertical arrow with or without the word heat Allow water bath as a heat source Liebig condenser, shown vertically (1) (Water) flow shown correctly into a jacket (1) Ignore thermometers unless stoppered Penalise (one for each): Stopper/sealed Gaps between flask and condenser Condenser inner tube extends into liquid in flask	Conical flask in diagram or label	3

Question Number	Acceptable Answers	Reject	Mark
14 (a)(iii)	Heat Speed up reaction / to overcome the activation energy / provide energy to break bonds / because activation energy for the reaction is high (1)	Just to provide energy for the reaction to start	2
	Under reflux Prevent escape of reactants / products Or As they may be flammable / harmful / volatile (1)	Just to increase the yield/make reaction go to completion	

Question Number	Acceptable Answers	Reject	Mark
14 (a)(iv)	HOCH ₂ CH ₂ N(C ₂ H ₅) ₂ Allow OHCH ₂ CH ₂ N(C ₂ H ₅) ₂		1
	Allow displayed or skeletal formulae		

Question Number	Acceptable Answers	Reject	Mark
14 (a)(v)	Reduction (1) Allow redox Tin / iron / zinc and (conc./dilute)	Addition of NaOH	2
	hydrochloric acid (1) Accept correct names or formulae for both alternatives	unless clearly after the reduction Hydrogen gas and nickel (catalyst)	
	Ignore references to tin as a catalyst Ignore conditions Allow NaBH₄ in alkali (Pd catalyst)	LiAlH ₄	

Question Number	Acceptable Answers	Reject	Mark
-	Moles of 2-hydroxy benzoic acid = $9.4/138$ (1) (= 0.0681) So theoretical yield of aspirin = 0.0681 x 180 (1) = 12.26 g % yield = $100 \times 7.77/12.26 = 63.4\%$ (1) Or Moles of 2-hydroxy benzoic acid = $9.4/138$ (1) (= 0.0681) Moles of aspirin = $7.77/180$ (1) (=0.0432) % yield = $100 \times 0.0432/0.0681 = 63.4/63\%$	Reject 100 x 7.77/9.40 = 82.7%	Магк 3
	 (1) Correct answer with no working 3 marks Allow 1 max. if <i>M</i>r values are transposed 108% 		

Question Number	Acceptable Answers	Reject	Mark
14 *(b)(ii)	Dissolve/add to impure solid in min. volume / amount (1) of hot solvent / water (1) (Filter whilst hot) Allow to cool and filter off product / (re)crystallize and filter off product (1) Wash with cold / small amount of solvent / water (then dry) (1)	Just 'small/little amount of water' Named solvents other than water – penalise once	4

Question Number	Acceptable Answers	Reject	Mark
14	It reduces yield as some product remains in solution	Just 'transfer	1
(b)(iii)	Allow stated and explained errors due to transfer e.g. left on filter paper	errors'	

Question Number	Acceptable Answers	Reject	Mark
14 (c)(i)	$CH_3COCI / (CH_3CO)_2O / ethanoyl chloride / ethanoic anhydride$	Ethanoic acid	1
	If both name and formula are given then both must be correct		
	Allow acetyl chloride / acetic anhydride		
	Ignore any additional information		
	Allow displayed formulae		

Question Number	Acceptable Answers	Reject	Mark
14 (c)(ii)	(Lessen) risk of overdose / as paracetamol is toxic in larger doses/ as paracetamol is harmful in larger doses / reduce risk of taking medication over a longer time period than necessary / reduce risk of addiction		1

Question Number	Acceptable Answers	Reject	Mark
14 (c)(iii)	Net forces between paracetamol and water are less than the forces between water and water and / or paracetamol and paracetamol Allow benzene / ring doesn't interact with water Allow benzene ring is hydrophobic / non polar / only forms London forces / can't form hydrogen bonds	Just paracetamol / benzene ring is large / steric hindrance	1

	Question Number	Correct Answer	Mark
15 A	15	A	1

Question Number	Correct Answer	Mark
16	C	1

Question Number	Correct Answer	Mark
17	В	1

Question Number	Correct Answer	Mark
18	A	1

Question Number	Correct Answer	Mark
_ 19	D	1

Question Number	Correct Answer	Mark
20	В	1

Question Number	Correct Answer	Mark
_21	D	1

Question Number	Correct Answer	Mark
22	C	1

Question Number	Correct Answer	Mark
23	A	1

Question Number	Correct Answer	Mark
_24	A	1

Question Number	Correct Answer	Mark
_25	В	1

Question Number	Correct Answer	Mark
26	В	1

Question Number	Correct Answer	Mark
27	C	1

Section C

Question Number	Acceptable Answers	Reject	Mark
28 (a)(i)	$\begin{array}{l} Cr_2O_7^{2^-} + 14H^+ + 6e^- \rightarrow 2Cr^{3^+} + 7H_2O \ \textbf{(1)}\\ CH_3CH_2OH + H_2O \qquad \rightarrow CH_3COOH + 4H^+ + 4e^- \ \textbf{(1)}\\ \end{array}$ Allow multiples Ignore state symbols		2

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	$3CH_3CH_2OH + 2 Cr_2O_7^{2-} + 16H^+ \rightarrow 3CH_3COOH + 4Cr^{3+} + 11H_2O$	Equations with electrons	1
	Allow hydrogen ions and water molecules not cancelled e.g.		
	$3CH_3CH_2OH + 2 Cr_2O_7^{2-} + 28H^+ \rightarrow$ $3CH_3COOH + 4Cr^{3+} + 11H_2O + 12H^+$		
	$3CH_3CH_2OH + 2 Cr_2O_7^{2-} + 16H^+ + 3H_2O →$ $3CH_3COOH + 4Cr^{3+} + 14H_2O$		
	$3CH_3CH_2OH + 2 Cr_2O_7^{2-} + 28H^+ + 3H_2O \rightarrow 3CH_3COOH + 4Cr^{3+} + 14H_2O + 12H^+$		

Question Number	Acceptable Answers	Reject	Mark
* 28 (a)(iii)	Moles of thiosulfate = $34.40/1000 \times 0.025$ = 8.6×10^{-4} (mol) (1)		6
	So moles $I_2 = 4.3 \times 10^{-4}$ (mol) (1)		
	So moles of dichromate unreacted = $4.3 \times 10^{-4} / 3$ = 1.433×10^{-4} (mol) (1)		
	So moles of dichromate reacted with ethanol = $8 \times 10^{-4} - 1.43 \times 10^{-4} = 6.567 \times 10^{-4}$ (mol) (1)		
	So moles of ethanol = $6.567 \times 10^{-4} \times 3/2$ mol = 9.85×10^{-4} (mol) (1)		
	Concentration = $9.85 \times 10^{-4} / 0.005$ = 0.197 (mol dm ⁻³) (1)		
	Correct answer (0.197) with no working 6 marks Allow 4 max. for missing subtraction in step 4 and gaining answer of 0.043(0)		

Question Number	Acceptable Answers	Reject	Mark
(a)(iv)	$0.197 \times 10 = 1.97 \text{ (mol dm}^{-3}\text{)}$ Allow answer to (a) (iii) x 10		1

Question Number	Acceptable Answers	Reject	Mark
(a)(v)	To prevent other (non volatile) substances (in the drink) from reacting with the dichromate ions		1

Question Number	Acceptable Answers	Reject	Mark
(a)(vi)	because it allows the ethanol to evaporate (allowing it to mix with the dichromate) (1)		3
	make sure all ethanol reacts (1)		
	Concentration / results would have been lower than the actual value (1)		

Question Number	Acceptable Answers	Reject	Mark
28 (a)(vii)	No, as only one sample titrated so no evidence that results are repeatable / no, as not all the ethanol has evaporated/no, as the dichromate may have reacted with something else/ no, as not all the ethanol has reacted Allow only 1 titration carried out		1

Question Number	Acceptable Answers	Reject	Mark
* (b)(i)	Early breathalysers: (the extent to which) dichromate turns green (1)	Just colour change	3
	Fuel cells: (more alcohol means larger) current / quantity of electricity (1)	Just `potential difference measured' Just `voltage measured'	
	Infrared breathalysers: (more alcohol means greater) absorbance (1)	Just 'gives a peak'	
	Ignore reference to specific bonds provided they are present in ethanol		

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	Water (in the breath) also has an OH bond		1
	Allow other named molecules on the breath provided they have an OH bond		

Question Number	Acceptable Answers	Reject	Mark
(b)(iii)	Additional evidence is more reliable Or Police often use IR as well as fuel cell breath test to provide sufficient evidence to prosecute (without need for blood test) Or Fuel cell breathalysers are portable and determine whether or not to check with IR at the police station	Answers only related to accuracy	1

Question Number	Acceptable Answers	Reject	Mark
28 (b)(iv)	Advantage It could check if you are below the legal limit / safe to drive (1)		2
	Disadvantage It may not be sensitive enough to give an accurate reading / may give a value that does not closely match police value		
	OR		
	It encourages people to drink and drive (1)		

Question Number	Acceptable Answers	Reject	Mark
29(a)(i)	$H_{2}SO_{4} + HNO_{3} \rightarrow NO_{2} + H_{2}O + HSO_{4}$ OR $H_{2}SO_{4} + HNO_{3} \rightarrow H_{2}NO_{3}^{+} + HSO_{4}$ $H_{2}NO_{3}^{+} \rightarrow NO_{2}^{+} + H_{2}O$ Both needed OR $2H_{2}SO_{4} + HNO_{3} \longrightarrow NO_{2}^{+} + H_{3}O^{+} + 2HSO_{4}^{-}$ (1) Ignore state symbols even if wrong $(1) \qquad \qquad$		4
	arrow showing attack on the nitronium ion with arrow going to N atom, or into the C - N gap (1) Arrow must start at or inside ring Ignore position of + charge structure of the intermediate showing reasonable delocalisation (over at least 3 carbon atoms) (1) arrow from the bond showing the loss of H ⁺ from the intermediate. Removal by hydrogen sulphate ion preferable but not essential (1) Kekulé structures score full marks If the electrophile is incorrect then the intermediate structure mark is lost	Delocalisation mustn't go over C where NO2 ⁺ is attached	

Question Number	Acceptable Answers	Reject	Mark
29(a)(ii) QWC	First mark: (lone pair of) electrons on the oxygen atom or on the OH group is delocalised / incorporated into the ring (1) OR the OH group is electron donating (1) Second mark:	Reject hydroxide for first mark only	2
	so the ring in phenol is more negative / has increased electron density / ring is more nucleophilic / hence more susceptible to electrophilic attack (1) OR	Nucleophilic attack on the ring	
	the OH group activates the ring (1) Second mark stand alone	'Makes it more reactive' on its own	

Ouestion Number	Acceptable Answers	Reject	Mark
(a)(iii)	tin (1) and concentrated hydrochloric acid (1) Formulae acceptable.	lithium aluminium hydride sodium borohydride	2
	If NaOH is added after HCl then ignore; if implication that HCl and NaOH are added together then second mark is lost		
	OR		
	iron (1) and concentrated hydrochloric acid (1) 2 nd mark conditional on a metal		
	OR		
	hydrogen (1) and platinum / palladium catalyst (1)	Nickel Raney Nickel	

Question	Acceptable Answers	Reject	Mark
Number			
29(a)(iv)	ethanoyl chloride OR acetyl chloride OR CH3COCl OR equivalent displayed formula OR		1
	ethanoic anhydride OR acetic anhydride OR (CH ₃ CO) ₂ O OR equivalent displayed formula		
	Right name but wrong formula does not score		
	Ignore minor spelling errors if the formula is correct		

Question Number	Acceptable Answers	Reject	Mark
(b) QWC	First mark: steam is passed into the mixture OR water is added and mixture boiled or distilled or heated (1)	Passed over; anything that implies external heating with a steam bath or water bath any implication of fractional distillation any suggestion that separation based on differing boiling temperature	3
	Second mark: and the 2-nitrophenol / product vapour distilled off with the water (and condensed) (1) Advantage: The 2-nitrophenol / product distils at a lower temperature / prevents decomposition(1) Stand alone	water-soluble	

Question Number	Acceptable Answers	Reject	Mark
(c)	Read the whole answer to get the sense The (ring) hydrogen atoms are on carbon atoms which have one / a hydrogen on an adjacent carbon atom, so are doublets (1) All the other hydrogen atoms have no adjacent hydrogen (bearing carbon) atoms, so are singlets (1)	nearby	2

Question Number	Acceptable Answers	Reject	Mark
30 (a)(i)	Any TWO of: complex ions / complexes (1) coloured ions / compounds / solutions (1) catalytic properties (1) paramagnetic (1) Allow coloured complexes (2) coloured complex compound (1) If a list appears with 1 or 2 correct properties followed by properties related to the element, then (1) mark only Ignore 'partially filled <i>d</i> -orbitals'	complex compounds	2

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	$\begin{bmatrix} OH_2 \\ H_2OH_2 \\ OH_2 \\ OH_2 \\ OH_2 \end{bmatrix}^{3+}$ ignore absence of charge clearly octahedral (ignore bonds to the H in H ₂ O) (1) but allow some latitude in the symbols used to show the 3D structure. Wedges do not have to be exact - if used they are enough to show 3D if the axial bonds are lines The word 'octahedral' does not salvage a poor drawing dative (covalent) / coordinate (bond) (1) not just shown by an arrow lone pair (of electrons on the oxygen) (1) can be shown on the diagram		3

Question Number	Acceptable Answers	Reject	Mark
30(b)(i)	(+) 0.34 (V) OR (+) 0,34 V		1
	sign not needed		

Question Number	Acceptable Answers	Reject	Mark
(b)(ii) QWC	(simultaneous) oxidation and reduction (1) Allow redox of a species / substance / reactant / compound / chemical / element (1)		2

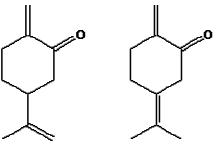
Ouestion Number	Acceptable Answers	Reject	Mark
(b)(iii)	- 0.66(V) (1)		2
	Allow TE from (b)(i) reaction not feasible since the potential is negative (2 nd mark is for an answer consistent		
	with sign of E°) (1)		

Section C

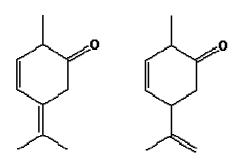
Question Number	Acceptable Answers	Reject	Mark
31 (a)	↓ ↓ ↓	Circles that encompass two atoms	1

Ouestion Number	Acceptable Answers	Reject	Mark
(b)	First mark: Recognition that paracetamol is not chiral / has no enantiomers / does not have optical isomers (1) Second and third marks:	Is not optically active	3
	Any two of:		
	there is no racemisation so the product will not be a mixture (1)		
	no need to separate (the enantiomers) (1)		
	do not have to discard an unwanted enantiomer / atom economy is higher (1)		
	OR		
	converse arguments starting from (-)-carvone.		

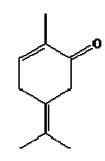
Question Number	Acceptable Answers	Reject	Mark
-	Acceptable Aliswers (C=C): add bromine (water) (1) decolourises (1) OR KMnO ₄ (1) purple \rightarrow brown / colourless (1) (C=O): add 2,4-dnp / 2,4- dinitrophenylhydrazine/ Brady's reagent (1) orange or yellow or orange-red or red ppt (1) Ignore a negative Fehling's / Tollens' test If a positive Fehling's / Tollens' is given in addition to 2,4 DNP then third and fourth marks are lost	1,4-dnp	4
	Observation dependent on test		


Question Number	Acceptable Answers	Reject	Mark
31(d)(i)	amount of carvone = $(4.5 \div 150) \text{ mol} = 0.03 \text{ mol}$ (1)		3
	amount of hydrogen = $(1.44 \div 24) \text{ mol} = 0.06 \text{ mol}$		
	(allow 1 st mark for either of the mole calculations)		
	so two double bonds are reduced (1)		
	OR		
	2 moles H ₂ : (1 mol carvone)		
	OR		
	4 mole H : (1 mol carvone)		
	If hydrogen is used it must be clear whether they are atoms or molecules		
	This mark can be salvaged if the structure is correct and both double bonds are reduced		
	°	Any structure that shows reduction of the C=O bond	
	(1) stand alone		
	Accept displayed formula if completely correct		

Question Number	Acceptable Answers	Reject	Mark
31 (d)(ii)	(a ketone/C=O) absorption / peak / trough / within the range 1680 - 1700 (cm ⁻¹) (1)	1720 - 1740 cm ⁻¹	2
	Ignore units		
	will be seen in carvone but not in limonene / the reduction product (1)		
	omission of the value for the absorption loses first mark only		


Question Number	Acceptable Answers	Reject	Mark
(e)(i)	Br Gr Gr Hr Hr Hr Hr Hr HBr HBr added (1) ignore added hydrogens for correct orientation in exocyclic double bond (1) stand alone	Any structure retaining C=C bonds	2

Question	Acceptable Answers	Reject	Mark
Number			
(e)(ii) H	Br can be eliminated using a hydrogen from the carbon on either side of the bromine (1)	Reference to substitution	2
	which would then give a double bond in a different position from that in carvone (1)	Subscitution	
	this second mark can be answered using a skeletal / structural formula (below)		


From the left-hand structure above:

From the right-hand structure above:

From either of the structures above:

Question Number	Acceptable Answers	Reject	Mark
31(f)(i) QWC	Using an S _N 1mechanism: selection of a chiral starting material (1)		5
	curly arrow from C-X bond to X (1)		
	and intermediate carbocation (1)		
	curly arrow from nucleophile (can come from negative charge) (1)		
	planar intermediate attacked from either side to give a racemic mixture		
	OR		
	intermediate equally attacked from either side to give a racemic mixture (1)		
	Using an S _N 2 mechanism: selection of a chiral starting material (1)		
	curly arrow from nucleophile (can come from negative charge) (1)		
	curly arrow from C-X bond to X (1)		
	to give correct transition state (1)		
	attack from opposite side to C-X bond gives inverted product can be shown on a diagram (1)		
	Using nucleophilic addition to C= O: Selection of any aldehyde (other than methanal) or any asymmetric ketone (1)	If H-X used then -1	
	Curly arrow from nucleophile (can come from negative charge) to C of C=O and curly arrow from = to O (1)		
	Intermediate (1)		
	Arrow from O^- of intermediate to H^+ (1)		
	planar molecule attacked from either side to give a racemic mixture		
	OR		
	molecule equally attacked from either side to give a racemic mixture (1)		

Question Number	Acceptable Answers	Reject	Mark
31(f)(ii)	heterogeneous catalysts can be filtered off OR do not appear in any liquid or gaseous products OR are easy to separate OR are stereospecific OR suited to continuous processes rather than batch processes	greater surface area	1