Discuss...

White R⊚se Maths

How do you promote mathematical talk in your classroom?

Mathematical Talk and Questioning

Course Lead

White Rose Maths

White R®se Maths

Content

- Why is talk important?
 - Developing flexibility
 - Assessment for learning
- Developing talk
 - Using CPA to support talk
 - Modelling and explanation
 - Thinking together

Why is talk important?

'average word-count 10 : 1'

King's-Medway-Oxfordshire-Formative-Assessment-Project (1999-2000)

White

R©se Maths

Why is talk important?

In a study of mathematics lessons in 2013...

• Teachers asked an average of 87 questions per fifty minute lesson (one every 34 seconds)

R@se Maths

• In one fifty minute lesson, the teacher asked 146 questions (one every 20 seconds)

'Teachers give students an average of 0.8 seconds to respond to a question before intervening.'

Renton. (2011)

White R®se Maths Why is talk important?

Discuss...

White R©se Maths

How do you promote mathematical talk in your classroom?

Why is talk important?

• Think, Pair, Share

Think for 30 seconds, speak to partner for 1 minute, share with the group for 3 minutes.

R©se Maths

• Giving wait time

(allowing at least 3 seconds of wait time encourages all to think about it)

• Pause, pounce, bounce Keeps students on their toes, and listening to instructions.

White R©se Maths

Why is talk important?

• Thinking threes

"If you are allowing students to choose whether to participate in your classroom, you are exacerbating the achievement gap. What we have to do is to create classrooms which are inclusive, where the level of cognitive demand is high, and where *participation is obligatory.*"

William, D. (2006)

R©se Maths

Developing flexibility

Developing flexibility

Calculate mentally:

White

R©se Maths

18×5

How did you do it?

 $10 \times 5 = 50$ $8 \times 5 = 40$ 50 + 40 = 90

 $18 \times 10 = 180$ $180 \div 2 = 90$

White

R@se Maths

$$20 \times 5 = 100$$

 $2 \times 5 = 10$
 $100 - 10 = 90$

$$9 \times 5 = 45$$

 $45 \times 2 = 90$

 $9 \times 10 = 90$ $45 \times 2 = 90$

Developing flexibility

Calculate mentally:

White

Røse Maths

197×5

How did you do it?

Developing flexibility

Sam gets £10.00 pocket money.

He spends £3.27 on a magazine.

How much does he have left?

Show all your working.

White R©se Maths 'Although demanding, the process of trying to put mathematical ideas into words has been crucial to forming insights into ways of thinking.'

Hatch and Shiu. (1997)

White Røse Maths

Assessment for learning

'Through careful eavesdropping of student conversations the teacher comes to understand what learners know, what they partly know and what they do not yet know.'

Black & Harrison (2004)

R©se Maths

Task:

Look at the responses given by the children. Decide what each child knows, partially knows and does not know yet.

Which clock shows ten past 1?

White

Røse Maths

Explain why a child might give each answer. What are their misconceptions?

Assessment for learning

Discuss...

White R©se Maths

- 25, 9, 16, 43
 - All of the numbers...
- Some of the numbers...
- None of the numbers...

Assessment for learning

Discuss...

White

Røse Maths

Which one doesn't belong?

Cambridge International Examinations Teaching and Learning Team

White R©se Maths

Developing talk

- Using CPA to support talk
- Modelling and explanation
- Thinking together

Using CPA to support talk

'Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas.'

Drury, H. (2015)

R©se Maths

What can we use to represent the pictures?

6 - 2 = 4

White

6 - 3 = 3

White R©se Maths

First

Now

Task

Can you create a first, then, now story to support the following number sentences?

$$6 - 0 = 6$$

White R©se Maths

$$6 - 6 = 0$$

Where else would a first, then, now structure support within the curriculum?

Discuss...

Which of these subtraction stories fit the 'First, Then, Now' structure?

There are 132 children in a year group. 29 of them are girls. How many are boys?

Alfie needs to save £132 for his holiday. He has already saved £29. How much more does Alfie need to save? A sticker book holds 132 stickers. There are 29 spaces left. How many stickers have been stuck in?

There were 132 tadpoles in the pond. 29 of them grow into frogs. How many tadpoles are left in the pond? Blue team had 132 table points. Red team had 29 points. How many more table point do Blue team have than Red team?

132 children were in the

dinner hall. 29 go out to

play. How many children

left in the hall?

White R©se Maths

Stem sentences

- Opportunity to respond in the form of a complete sentence to effectively communicate.
- Provide scaffolding to help students get started in speaking or writing without the added pressure of thinking about how to correctly formulate a response.
- Develops reasoning and conceptual understanding.

R©se Maths

There are _____ fish tanks. There are _____ fish in each tank. There are _____ fish altogether.

There are _____ fish altogether. There are _____ fish tanks. There are _____ fish in each tank.

There are _____ fish altogether. There are _____ fish in each tank. There are _____ fish tanks.

There are _____ fish altogether. _____ fish are blowing bubbles. \Box fish are blowing bubbles.

For every _____ fish, there is _____ tank. For _____ fish, there are _____ tanks.

'By giving our students practice in talking with others, we give them frames for thinking on their own.'

Vygotsky.

White

R©se Maths

Modelling and Explanation

White R©se Maths

Immersion

A number rounded to the nearest 10 is 370 What could the number be?

White R©se Maths

Use the sentence stems to answer the question.

It must be... It could be... It cannot be...

White

Røse Maths

Thinking together

'Most of the time, classroom recordings capture discussions in which children don't listen to each other, in which one person dominates the proceedings, in which they argue unproductively, or in which participants seem happy to go along with whatever anyone says without any reflection or debate.'

Mercer and Littlejohn. (2007)

R⊚se Aath

Thinking together

Read through the ground rules for talk.

White R®se Maths

Which ones do you agree with? Which ones do you disagree with?

Choose 4 key ground rules for talk.

White R©se Maths

We will listen when others are talking.	We will try to reach a shared agreement.	No-one can change their mind.	Everyone must do what the leader says.
Everyone will talk as loud as they can.	We will co- operate; try to get along with each other.	We will listen and think about each other's ideas.	We will ask for reasons.
If people find it hard to join in, we ignore them.	We will keep our ideas quiet so that no-one else can copy.	We understand that talking is thinking aloud.	We are going to stick to our own ideas and not share them.
We will make group decisions that we can all agree to.	We can ask each other questions to help us to understand everyone's ideas	The person who talks loudest is always right.	We will take it in turns to reach decisions

Thinking together

Always, sometimes, never.

- The difference between two die is even
- The total of two die is even
- If the difference is even then the total is even

White R©se Maths *'It is not simply that the learner hears several voices through dialogue but that the ideas from individuals get challenged, moulded and re-examined through the collective voice of the group.'*

R©se Maths

Any Questions?

Thank you

<u>White</u> Røse Maths

White Rose Maths (a) (a) (b) (c) (a) WhiteRoseMaths (a) WRMathsSec www.whiterosemaths.com

References

- Alexander, R. (2004). Towards Dialogic Teaching: rethinking classroom talk.
- Black, P., Harrison, C., Lee, C., Marshall, B., & William, D. (2002). Working inside the black box: Assessment for learning in the classroom.

White R©se Maths

- Bruner , J.S. & Haste, H.E.(ed). (1987). Making sense: the child's construction of the world.
- Boaler, J. (2016). Mathematical Mindsets.
- William, D. (2006). Assessment for learning: what, why and how
- Vygotsky, L. (1978). Mind in Society.