CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 8 MARK SCHEME

1)		
1 (a)	В	1
	•	
Question	Correct Answer	Mark
Number		
1 (b)	D	1
	•	•
Ouestion	Correct Answer	Mark

Question Number	Correct Answer	Mark
2	D	1

3)

Correct Answer	Mark	
С	1]

- 4) B (1)
- 5) D (1)
- 6) A (1)
- 7) C (1)
- 8) C (1)

9)

(a)	(Strong) covalent bonds between atoms within		2
/C	the layers / good overlap of electron orbitals in		
	layers (1)		
	(Weak) London / dispersion / induced dipole-	Intermolecular forces	
	induced dipole (ALLOW van der Waals) forces	alone	
	between layers (1)		

estion mber	Acceptable Answers	Reject	Mark
(b)	Within a layer, one electron per carbon is (ALLOW electrons are) delocalized (so electrons can move easily along layers) (1) Energy gap (ALLOW distance) between layers is too large for (easy) electron transfer (1)	Electrons between layers not delocalized	2

estion mber	Acceptable Answers	Reject	Mark
(c)	N has one more (outer shell) electron than C(1) Would increase number of (delocalised) electrons contributing to the London / dispersion (ALLOW van der Waals) forces (1) OR holding layers together (1)	Just London / dispersion / van der Waals) forces stronger	2

estion mber	Acceptable Answers	Reject	Mark
(d)	No heat energy required / low energy requirement / high temperatures not needed / sunlight (which is renewable) could be used Ignore generalisations such as 'greener', 'environmentally friendly' 'smaller carbon footprint' cheaper or fossil fuels not used.		1

estion mber	Acceptable Answers	Reject	Mark
(e)	CO + 2H₂ → CH₃OH OR Structural and displayed formulae ALLOW CH₄O for CH₃OH		1
(f) /C	1. Need energy to make benzene / catalyst / hydrogen 2. High energy / temperature / pressure needed for the reaction (ALLOW stated T or P) 3. Fossil fuel (oil or coal) used as source of energy, benzene or hydrogen 4. Hydrogen has to be manufactured 5. Hydrogen has to be stored 6. Fossil fuels non-renewable 7. Reduces CO ₂ in atmosphere / recycles CO ₂ 8. CO ₂ , is a greenhouse gas / causes global warming 9. CO toxic 10. Benzene toxic / carcinogenic 11. 100% atom economy in making methanol 12. Beneficial if phenol useful / not beneficial if phenol a waste product Ignore generalisations such as 'greener', 'smaller carbon footprint' or 'environmentally friendly'.	References to the ozone layer	6

estion mber	Acceptable Answers	Reject	Mark
(g)	Delivering drugs to cells ALLOW Delivering drugs to specific / targeted parts of the body Catalyst with big surface area	Just drug delivery	1

10) (a)	(1s ² 2s ²) 2p ⁶ 3s ² 3p ⁵ (ignore repetition of 1s ² 2s ²)	287	1	
	ALLOW subscripts, correct use of p_x , p_y and p_z orbitals or normal font for electrons			

(b) (i)	XX	Covalent bonding (0)	2
	¥ cr ¥		
	XX		
	(Mg ²⁺		
	XX.		
	≰ cr ¥		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	**		
	^^		
	Correct number of outer electrons (ignore	Incorrect numbers of	
	whether dots and / or crosses) drawn and also ratio of magnesium : chloride ions is 1:2 (1)	electrons in inner shells if drawn for	
		first mark	
	Correct formulae and charges of the ions shown	"MG ²⁺ " and/or "CL ⁻ "	
	somewhere (1)	for second mark	
	NOTE: Diagram for Mg ²⁺ showing the outermost shell with 8e ⁻ (dots and/or crosses) and/or Cl ⁻		
	shown with a 2 in front or 2 as a subscript would		
	also score both marks		
iloci	Mark the two points independently		
(b) (ii)	4 shared pairs of electrons around the carbon labelled C	lonic bonding (0)	2
	(1)		
	ALL outer electrons, including lone pairs, are correctly shown on each of the four chlorine		
	atoms labelled Cl		
	(1)		
	ALLOW versions without circles		
	IGNORE lines between the shared electrons		
	Mark two points independently		

11)

1.12			
3(a)	ALLOW reverse arguments in each case		3
	Any three from:-		
	sodium atoms/sodium ions are larger (than magnesium atoms/ions) NOTE: Allow symbols (eg Na or Na*) (1)		
	Allow symbols (eg na or na) (1)		
	 sodium ions are Na[†] whereas magnesium ions are Mg^{2†} OR Na[†]/sodium ions have smaller charge (density) than Mg^{2†}/ magnesium ions (1) 		
	[NOTE: It follows that the statement that "Na* ions are larger than Mg ²⁺ ions" would score the first two scoring points above)]		
	 sodium has fewer delocalized electrons (than magnesium) (1) 	Attraction between nucleus and (delocalized) electrons	
	attraction between the positive ions and (delocalized) electrons is weaker in sodium (than magnesium) (1)		
	 sodium is not close-packed (but magnesium is close-packed) (1) 		
	less energy needed (to break bonds) (1)	Mention of intermolecular forces/molecules negates the energy mark	
		NOTE: Arguments based on ionization energies OR suggestion of removal of outer shell electrons as part of the melting process scores (0) overall	

3(b)	First mark: Idea of (breaking) covalent bonds in silicon (1) Second and third marks: ANY TWO FROM Silicon is giant covalent / giant atomic/giant molecular/ macromolecular/giant structure/giant lattice IGNORE just "giant" (1) Phosphorus made up of simple	Intermolecular forces broken in silicon/ covalent bonds broken in phosphorus "silicon giant ionic"/"silicon giant metallic"	3
	Phosphorus made up of simple molecules / small molecules / P4 molecular / phosphorus is molecular covalent / molecular/simple covalent IGNORE just "simple"/"simple structure" Between phosphorus molecules: weak forces/weak intermolecular forces/weak London forces/weak van der Waals' forces/weak induced-dipole forces [ALLOW "weak bonds" if implies between phosphorus molecules]	Weak bonds between phosphorus atoms	
	More energy needed (to break bonds in silicon) (1)		
(c)	IGNORE any references to "energy" in this part of the question		1
	Argon monatomic/argon (composed of) single atoms NOTE: This must be stated in words, not just by use of its symbol Ar IGNORE any comments about argon atoms having a full outer shell or argon being a noble gas IGNORE any comment about forces/bonds between argon particles	Any suggestion that argon is molecular Argon having a giant structure (of atoms)	

IDCI			
(d)	First mark:		2
	Mg has mobile electrons/delocalized electrons/free electrons/sea of electrons (to carry the charge)	Mg has free ions/Mg has mobile ions	
	ALLOW Mg ²⁺ instead of Mg or magnesium (1)		
	Second mark:		
	Sulfur's electrons are fixed (in covalent bonds)/sulfur's electrons are involved in bonding/sulfur's electrons are not free (to move)/no delocalized electrons in sulfur/no mobile electrons in sulfur (1)	Sulfur has 'no free ions'/sulfur has delocalized electrons/just "sulfur has covalent bonds"/ just "sulfur is not a metal"	

12)				
(a)(i)	$Ba(s) + 2H_2O(I) \rightarrow Ba(OH)_2(aq) + H_2(g)$			2
	OR			
	$Ba(s) + 2H_2O(I) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$ $H_2(g)$	+	Ba ₂ H ₂ O(aq)	
	Correct products	(1)	BaO ₂	
	State symbols and balancing	(1)		

estion	Acceptable Answers		Reject	Mark
ımber				
(a)(ii)	Ba(increases in ON) from 0 to +2	(1)		2
	H (decreases in ON) from +1 to 0	(1)		
	TE from (a)(i)		Inclusion of oxygen	
	Stand-alone marks		changes will lose 1 mark	

estion mber	Acceptable Answers	Reject	Mark
.(b)	Ba(OH) ₂ + 2HCl \rightarrow BaCl ₂ +2H ₂ O IGNORE state symbols even if incorrect ALLOW H ⁺ +OH ⁻ \rightarrow H ₂ O TE from (a)(i): BaO + 2HCl \rightarrow BaCl ₂ + H ₂ O		1

estion mber	Acceptable Answers	Reject	Mark
.(c)	White precipitate / white solid / white crystals (rather than colourless solution) (1) Barium sulfate is insoluble (whereas barium chloride is soluble) (1)	`Cloudy' alone	2
	Stand-alone marks		

mber				
(d)(i)	If flame test is described in (d)(i) the award appropriate marks for (d)(ii) A correct decomposition equation gin (d)(i) would score 1 mark.			2
	Allow valid discussion of thermal stability appearing in (d)(ii) for mar(d)(i)	k in		
	Barium carbonate is more thermally sta (than magnesium carbonate) / requires more heating / needs a higher temperat		Just 'barium'	
	/ decomposes more slowly / produces carbon dioxide more slowly		Just 'produces more carbon dioxide'	
	OR			
	Reverse argument (MgCO ₃ decomposes faster)		Just 'magnesium'	
	ALLOW BaCO ₃ doesn't decompose on heating but MgCO ₃ does	(1)		
	$MCO_3 \rightarrow MO + CO_2$ Where M stands for Mg or Ba	(1)		
	IGNORE state symbols even if incorrect			

estion mber	Acceptable Answers	Reject	Mark
(d)(ii)	Flame test or description of: Mg does not colour flame (1) ALLOW colourless / clear	Magnesium gives white / bright flame	2
	Ba: (pale / apple) green flame (1) Stand-alone marks	'blue-green' Instrument analysis	