## Section A (multiple choice)

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( a )}$ | C |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ( b )}$ | A |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | D |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | A |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(a) | C |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 4(b) | A |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | A |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{6}$ | B |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{7}$ | B |  | 1 |


| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{8}$ | D |  | 1 |

Question 9: N/A
Question 10: N/A

## CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 20 MARK SCHEME

Question 11: N/A
Question 12: N/A
Question 13: N/A

| Question <br> Number | Correct Answer | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 4}$ | B |  | 1 |

Question 15: N/A
Question 16: N/A

## Question 17: N/A

Question 18: N/A

Question 19: N/A

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 ( a )}$ | (Greater yield) as fewer moles/molecules (of gas) on <br> RHS <br> OR <br> 3 moles/molecules on left but only 1 on right (1) <br> ALLOW arguments in terms of K $\mathrm{K}_{\text {r remaining constant }}$ <br> Disadvantage: <br> Extra cost of <br> (building) equipment (to withstand higher pressure)/ <br> thicker pipes/compressor/maintaining equipment (1) | Just (higher) <br> cost | $\mathbf{2}$ |
|  | OR <br> Higher cost of energy needed for compression (1) <br> IGNORE references to explosion |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 ( b ) ( i )}$ | (Reaction is exothermic) so the value of $\Delta S_{\text {surroundings }}$ <br> becomes more positive/larger (at $100{ }^{\circ} \mathrm{C}$ ) (1) |  | $\mathbf{2}$ |
|  | Therefore $\Delta S_{\text {total }}$ becomes more positive/larger/less <br> negative(at $\left.100{ }^{\circ} \mathrm{C}\right)$ <br> Second mark consequential on first |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 ( b ) ( i i )}$ | (Higher temperature gives a) faster rate of reaction <br> /more particles have $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}}$ <br> (ALLOW more successful collisions (per second) <br> IGNORE references to yield |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 0 ( c )}$ | Remove methanol/the product (as it is formed) (1) | 2 |  |
|  | Recycle/reuse unreacted reactants <br> IGNORE references to catalyst and increasing <br> amounts of reactants | (1) |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( a ) ( \mathbf { i } )}$ | $k=\left(1.54 \times 10^{-6}\right) \div(0.1 \times 0.15)$ <br> $\left(=1.0267 \times 10^{-4}\right)$ <br> $=1.03 \times 10^{-4}(\mathbf{1})$ must be to 3 SF <br> $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathbf{( 1 )}$ <br>  <br>  <br>  <br> Unit mark is stand alone and units can be in any <br> order <br> Correct answer with units but no working (3) marks | $1.02 \times 10^{-4}$ | $\mathbf{3}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( a ) ( i i )}$ | If correct unrounded answer to (a) (i) stored in <br> calculator then <br> $4.1067 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ <br> OR <br> If $1.0267 \times 10^{-4}$ used then <br> $4.1068 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ <br> OR <br> If $1.03 \times 10^{-4}$ used then <br> $4.12 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ <br> IGNORE sf except 1 sf <br> IGNORE units even if incorrect <br> TE from (a)(i) | $\mathbf{1}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( b ) ( i )}$ | $2\left(^{\text {nd }}\right) /$ second/two/(1 + 1) $=2$ (order) |  | $\mathbf{1}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( b ) ( i i )}$ | $\left[\begin{array}{l}\text { Structure } \\ \text { ALLOW structure without wedged bonds } \\ \text { Dotted bonds must be shown and OH and Br must } \\ \text { be on opposite sides with a C-C or C-H bond } \\ \text { between them } \\ \text { Charge } \\ \text { Charge mark can be awarded for a near miss with a } \\ \text { single error in the structure (e.g. one hydrogen } \\ \text { atom missing) } \\ \text { ALLOW -ve charge shown as } \delta-\text { on both OH and } \mathrm{Br} \\ \text { Brackets not essential } \\ \text { ALLOW -ve charge to be anywhere on the structure } \\ \text { IGNORE } \delta+\text { on carbon atom }\end{array}\right.$ | $\mathbf{2}$ |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 1 ( c ) ( i )}$ | $3.00 \times 10^{-3}$ | (1) | -5.60 |
| IGNORE sf for $1 / T$ | (1) |  | $\mathbf{2}$ |
|  | -5.58 |  |  |
| IGNORE sf except 1sf |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 21(c)(ii) | Appropriate scale <br> Plotted points must cover at least half of the graph paper on each axis. <br> Points plotted correctly and straight line drawn (1) through all points $\begin{equation*} \text { Gradient }=-10230 \pm 500 \tag{1} \end{equation*}$ <br> Example <br> $E_{a}=10230 \times 8.31(1)$ allow TE from incorrect gradient $\begin{equation*} \mathrm{E}_{\mathrm{a}}=(+) 85.0 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right) /(+) 85000 \mathrm{~J}\left(\mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ <br> 3 sf <br> $\mathrm{E}_{\mathrm{a}}$ range from 80.9 to $89.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ <br> ALLOW TE from incorrect gradient <br> IGNORE SF except 1 | $\mathrm{K}^{-1}$ | 5 |

## Section C

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 2}$ | $(+) 186.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ |  | $\mathbf{1}$ |
| $\mathbf{( a ) ( i )}$ |  |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 22(a)(ii) | $\begin{align*} & (266.9+186.2)-310.1  \tag{1}\\ & =+143\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)  \tag{1}\\ & -143 \text { scores }(1) \end{align*}$ <br> Correct answer with sign and no working scores (2) marks <br> ALLOW TE from (i) |  | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 2 ( a ) ( i i i )}$ | Yes, as reaction produces 2 molecules/moles from <br> one/more molecules/moles <br> (and) all products are gases <br> IGNORE references to volumes <br> More moles/molecules of gas produced scores (2) |  | $\mathbf{2}$ |
|  | OR (1) <br> Yes, (as the reaction is endothermic) $\Delta \mathrm{S}_{\text {surroundings }}$ is <br> negative <br> Since the reaction takes place/goes <br> (spontaneously) $\Delta \mathrm{S}_{\text {total }}$ is positive and therefore <br> $\Delta \mathrm{S}_{\text {system is positive }}$ <br> ALLOW TE from (a)(ii) i.e. 'No, as....' |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 22(a)(iv) | $\begin{align*} \Delta \mathrm{S}_{\text {surr }} & =-\Delta \mathrm{H} / \mathrm{T}  \tag{1}\\ & =-71900 / 700 \\ & =-102.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.1027 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1} \end{align*}$ <br> Correct answer and sign with no working scores (2) $-0.103 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { scores }(1)$ <br> Third mark <br> So $\Delta \mathrm{S}_{\text {total }}$ is positive (so reaction is feasible) <br> OR <br> $\Delta \mathrm{S}_{\text {total }}=+40.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ (so reaction is feasible) <br> ALLOW TE from (a)(ii) | 1 or 2 sf | 3 |


| Question | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 22(a)(v) | $\Delta \mathrm{S}_{\text {total }}=0$ <br> OR $\begin{equation*} \Delta \mathrm{S}_{\text {surroundings }}=-143 \tag{1} \end{equation*}$ $\mathrm{T}=\Delta H \div \Delta S_{\text {surroundings }}$ <br> OR $\begin{align*} \mathrm{T} & =(-) 71900 \div(-) 143  \tag{1}\\ & =502.8(\mathrm{~K}) \tag{1} \end{align*}$ <br> IGNORE sf except 1sf Correct answer with no working scores (3) <br> ALLOW 0.5028 (K) for (2) marks <br> ALLOW - 502.8 (K) for (2) marks <br> ALLOW - 0.5028 (K) for (1) mark <br> ALLOW TE from (a)(ii) <br> If the calculation is not based on $\Delta \mathrm{S}_{\text {total }}=0$ then a maximum of (2) marks can be awarded if done correctly |  | 3 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| 22(b) | The catalyst is in a different state/phase to the (1) <br> reactants <br> IGNORE references to products <br> Any two from <br> It provides an alternative (reaction) <br> route/mechanism/gases adsorbed on catalyst surface <br> (1) | $\mathbf{3}$ |  |
| Of lower activation energy/weakens bonds in  <br> reactants  <br> Greater proportion of molecules have E $\geq$ Ea (1) | (1) |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 3}$ | $(\mathrm{Ka}=)\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$ <br> (a)(i) <br> Penalise missing charges <br> ALLOW $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in place of $\left[\mathrm{H}^{+}\right]$ <br> IGNORE state symbols and units even if incorrect | $\mathrm{Ka=}$ <br> $\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$ | $\mathbf{1}$ |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| 23(a)(ii) | $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(6.3 \times 10^{-5} \times 0.0025\right)$ <br> (1) $\begin{aligned} \mathrm{pH} & =-\log \sqrt{ }\left(6.3 \times 10^{-5} \times 0.0025\right) \\ & =3.4(\mathbf{1}) \end{aligned}$ <br> Answer without working scores (2) marks 6.8 scores (1) IGNORE sf except 1 | answer if units given | 2 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 3 ( b )}$ | (pH) range (of indicator) 3.8 to 5.4 <br> OR <br> $\mathrm{p} \mathrm{K}_{\text {in }}=4.7$ <br> Bubble bath is (initially yellow since) pH less than (1) <br> $3.8 /$ is 3.4 <br>  <br>  <br>  <br> Adding of water/dilution (of acid) causes pH to rise/ <br> means $\left[\mathrm{H}^{+}\right.$] decreases <br> Hence pH rises to $\geq 5.4$ so blue/changes colour (1) <br> If a(ii) pH>3.8 and <5.4 then loses second marking <br> point but can score other marking points. <br> If a(ii) pH>5.4 then can score first and third marking <br> points only | Water <br> neutralizes <br> acid |  |

## CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 20 MARK SCHEME

## Section A

| Question | Correct Answer | Mark |
| :--- | :---: | :---: |
| Number | D | 1 |
| 24 | D |  |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 25 | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 26 | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 27 | A | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 28 | C | 1 |


| Question <br> Number | Correct Answer | Mark |
| :--- | :--- | :--- |
| 29 | C | $\mathbf{1}$ |


| Question <br> Number | Correct Answer | Mark |
| :--- | :---: | :---: |
| 30 | B | $\mathbf{1}$ |

## Section B

| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{3 1 ( \text { (a)(i) }}$ | Copper: <br> 0 to $+2 / 2+/ 2^{+} / 11 / 2$ (1) <br> Nitrogen: <br> $+5 / 5+/ 5^{+} / \mathrm{V} / 5$ to $+4 / 4+/ 4^{+} / \mathrm{IV} / 4$ (1) |  | $\mathbf{2}$ |


| Ouestion | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| (a)(ii) | $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{(-)}$ <br> OR $\mathrm{Cu}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Cu}^{2+}(1)$ <br> $\mathrm{Cu}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \mathrm{OK}$ if 6 waters shown on I.h.s. $\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{(-)} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ <br> OR $\begin{equation*} 2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow 2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ OR $\begin{equation*} 2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{(-)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ <br> Ignore the full equation if it is given as well <br> Allow equations written as reverse of above Ignore state symbols even if wrong <br> Allow $\rightleftharpoons$ for $\rightarrow$ |  | 2 |


| Ouestion <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| (a)(iii) | (electrode potential) values are for standard <br> conditions (1) <br> nitric acid is concentrated / not $1 \mathrm{~mol} \mathrm{dm}^{-3} /$ <br> not $1 \mathrm{M} \mathrm{(1)}$ <br> Allow temperature not stated for second mark | $\mathrm{NO}_{3}-$ are not 1 mol dm <br> Any reference to loss of <br> $\mathrm{NO}_{2}$ | $\mathbf{2}$ |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| (b)(i) | initially a (pale/light) blue precipitate (1) |  | $\mathbf{2}$ |
|  | Ignore white precipitate <br> (re-dissolves in excess to form) a (deep) blue <br> solution (1) Stand alone mark <br> Accept any shade of blue except greenish-blue | Any colour (other than <br> blue) precipitate in blue <br> solution |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| (b)(ii) | $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})(1)$ |  | 3 |
|  | $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})(1)$ |  |  |
|  | $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})(1)$ |  |  |
|  | $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{\text {2- }}(\mathrm{aq})(1)$ |  |  |
|  | If two previous equations combined correctly |  |  |
|  | then (1) only : $\mathrm{Zn}^{2+}+4 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}$ |  |  |
|  | Allow |  |  |
|  | $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ZnO}_{2}{ }^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ |  |  |
|  |  |  |  |
|  | $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{6}{ }^{4-}(\mathrm{aq})$ |  |  |
|  | OR |  |  |
|  | equivalent non-ionic equations, including those with $\mathrm{Zn}^{2+}+2 \mathrm{NaOH}$ etc |  |  |
|  | OR |  |  |
|  | Correct balanced equations starting with hexaqua or tetraqua cations |  |  |
|  | ALLOW the hydroxides to be shown as e.g. |  |  |
|  | $\mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{~s})$ provided that the whole equation balances. |  |  |
|  | Penalise missing /incorrect state symbols on product once only. Ignore other state symbols |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| (b)(iii) <br> QWC | First 2 marks: <br> zinc hydroxide/oxide amphoteric because it <br> reacts with alkali (to give a solution of a <br> zincate) (1) <br> and reacts with acid (to give a salt) (1) | Reference to zinc ions or <br> zinc metal |  |
|  | zinc hydroxide is / acts as both an acid and an <br> alkali - scores (1) only |  |  |
|  | Third mark: <br> hexaquazinc or hydrated zinc ions exchanged <br> water for ammonia or other named ligand (1) <br> OR | Do not allow deprotonation |  |
|  | Zn(H20) ${ }^{2+}+4 N H_{3} \rightarrow$ etc (1) <br> Allow any number of ammonias from 1 to 6 <br> Allow balanced equations, ionic or full. <br> Ligand exchange reaction must start with a <br> complex ion <br> Note: <br> If zinc mentioned initially but equation refers <br> to a correct compound then credit should be <br> given <br> If equations wrong but words are correct then <br> ignore equations |  |  |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| (c)(i) | $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ | Non-ionic equation. | $\mathbf{1}$ |
|  | Ignore state symbols even if wrong. |  |  |


| Question Number | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: |
| (c)(ii) QWC | ```Amount thiosulphate \(=0.0331 \mathrm{dm}^{3} \times 0.1 \mathrm{~mol} \mathrm{dm}^{-3}\) \(=0.00331 \mathrm{~mol}(1)\) = amount of copper(II) ions in \(25 \mathrm{~cm}^{3}\) portion (1) \(\therefore\) amount \(\mathrm{Cu}=10 \times 0.00331=0.0331 \mathrm{~mol}\) in total (1) \(\therefore\) mass \(\mathrm{Cu}=0.0331 \mathrm{~mol}_{\mathrm{x}} 63.5 \mathrm{~g} \mathrm{~mol}^{-1}(1)\) \(=2.102 \mathrm{~g}\) \(\therefore \%\) copper \(=(2.102 \times 100) \div 3.00(1)\) \(=70.1 \%\) (1) to 3 s.f. only``` <br> Mark consequentially but if \% > 100 then ( -1 ) <br> If equation in (i) is incorrect but used correctly in part (ii) then all marks can be scored unless answer > 100\% <br> Correct answer can score 6 marks irrespective of the stoichiometry of the equation in (c)(i) <br> If candidates uses 64 for molar mass of Cu final answer will be 70.6; scores max of 5 | 70.06 or 70.0 | 6 |


| Question <br> Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- |
| (c)(iii) | some reagent used to fill the jet (which does <br> not react with the iodine solution) and so the <br> titre is too high (1) <br> and hence the percentage value would be too <br> high (1) Allow only if the titre is said to be high <br> If the titre is thought to be too low then allow <br> percentage value too low for 2nd mark (1) |  | $\mathbf{2}$ |

