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Abstract. We propose two pipelines for convex optimisation problems
with uncertain parameters that aim to improve decision robustness by
addressing the sensitivity of optimisation to parameter estimation. This
is achieved by integrating uncertainty quantification (UQ) methods for
supervised learning into the ambiguity sets for distributionally robust
optimisation (DRO). The pipelines leverage learning to produce contex-
tual/conditional ambiguity sets from side-information. The two pipelines
correspond to different UQ approaches: i) explicitly predicting the con-
ditional covariance matrix using deep ensembles (DEs) and Gaussian
processes (GPs), and ii) sampling using Monte Carlo dropout, DEs, and
GPs. We use i) to construct an ambiguity set by defining an uncertainty
around the estimated moments to achieve robustness with respect to the
prediction model. UQ ii) is used as an empirical reference distribution of
a Wasserstein ball to enhance out of sample performance. DRO problems
constrained with either ambiguity set are tractable for a range of convex
optimisation problems. We propose data-driven ways of setting DRO
robustness parameters motivated by either coverage or out of sample
performance. These parameters provide a useful yardstick in comparing
the quality of UQ between prediction models. The pipelines are compu-
tationally evaluated and compared with deterministic and unconditional
approaches on simulated and real-world portfolio optimisation problems.

Keywords: Prediction and Optimisation · Prescriptive Analytics · Un-
certainty Quantification · Distributionally Robust Optimisation

1 Introduction

Real world decision problems are seldom deterministic. The perennial opera-
tional risk of mathematical programming is the sensitivity of the problem to its
parameterisation. Small differences in the parameters governing the objective or
the constraints can render solutions highly suboptimal or infeasible. Optimisa-
tion under uncertainty is a mature field which has devised a number of tractable
approaches that derive robust or expectation optimal solutions, thus manag-
ing the uncertainty. Since the true underlying distributions are never known in
practice, the most successful approaches exploit available samples of parameters
with statistically valid constructs of uncertainty. When contextual information
exists, using what amounts to an unsupervised approach should lead to overly
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conservative decisions. Contexts of the problem for which existing samples are
information-poor may result in overly confident decisions. Problem parameters
can be estimated based on available contextual information using supervised
learning. This is commonly referred to as predict-then-optimise and is how pre-
scriptive analytics is often performed. This is a form of contextual optimisation,
but prediction models tend to be overly confident and in their vanilla form do
not quantify the certainty of their predictions. Using point parameter estimates
preserves the operational risk, which may be exacerbated due to inconsistent
out-of-sample performance. Given the ubiquity of predict-then-optimise deci-
sion making, improving its reliability and out-of-sample performance will result
in tangible impact.

In this work we propose an approach to adapt predictive models with un-
certainty quantification (UQ) to a robust optimisation setup. We mainly focus
on distributionally robust models (DRO), forming the pipeline UQ-DRO. Sim-
ilar logic can be applied in robust ways for safety-critical situations. Section 2
introduces the concept of robust prediction and optimisation. Section 3 presents
implemented predictive methods with UQ. The ambiguity sets used with UQ are
defined in 4. Section 5 sets out data-driven algorithms for robustness parameter
specification and the objectives of the two pipelines. Section 6 computationally
evaluates the approach on a simulated and a real data portfolio optimisation
problem.

2 Robust Predict-then-Optimise

Prediction models provide an estimate of the conditional expected value of the
target. Predictive uncertainty can be decomposed into epistemic, and aleatoric
uncertainty. Epistemic uncertainty is a result of a lack of information about
the true data generating process (DGP). Aleatoric uncertainty is the underly-
ing stochasticity of the process and is irreducible. Even in the best-case super-
vised scenario, the persisting aleatoric uncertainty presents an operational risk,
thus motivating the use of robust approaches. A well-tuned robust predict-then-
optimise approach would provide a meaningful scoring criterion for predictive
models used in optimisation, reflecting their worst-case outcome. The key driver
of decision quality in such a system would be the level of epistemic uncertainty,
which would determine the needed level of conservativeness. As such, the pre-
dictive model should be highly expressive, trained delicately, as phenomena such
as overfitting may increase out-of-sample epistemic uncertainty, and capable of
reasonably capturing the uncertainty of its predictions. The prediction task in
this case is more difficult as we are typically interested in the values of many
parameters, encouraging the use of multiple-output models to better capture
interdependence.

Existing approaches for conditional optimisation have utilised local nonpara-
metric regression methods such as K-nearest neighbours with DRO [2,3,15] to
provide a conditional sample for a variety uncertain optimisation problems.
Building on this [8] propose a method based on distribution trimmings and
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cast it as a partial mass transportation problem to hedge against the limitations
of inferring conditional distributions with limited samples, providing an outer
layer of robustness. On the other hand, a growing body of literature has looked
at fused approaches wherein the prediction function is optimised with respect
to decision loss. Often referred to as Predict-and-Optimise, it involves differen-
tiating across a solver which has been achieved either with surrogate gradients
[1,17] or differentiating the optimality conditions [7,16] of a potentially relaxed
problem. These models implicitly learn how to deal with conditional uncertainty.

In contrast our work uses global supervised learning methods. This is mo-
tivated by the idea that global models have the potential to cross-learn about
different contexts through shared patterns in the data. This improves the model’s
ability to infer about contexts which are information-poor, a key case of which are
out-of sample contexts. We do not make any assumptions on the DGP, instead
relying on a cross-validation type approach to determine robustness parameters.

3 Predictive Models with Uncertainty Quantification

We propose the use of three predictive approaches which have high expressive
power and capacity for UQ. The approaches cover both main directions in UQ,
namely ensemble, and Bayesian techniques. The ensemble approach is a deep
ensemble (DE) [11], an ensembling technique which treats ensemble members as
mixture model components. Constituent models are neural networks designed to
predict both a mean vector and a covariance matrix. They are trained using a
form of gradient descent to minimise the negative log likelihood given a paramet-
ric assumption about the DGP’s uncertainty, usually heteroskedastic Gaussian,
though Laplacian likelihood may be more appropriate for heavy tails. Denote
the available contextual information as x ∈ Rn, and the model parameters as
θ. The model maps Rn 7→ Rp × Rp×p or from contextual information x to a
mean vector µ(x) ∈ Rp and covariance matrix Σ(x) ∈ Rp×p. The optimisation
problem with a Gaussian maximum likelihood objective is:

min
θ

L(θ) =
∑

(x,y)∈D

1

2
(y− µ(x; θ))TΣ(x; θ)−1

(y− µ(x; θ)) +
1

2
ln(|Σ(x; θ)|) (1)

Note that the covariance matrix is symmetric, so only p + p(p+1)
2 outputs need

to be predicted. The structural concern is that Σ should be positive semidefinite
(PSD). We follow [14] who encourage a PSD estimate by using an exp activa-
tion function for variance terms and a tanh activation function for predicting
correlation coefficients from which they construct covariances. The size of the
estimated matrix grows quadratically, so this approach is unlikely to scale to
large problems. In practice, the exponential activation and subsequent matrix
construction can lead to numerical difficulties with the determinant. Since we
are interested in the log of the determinant we can reformulate this part of the
loss function into a sum of the log of its eigenvalues. If an odd number of eigen-
values are negative, we clip the value at a small positive ϵ. While this means
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that the resulting matrix may not be PSD in intermediate steps, it enables more
informative gradients and tends to predict PSD matrices after training. This
procedure is fully differentiable and was key to stabilising training in addition
to standardising variables.

The second approach is Monte-Carlo dropout (MCD), which is an ensemble
technique that became popular after a Bayesian analysis showed that it can be
cast as approximate inference in deep Gaussian processes [9]. MCD relies on a
regularisation technique for deep learning called dropout. Dropout deactivates
neurons in the network randomly according to some prior parameterisation (usu-
ally Bernoulli), thus limiting the gradient information during that pass to the
active units. Dropout regularisation can be thought of as training an implicit
ensemble of models within the network, but is deactivated at test time. MCD
retains dropout at test time and uses it as an empirical sampling technique to
estimate the posterior uncertainty of predictions given contextual information
x. This approach should scale better, but tends to be worse at UQ.

Finally, we propose the use of a Bayesian non-parametric regression approach.
The most commonly used such approach is a Gaussian Process (GP) which is
assumed to be the distribution across functions. Any set of observations about
the function value is assumed to have a multivariate Gaussian joint distribution
parameterised by a mean, and kernel function which measures the similarity of
contextual information. Predictions are made by marginalising the probability
distribution of a new point given its contextual information. The choice of kernel
is key for modelling (scale and Matern in our case) and kernels are often para-
metric, thus allowing for some optimisation, typically by optimising the marginal
likelihood. Given that we are interested in multi-task prediction, we follow the
setup of [5], which models interdependence with a task-similarity kernel.

4 Conditional Ambiguity Sets

We incorporate UQ in various forms of DRO. DRO seeks to obtain a solution
that has the least worst expected value across all distributions in an ambiguity
set. To exemplify, say the uncertain parameter ξ ∼ P is only in the objective
h(x, ξ). The DRO formulation is:

min
x∈S

sup
P∈D

EP(h(x, ξ)) (2)

It is less conservative than robust optimisation approaches and does not suf-
fer from the optimiser’s curse (overly optimistic out-of-sample) like stochastic
programming. The two prevailing ways of defining ambiguity sets are by using
moments or disturbance metrics. Moment-based sets are typically convex sets
constructed in reference to a stated or estimated moment, usually using conic
formulations. Disturbance sets are defined as all distributions within a certain
disturbance metric. Even though these problems are semi-infinite, they often
admit tractable reformulations by exploiting duality.

We propose the use of ambiguity sets that incorporate the output of UQ. DE
and GP quantify their uncertainty with predicted covariances. We employ the
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approach from [6], which defines ambiguity sets in terms of moment-uncertainty.
The ambiguity set D(µ̂, Σ̂, γ1, γ2) is defined as:

D(µ̂, Σ̂, γ1, γ2) =

P ∈ P(S)

∣∣∣∣∣∣
ξ ∼ P
(E(ξ)− µ̂)TΣ̂−1(E(ξ)− µ̂) ≤ γ1
E((ξ − µ̂)T(ξ − µ̂)) ⪯ γ2Σ̂

 , (3)

where S ⊆ Rp is the support of the set. The set defines all distributions for which
the expected value lies within a scaled ellipsoid uncertainty set centred on the
model prediction and shaped by the UQ, and for which the true covariance lies
within a PSD cone defined by scaled UQ. This ambiguity set does not assume
that the model is correct or that it captures its conditional uncertainty well. It
enables us to parametrically define a space of distributions around our model’s
predictions within which we can guarantee a worst case expectation. Under mild
convexity assumptions about the objective function [6], this ambiguity set has a
tractable semidefinite programming (SDP) robust counterpart.

For sampling-based UQ we propose the use of ambiguity sets defined by the
Wasserstein metric [12]. The ambiguity set is defined as the set of distributions
that are within a ball from the empirical reference distribution, which in our
case is the n conditionally generated samples P̂n(xi). The ambiguity set is de-
fined as Dw(P̂n, ϕ) = {Q ∈ P(S)|dW,p(Q, P̂n) ≤ ϕ}, where dW,p is the p-norm
Wasserstein metric dW,p(P̂n,Q) = infΠ{

∫
S×S ||p̂− q||pdΠ(p, q)}, and Π denotes

the joint distribution of p, q whose marginals are P̂n,Q respectively. Wasserstein
ambiguity sets are generally less tractable, but robust counterparts exist in a
number of settings. In the context of predict-then-optimise, this allows us to
account for sampling error and bias. Posterior sampling from a GP provides a
conditional reference distribution based on our structural beliefs about the DGP.
MCD is a black box, but provides a more centred form of sampling.

5 Data-driven Robustness Parameter Specification

We see two ways of leveraging the UQ-DRO pipeline depending on how robust-
ness parameters are set. We can either set them to probabilistically cover poten-
tial outcomes, or induce limited robustness. The drawback of the former is that
robustness tends to come with a cost to performance on average as it is overly
conservative. In turn, limited robustness may increase average performance by
reducing the sensitivity of decision quality to mild parameter uncertainty.

We aim to achieve coverage with the UQ and uncertain moments pipeline. We
achieve this by finding the smallest values γ1, γ2 such that the defined uncertainty
sets are likely to contain the true moments. We use a holdout set V as a proxy
for the problem. Lower values of these parameters indicate that a model is better
tuned for estimating its uncertainty in the context of the optimisation model.

We cast the setting of these parameters as optimisation problems. We want
to find the smallest γ̂1 such that the (unknown) conditional mean is within the
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ellipsoidal uncertainty set defined by the predicted mean and variance:

argmin
γ1

{γ1|E[(ξ − µ̂(x))TΣ̂−1(x)(ξ − µ̂(x)) ≤ γ1|x]}. (4)

We use (x, ξ) ∈ V as a proxy for this problem, by calculating the distance for
each point and then picking the median. This is motivated by an assumption
that the true conditional distributions are symmetric on average, so realisations
are more distant from the predicted mean than the true mean approximately
half of the time. Setting γ2 is slightly more difficult as the associated constraint
is defined using a Loewner order. We solve the following SDP problem for each
point in the holdout set for each (xi, ξi) ∈ V:

γ̂2,i = argmin
γ2

{γ2|γ2Σ̂(xi)− Z ⪰ 0, γ2 ≥ 0}, (5)

where Z = 1
|Z|

∑
i∈Z((ξi−µ̂(xi))

T(ξi−µ̂(xi))) and set γ̂2(α2) as the 1−α2 quantile
of the obtained γ̂2,i. The linear matrix inequality constraint in this problem is
simple so it should not be a computational bottleneck. We use α2 = 0.1 to
encourage a 90% coverage of covariances, but this can be tinkered with.

We use the sampling-Wasserstein pipeline to achieve limited robustness. We
want to obtain a reference holdout ϕ and then scale it by multiplying it with
some constant k ≤ 1. We obtain the reference ϕ by computing the p-Wasserstein
distance between every distribution realisation ξi and the predicted sample
P̂n(xi) =

1
n

∑n
j=1 δξ̂i,j which we treat as a mixture of Dirac delta distributions.

Since both are discrete, this is equivalent to calculating the earth mover’s dis-
tance (EMD) between the two. The p-Wasserstein distance between the two can
be cast as a linear optimisation problem:

dW,p(P̂n(xi), δξi) = min
T

{⟨T,M⟩|T1 = pP, T
T1 = pξ}, (6)

where T is the optimal transport matrix, M ∈ Rn×1 is the moving cost, which
is calculated as the point-wise p-norm between the sample P̂n(xi) and ξi, and
pP,pξ are the discrete densities (in this case equally weighted). Since T is only
a vector, the optimisation is trivial: the optimal transport plan is tk = 1

n for all
k. The EMD for holdout entry i is therefore 1

n

∑n
j=1 |ξ̂i,j − ξi|pp and we set the

reference ϕ as the 0.9 quantile of these values. However, the true distribution of
ξ is very unlikely to be a discrete point and such a large ambiguity set will likely
lead to overly conservative solutions, which is why we scale it down with k.

6 Computational Evaluation and Discussion

Our approach was evaluated on a common prediction and optimisation problem,
namely portfolio optimisation. The code is publicly availablea. The uncertain
parameters are the asset returns p. Asset returns are famously difficult to predict
a https://github.com/EgoPer/Contextual-Robust-Optimisation-with-UQ
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due to a high noise to signal ratio and concept drift. We followed the problem
setup from [4,8], which uses a linear reformulation of CVAR [13] in the objective.
The DRO optimisation problem for ϵ-CVAR is:

minx,β infP EP[β + 1
ϵ (−pTx − β)+ − λpTx]

s.t. eTx = 1,x ≥ 0
(7)

where λ governs the trade off between tail risk and returns, and (a)+ = max(0, a).
We set ϵ = 0.1 (expected value of the 10% worst cases), and λ at 1. We use 25
samples for each conditional Wasserstein approach, set k = 0.1 on the simulated
problem, and k = 0.02 on the real data problem.

6.1 Simulated Problem

The simulated version of this problem is based on a problem used in two ex-
isting papers [4,8] about DRO with side/contextual information, but we in-
troduce significant non-linearity and heteroskedasticity. Three independent in-
puts are simulated as standard normal variables x1,2,3 ∼ N (0, 1). The con-
ditional joint distribution of the simulated returns is N (µ(x), Σ(x)), where
µ(x) = µ̄+ y(x)b, Σ(x) = [(15 tanh(x1) + 1) · Σ̄ 1

2 ]2 (µ̄, Σ̄ as in [4]).
We generate five datasets at five training set sizes (20% holdout) and train

models five times due to the stochastic nature of their training. The test set is
the same across experiments and is deliberately generated out-of-sample (100
samples of x1,3 ∼ N (2, 1), x2 ∼ N (−2, 1), same DGP). Given that we have ac-
cess to the true DGP, we can approximately evaluate the performance of each
solution (in our case using a 104 sample Monte Carlo simulation). We construct
a deterministic equivalent, which gives us the true optimal value, allowing us
to measure regret. We run three unconditioned models that derive their uncer-
tainty inputs from the whole training set, an uncertain moments (UM) model, a
Wasserstein (WASS) model, and a sample average approximation (SAA) model.
We run a conditional SAA model using the moment outputs of DE to sample
a normal distribution. We run five of our contextual models: DE-UM, GP-UM,
DE-Wasserstein (DE-WASS), GP-WASS, and MCD-WASS. Figure 1 displays
boxplots of the mean out-of-sample regret for each approach. The DE-WASS ap-
proach dominates across data sizes improving in performance with a growing size
of the dataset, outdoing a robustly performing unconditional Wasserstein. MCD-
WASS is close in performance to the unconditional case, while the GP version
lags slightly. The prediction models were trained in an out-of-the-box manner, so
it is conceivable that they would outperform using hyperparameter optimisation
or in richer data environments. The conditional UM methods outperformed the
unconditional case, though the gap between DE and the unconditional UM got
smaller with an increase in the size of data, possibly reflecting overfitting as the

b The outputs of y(x) are defined as:
y1 = 30 tanh(x2 exp(

1
2
x1 − 2)], y2 = 50 tanh(x1) sin(3x3), y3 = 10 ln(|x1x2x3|),

y4 = sin(x2) + x2
1 − x1x2, y5 = 20(sin(x1) + sin( x2

10x3
)), y6 = y1 − y2 .
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Fig. 1. Mean performance from simulated experiments.

models were trained for the same number of epochs in each case. The results
support the use of UQ for constructing contextual DRO approaches.

For the real problem we use a slightly reduced version of the dataset from
[10], which contains returns on five large US indices alongside 106 contextual co-
variates such as technical and economic indicators. We cannot directly evaluate
the objective function in 7 so we approximate the CVAR and the expected return
using a two year testing set training each model five times. Figure 2 presents the

Fig. 2. Approximate performance from real-data experiment.

approximate performance of these methods. The contextual approaches outper-
form all unconditioned approaches. The Wasserstein approaches are very com-
petitive with non-robust contextual SAA equivalents and are less sensitive to
model training, illustrating the positive trade-off of limited robustness. Notably,
the DE-WASS approach is best performing in both experiments.

The pipelines offer an effective way of introducing robustness to prediction
and optimisation problems by leveraging established methods for UQ. They can
also be used a means of achieving contextual DRO, though analysis is needed
to establish the desired convergence properties that established DRO techniques
have. We see much potential for refining these pipelines with regularisation,
predictive model architecture, contextual setting of robustness parameters, and
end-to-end learning.
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