Acceleration Lab 1

Example 4:
A rocket boosts from a launch pad a $48 \mathrm{ft} / \mathrm{sec}^{2}$. How high is the rocket after 5 sec ? Solution:

(1) Inventory:	(2) Select Formula:	(3) Insert values:
$V_{i}=0$	$V_{f}=\otimes$	$S=.5 a t^{2}$
$V_{f}=\otimes$	\downarrow	$S=.5(48)\left(5^{2}\right)$
$a=48$	$S=V_{i} t+1 / 2 a t^{2}$	$S=(24)(25)$
$S=?$	$V_{i}=0$	
$t=5$	\downarrow	$S=600 \mathrm{ft}$

Example 5:
A car goes from 55 MPH to 70 MPH in 10 sec . What is the rate of acceleration? Solution:

Example 6:
An aircraft landing with a landing speed of 180 MPH lands on an aircraft carrier by catching the arresting wire and coming to a complete stop in 2 sec . How many G's does the pilot experience?
Solution:

| (1) Convert to correct standard units: |
| :--- | :--- |
| $\qquad$$\frac{180 \mathrm{mi}}{1 \mathrm{hr}} \times \frac{5.28 \times 10^{3} \mathrm{ft}}{1 \mathrm{mi}} \times \frac{1 \mathrm{hr}}{3.6 \times 10^{3} \mathrm{sec}}$
 $\frac{180 \mathrm{mi}}{1 \mathrm{hr}} \times \frac{5.28 \times 10^{3} \mathrm{ft}}{1 \mathrm{mi}} \times \frac{1 \mathrm{hr}}{3.6 \times 10^{3} \mathrm{sec}}$
 $\frac{180 \times 5.28 \mathrm{ft}}{3.6 \mathrm{sec}}=\frac{950.4 \mathrm{ft}}{3.6 \mathrm{sec}}$ $=\mathbf{2 6 4 \mathbf { f t } / \mathbf { s e c }}$ |

(2) Inventory:	(3) Select Formula:	(4) Insert values:
$\begin{aligned} & V_{i}=264 \mathrm{ft} / \mathrm{sec} \\ & V_{f}=0 \mathrm{ft} / \mathrm{sec} \\ & a=? \\ & \mathrm{~s}=\otimes \quad \begin{array}{l} \text { Remember, the } \\ \text { idea is to stop } \\ \text { when landing! } \end{array} \\ & t=2 \mathrm{sec} \end{aligned}$	$\begin{aligned} & s=\otimes \\ & a=\frac{V_{f}-V_{i}}{t} \end{aligned}$	$\begin{gathered} a=\frac{0-264}{2} \\ =-132 \mathrm{ft} / \mathrm{sec}^{2} \end{gathered}$
(5) Now convert to "G's"		
$\begin{gathered} 1 \text { "G" }=32 \mathrm{ft} / \mathrm{sec}^{2} \\ -132 \div 32=-4.125 \mathrm{G} \text { 's } \end{gathered}$ or $4.125-\mathrm{G} \text { 's }$		

