Acceleration Lab 1

Example 4:

A rocket boosts from a launch pad a 48 ft/sec². How high is the rocket after 5 sec? Solution:

① Inventory:	② Select Formula:	③ Insert values:
$V_i = O$	$V_f = \otimes$	S = .5at ²
V _f = ⊗	↓ ↓	S = .5(48)(5 ²)
a = 48	$s = V_i t + \frac{1}{2} a t^2$	S = (24)(25)
s = ?	$V_i = O$	
t = 5	\downarrow S = .5at ²	S = 600 ft

Example 5:

A car goes from 55 MPH to 70 MPH in 10 sec. What is the rate of acceleration? Solution:

① Convert to correct standard units:						
$\frac{55 mi}{1 hr} X \frac{5.28 x 10^3 ft}{1 mi} X \frac{3.6}{3.6}$	1 hr x 10 ³ sec	$\frac{70 mi}{1 hr} X \frac{5.28 x 10^3 ft}{1 mi} X \frac{1 hr}{3.6 x 10^3 sec}$				
$\frac{55 mi}{1 hr} X \frac{5.28 x 10^3 ft}{1 mi} X \frac{3.6}{3.6}$	70 mi <u>1 h</u> r Χ	5.28 x 1 1	$\frac{10^3 ft}{mi} X \frac{1 hr}{3.6 x 10^3 sec}$			
$\frac{55 \times 5.28 ft}{290.4 ft} = \frac{290.4 ft}{290.4 ft}$	$\frac{70 \times 5.28 ft}{1000000000000000000000000000000000000$					
3.6 sec 3.6 sec		3.6 sec 3.6 sec				
= 80.66			= 102.667 ft/sec			
	(a) Calaati	.		A laggert uplying		
② Inventory:	③ Select Formula:		④ Insert values:			
V _i = 80.667 ft/sec	s = ⊗		$a = \frac{102.667 - 80.667}{10}$			
$V_{\rm f}$ = 102.667	$a = \frac{V_f - V_i}{t}$		u — 10			
ft/sec			$a = \frac{102.667 - 80.667}{10}$			
a = ?						
s = ⊗				$a = \frac{22}{10}$		
t = 10 sec				= 2.2 ft/sec ²		

Example 6:

An aircraft landing with a landing speed of 180 MPH lands on an aircraft carrier by catching the arresting wire and coming to a complete stop in 2 sec. How many G's does the pilot experience? Solution:

① Convert to correct standard units:							
$\frac{180 mi}{1 hr} X \frac{5.28 x 10^3 ft}{1 mi} X \frac{1 hr}{3.6 x 10^3 sec}$							
$\frac{1}{1 hr} \times \frac{1}{1 mi} \times \frac{1}{3.6 \times 10^3 sec}$							
180 ฑ .	5.28 $x \frac{10^3}{10^3} ft$	1 <i>hr</i>					
$\frac{180 mi}{1 hr} X \frac{5.28 x 10^3 ft}{1 mi} X \frac{1 hr}{3.6 x 10^3 sec}$							
1	$.80 \times 5.28 ft - 950.4$	ft					
-	_						
$3.6 \ sec$ $3.6 \ sec$ $-264 \ ft/coc$							
		= 264 ft/sec					
② Inventory:	③ Select Formula:	④ Insert values:					
Vi = 264 ft/sec	s = ⊗	$a = \frac{0 - 264}{0}$					
		$a = \frac{1}{2}$					
$V_f = O ft/sec$	$a = \frac{V_f - V_i}{t}$						
	t t	= -132 ft/sec ²					
a = ?							
Remember, the							
S = 🛞 idea is to STOP							
when landing!							
t = 2 sec							
	S Now convert to "G'	s"					
1 "G" = 32 ft/sec ²							
$-132 \div 32 = -4.125$ G's							
or							
4.125 -G's							
4.123 -03							