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Why Study Energy Systems?
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Why Study Energy Systems?

1. Our life and survival depend on energy

I Transportation, health, agriculture, heating / cooling, communications,
manufacturing, etc.

I Dramatic economic and safety consequences when supply fails.
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Why Study Energy Systems?

2. Energy acquisition and use impact the environment

I Air pollution: 5.5 million people die each year because of air pollution.

The main culprit is the emission of small particles from power plants,
factories, vehicle exhausts and from the burning of coal and wood.
https://www.bbc.co.uk/news/science-environment-35568249

I Carbon emissions are a major challenge.
Canada’s Trottier Energy Futures Project http://iet.polymtl.ca/tefp/

Video of the report’s release:
https://www.youtube.com/watch?v=qGbQgogteTg

https://www.bbc.co.uk/news/science-environment-35568249
http://iet.polymtl.ca/tefp/
https://www.youtube.com/watch?v=qGbQgogteTg
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Why Study Energy Systems?

3. Intellectually interesting and challenging!

I North American electricity system is the “biggest machine in the world”.

I Distributed generation and demand management increasing the complexity
of the system by several orders of magnitude.

I Huge challenge to develop renewable/decarbonising energy supply.

I Incorporate variable and unreliable renewable generation sources

I Use storage to deal with intermittency and variability of supply and
demand.

I Long-standing question remains: how to operate a power system at
minimum cost.

I Integrate and operate different energy systems: electricity, gas, hydrogen,
oil, coal, biofuels, heat.
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Oil and Gas

IEA: “While there is no peak oil demand in sight, the pace of growth will slow
down to 1 mb/d by 2023 after expanding by 1.4 mb/d in 2018.” (my emphasis)
https://www.iea.org/oil2018/

Special issue of Optimization and Engineering on “Optimization in the Oil and
Gas Industry”:
https://link.springer.com/journal/11081/18/1/page/1

https://www.iea.org/oil2018/
https://link.springer.com/journal/11081/18/1/page/1
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Different Countries, Different Realities
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Denmark

 

General information

Country size 42 000 km
2

25th compared to IEA countries

Population (2016) 5.7 million 0.5% of IEA population

GDP (2016) 256 billion USD 2010 prices and PPPs * PPP = Purchasing Power Parities

 Energy system transformation

SUPPLY AND DEMAND 2016

ELECTRICITY GENERATION:  30.1 TWh

63% renewables (IEA average: 24%)

Fuel shares compared to IEA average

Fuel TPES (%) IEA average* (%) IEA range (%) Electricity (%) IEA average (%) IEA range (%)

Coal 12 17 0-69 29 28 0-84

Oil 36 36 7-58 1 2 0-10

Gas 17 27 2-40 7 27 1-51

Hydro 0 2 0-43 0 13 0-96

Nuclear 0 10 0-44 0 19 0-73

Biofuels 25 6 2-27 18 3 0-26

Wind 7 1 0-7 42 6 0-42

Geothermal 0 1 0-23 0 0 0-18

Solar 1 1 0-3 2 2 0-13

* IEA Average - total supply per fuel / TPES for 29 IEA countries

KEY ENERGY INDICATOR DEVELOPMENT, 1990-2015

Denmark IEA average

TPES per capita 

(toe/cap)
2.89 4.42

Electricity consumption 

per capita (MWh/cap)
5.81 8.69

Emissions* per capita

(tCO2/cap)
5.63 9.88

Energy intensity (TPES) 

(Mtoe/USD PPP million)
65 96

Emission* intensity

(tCO2/ USD PPP million)
126 193

* CO2 emissions from fuel combustion (2015 data)

Energy Security

PRODUCTION AND SELF SUFFICIENCY, 2016 ENERGY IMPORT/EXPORT

FUEL QUANTITY IMPORT/EXPORT COUNTRY

Crude Oil

Imports 3.8 Mt Norw ay (69.4%)

Exports 4.3 Mt Sw eden (64.2%)

Oil Products

Imports 9.3 Mt Russian Federation (43.6%)

Exports 8.5 Mt Sw eden (30%)

Natural gas

Imports 0.7 bcm Norw ay (71.1%)

Exports 2.1 bcm Sw eden (43.4%)

Coal

Imports 2.9 Mt Russia (64.4%)

Exports 0 Mt Germany (100%)

ELECTRICITY

Imports 15.6 TWh Norw ay (42%)

Exports 9.7 TWh Germany (54.1%)

Note: 2016 data are estimated Source: IEA World Energy Balances 2017

Denmark - Energy System Overview

ENERGY AND CARBON INTENSITY (2016)

Denmark

TPES: 16.5 Mtoe, 32% renewables (IEA average 10%)
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c© International Energy Agency, Key Energy Data by country
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Canada

 

General information

Country size 9094 000 km
2

2th compared to IEA countries

Population (2016) 36.2 million 3.2% of IEA population

GDP (2016) 1537 billion USD 2010 prices and PPPs * PPP = Purchasing Power Parities

 Energy system transformation

SUPPLY AND DEMAND 2016

ELECTRICITY GENERATION:  653.1 TWh

67% renewables (IEA average: 24%)

Fuel shares compared to IEA average

Fuel TPES (%) IEA average* (%) IEA range (%) Electricity (%) IEA average (%) IEA range (%)

Coal 6 17 0-69 8 28 0-84

Oil 35 36 7-58 1 2 0-10

Gas 34 27 2-40 8 27 1-51

Hydro 12 2 0-43 59 13 0-96

Nuclear 10 10 0-44 16 19 0-73

Biofuels 5 6 2-27 2 3 0-26

Wind 1 1 0-7 4 6 0-42

Geothermal 0 1 0-23 0 0 0-18

Solar 0 1 0-3 1 2 0-13

* IEA Average - total supply per fuel / TPES for 29 IEA countries

KEY ENERGY INDICATOR DEVELOPMENT, 1990-2015

Canada IEA average

TPES per capita 

(toe/cap)
7.69 4.42

Electricity consumption 

per capita (MWh/cap)
14.42 8.69

Emissions* per capita

(tCO2/cap)
15.32 9.88

Energy intensity (TPES) 

(Mtoe/USD PPP million)
181 96

Emission* intensity

(tCO2/ USD PPP million)
362 193

* CO2 emissions from fuel combustion (2015 data)

Energy Security

PRODUCTION AND SELF SUFFICIENCY, 2016 ENERGY IMPORT/EXPORT

FUEL QUANTITY IMPORT/EXPORT COUNTRY

Crude Oil

Imports 49.8 Mt United States (59.2%)

Exports 163.7 Mt United States (99%)

Oil Products

Imports 11.8 Mt United States (69.3%)

Exports 20.7 Mt United States (93.4%)

Natural gas

Imports 20.6 bcm United States (98.4%)

Exports 82 bcm United States (100%)

Coal

Imports 6.3 Mt United States (76.3%)

Exports 30.3 Mt Japan (26.1%)

ELECTRICITY

Imports 8.7 TWh -

Exports 68.3 TWh -

Note: 2016 data are estimated Source: IEA World Energy Balances 2017

Canada - Energy System Overview

ENERGY AND CARBON INTENSITY (2016)

Canada

TPES: 278.3 Mtoe, 18% renewables (IEA average 10%)
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c© International Energy Agency, Key Energy Data by country
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Australia

 

General information

Country size 7682 000 km
2

3th compared to IEA countries

Population (2016) 24.4 million 2.1% of IEA population

GDP (2016) 1107 billion USD 2010 prices and PPPs * PPP = Purchasing Power Parities

 Energy system transformation

SUPPLY AND DEMAND 2016

ELECTRICITY GENERATION:  257.5 TWh

15% renewables (IEA average: 24%)

Fuel shares compared to IEA average

Fuel TPES (%) IEA average* (%) IEA range (%) Electricity (%) IEA average (%) IEA range (%)

Coal 34 17 0-69 63 28 0-84

Oil 32 36 7-58 2 2 0-10

Gas 27 27 2-40 20 27 1-51

Hydro 1 2 0-43 6 13 0-96

Nuclear 0 10 0-44 0 19 0-73

Biofuels 4 6 2-27 1 3 0-26

Wind 1 1 0-7 5 6 0-42

Geothermal 0 1 0-23 0 0 0-18

Solar 1 1 0-3 3 2 0-13

* IEA Average - total supply per fuel / TPES for 29 IEA countries

KEY ENERGY INDICATOR DEVELOPMENT, 1990-2015

Australia IEA average

TPES per capita 

(toe/cap)
5.43 4.42

Electricity consumption 

per capita (MWh/cap)
9.99 8.69

Emissions* per capita

(tCO2/cap)
15.83 9.88

Energy intensity (TPES) 

(Mtoe/USD PPP million)
120 96

Emission* intensity

(tCO2/ USD PPP million)
354 193

* CO2 emissions from fuel combustion (2015 data)

Energy Security

PRODUCTION AND SELF SUFFICIENCY, 2016 ENERGY IMPORT/EXPORT

FUEL QUANTITY IMPORT/EXPORT COUNTRY

Crude Oil

Imports 15.6 Mt Malaysia (30.2%)

Exports 11.2 Mt People's Republic o f China(14.48%)

Oil Products

Imports 26.4 Mt Korea (29.1%)

Exports 1.5 Mt Singapore (29.6%)

Natural gas

Imports 7.2 bcm -

Exports 48.1 bcm Japan (66.9%)

Coal

Imports 0 Mt Colombia (50%)

Exports 389.3 Mt Japan (31.9%)

ELECTRICITY

Imports 0 TWh -

Exports 0 TWh -

Note: 2016 data are estimated

Australia - Energy System Overview

ENERGY AND CARBON INTENSITY (2016)

Australia

TPES: 132.3 Mtoe, 7% renewables (IEA average 10%)

Source: IEA World Energy Balances 2017

Coal
63%

Gas
20%

Oil
2%

Biofuels & waste
1%

Hydro
6%

Solar
3%

Wind
5%

Renewables

80

100

120

140

160

180

200

220

240

1990 1995 2000 2005 2010 2015

Index (1990=100)

GDP (USD 2010
prices and PPPs)

Population

TPES

TFC

CO2 emissionsCO2 emissions

0%

100%

200%

300%

400%

500%

600%

700%

0

50

100

150

200

250

300

350

Oil Natural gas Coal

Self sufficiencyMtoe
Production

TPES

Self
sufficiency

0

50

100

150

200

250

300

350

400

450

Production TPES TFC* (by fuel) TFC* (by sector)

Mtoe

Heat

Electricity

Other renewable

Biofuels and waste

Nuclear

Natural Gas

Oil

Coal
Tr anspor t

Industr y 

Commer cial

Net expor t Tr ansfor mation and other  losses

*Demand data are for 2015

Residential c© International Energy Agency, Key Energy Data by country
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Focus today: Electric Energy

I Electricity supply and consumption must match exactly at all times from
less that a second to years ahead.

I This makes the problem very hard.

I Storage provides flexibility but it is (still!) difficult to store electricity in
large quantities.

I Idea: Divide the “big problem” into interacting subproblems on different
times scales.
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Electric System Time Scales

≈ 1 second Dynamic frequency response (normal fluctuations)

≤ 10 min Reserve (meet unforeseen conditions)

≤ 1 hour Optimal power flow

1 day Unit commitment

1 week - 1 year Maintenance

≥ 1 year Expansion planning

At what time scales does optimization apply?
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Electric System Time Scales
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Optimization Models for Unit Commitment
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Optimization Models for Unit Commitment

Reference:

I M.F. Anjos and A.J. Conejo. Unit Commitment in Electric Energy
Systems, Now Foundations and Trends, 2017 (ISBN 978-1-68083-370-6).
http://dx.doi.org/10.1561/3100000014

http://dx.doi.org/10.1561/3100000014
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Unit Commitment (UC)

The purpose of UC is:

I to minimize the system-wide cost of power generation

I while ensuring that demand is met, and

I that the system operates safely and reliably.
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Conceptual Formulation

min
pj (t),pj (t)

∑
t∈T

∑
j∈J

(
cj(pj(t)) + cUj (t)

)
(1)

s.t. ∑
j∈J

pj(t) = D(t), ∀t ∈ T (2)

∑
j∈J

pj(t) ≥ D(t) + R(t), ∀t ∈ T (3)

pj(t), pj(t) ∈ Πj(t), ∀j ∈ J, ∀t ∈ T (4)

where

I t ∈ T is a time period in the planning horizon

I cUj (t) is the cost of starting up unit j in period t

I pj(t) is the power generated by unit j at time t

I pj(t) is the maximum available power from unit j at time t (pj(t) ≥ pj(t))

I Πj(t) represents the operational constraints on the generators
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Power Generation Cost

The cost of producing pj(t) units of electricity using unit j at time t is denoted
cj(pj(t)).

For ease of computation, it is common practice to model cj(pj(t)) as a convex
piecewise linear, monotonically increasing function:

cj(pj(t)) ≥ αjspj(t) + βjs , s = 1, . . . ,Cj ,

where Cj is the number of linear pieces in the cost function of unit j , and αjs

and βjs are fixed coefficients.

The concavity and strictly monotonic increase of cj(pj(t)) reflect the increasing
marginal cost of generation.

For simplicity, we will assume most of the time that cj(pj(t)) is given by a
single line passing through the origin.
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Basic Formulation

Next we model the limitations imposed by the physical characteristics and
operating conditions of the generating units. These vary according to the
nature of each unit (e.g., coal, gas, nuclear, hydro). In particular,

I units have to operate within a given range of generation limits,

I their power output cannot change too rapidly, and

I when their on/off status changes, it cannot change again before a
minimum amount of time has passed.
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Binary Decision Variables

We introduce three binary variables per generating unit:

I vj(t) equals 1 if unit j is on in time period t, and 0 if it is off;

I yj(t) equals 1 if unit j starts up at the beginning of time period t, and 0
otherwise;

I zj(t) equals 1 if unit j shuts down at the beginning of time period t, and 0
otherwise.
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Binary Decision Variables

A set of constraints is needed to ensure the logical coherence of the values of
these variables:

vj(t − 1)− vj(t) + yj(t)− zj(t) = 0 ∀j ∈ J, ∀t ∈ T . (5)

For example, suppose that vj(0) = 1 and vj(1) = 0, i.e., unit j is on at time
t = 0 but not at t = 1. Then constraints (5) will require that
yj(1)− zj(1) = −1, which holds only if yj(1) = 0 and zj(1) = 1.

Constraints (5) require knowledge of the values vj(0) that are the on/off status
of the units at t = 0, i.e., just before the planning horizon starts.
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Startup Cost

A startup cost cUj (t) is incurred when unit j starts up at the beginning of time
period t.

This cost depends on how long the unit has been inactive. For example, for
thermal units this cost is maximum when the boiler is completely cold.

For simplicity, we assume that the startup cost cUj (t) is constant for each j ∈ J.
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Ramping Constraints

The ramping up of output from t to t + 1 is limited as follows:

pj(t)− pj(t − 1) ≤ RU
j vj(t − 1) + SU

j yj(t),∀j ∈ J, ∀t ∈ T , (6)

where RU
j is the maximum ramp-up rate of unit j , and SU

j is its maximum
startup rate.

If the unit is on in time period t − 1, i.e., if vj(t − 1) = 1, then the increase in
power output at time t cannot be larger than RU

j .

If the unit is turned on in the current time period t, i.e., if yj(t) = 1, then it
can output at most SU

j during this period.

Constraints (6) require knowledge of vj(0) and pj(0), respectively the on/off
status and the generation levels at t = 0.
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Ramping Constraints

The constraints on ramping down from time period t to t + 1 are deduced
using similar arguments:

pj(t − 1)− pj(t) ≤ RD
j vj(t) + SD

j zj(t) ∀j ∈ J, ∀t ∈ T , (7)

where RD
j is the maximum ramp-down rate of unit j , and SD

j is its maximum
shutdown rate.

If unit j is shut down in time period t + 1, then its output at t cannot be more
than SD

j . Otherwise its power output decrease at t cannot be larger than RD
j .

Constraints (7) require knowledge of pj(0), the generation levels t = 0.
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Uptime and Downtime Constraints

These constraints account for the fact that a unit cannot be turned on or off
arbitrarily.

If unit j starts up in time period t then it has to run for at least TU
j time

periods before it can be shut down.

Similarly, if it is shut down at t then it has to remain off for at least TD
j

periods.
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Uptime and Downtime Constraints

The minimum uptime requirement is expressed as:

t∑
k=t−TU

j +1, k≥1

yj(k) ≤ vj(t) ∀t ∈ [ Lj + 1, . . . , |T | ] ∀j ∈ J, (8)

where Uj is the number of time periods that j is required to be on at the start
of the planning horizon, and Lj = min{|T |,Uj}.

These constraints require knowledge of the operational history of j in the
TU

j − 1 time periods before t = 1. For example, if TU
j = 3 then:

I If unit j is off at t, then vj(t) = 0, and therefore yj(t) = 0, yj(t − 1) = 0,
and yj(t − 2) = 0 must hold.

I Conversely, if any one of yj(t), yj(t − 1), or yj(t − 2) equals 1, then
vj(t) = 1 must hold.
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Uptime and Downtime Constraints

Similarly, we express the minimum downtime requirement as:

vj(t) +
t∑

k=t−TD
j +1, k≥1

zj(k) ≤ 1 ∀t ∈ [Fj + 1, . . . , |T | ] ∀j ∈ J (9)

where Dj is the number of time periods that j is required to remain off at the
start of the planning horizon, and Fj = min{|T |,Dj}.

These constraints require knowledge of the operational history of j in the
TD

j − 1 time periods before t = 1. For example, if TD
j = 4 then:

I If unit j is on at time t, then vj(t) = 1, and therefore zj(t) = 0,
zj(t − 1) = 0, zj(t − 2) = 0, and zj(t − 3) = 0 will hold.

I Conversely, if any one of zj(t), zj(t − 1), zj(t − 2), or zj(t − 3) equals 1,
then vj(t) = 0 must hold.
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Generation Limits

The maximum available power at time t from unit j is pj(t).

The additional power over pj(t) is used to meet the reserve requirements (3).

If unit j is on in time t then pj(t) must satisfy lower and upper limits P j and P j :

P jvj(t) ≤ pj(t) ≤ pj(t) ≤ P jvj(t) ∀j ∈ J, ∀t ∈ T (10)

Note that if unit j is off at t, then (10) forces pj(t) and pj(t) to be zero.
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Generation Limits

If vj(t) = 1, then the magnitude of pj(t) is constrained by the ramp-up,
startup, and shutdown limits.

Constraint (11) limits pj(t) to be no greater than the power output in the
previous time period plus the maximum ramp-up rate:

pj(t) ≤ pj(t − 1) + RU
j vj(t − 1) + SU

j yj(t),∀j ∈ J, ∀t ∈ T (11)

The exception is if unit j was started at the beginning of period t, in which
case the constraint limits pj(t) to the startup rate.

Constraint (12) ensures that if unit j is shut down at the beginning of time
period t + 1, then pj(t) is bounded above by the maximum shutdown rate.

pj(t) ≤ P j

[
vj(t)− zj(t + 1)

]
+ zj(t + 1)SD

j , ∀j ∈ J, ∀t ∈ T (12)

Otherwise, the constraint becomes redundant, imposing the same upper bound
as in (10).



28/164

Recap: Basic Formulation of UC

min
Ξ

∑
t∈T

∑
j∈J

(
cj (pj (t)) + cUj yj (t)

)

s.t.
∑
j∈J

pj (t) = D(t), ∀t ∈ T

∑
j∈J

pj (t) ≥ D(t) + R(t), ∀t ∈ T

cj (pj (t)) ≥ αjs pj (t) + βjs , s = 1, . . . , Cj , ∀j ∈ J

vj (t − 1) − vj (t) + yj (t) − zj (t) = 0, ∀j ∈ J, ∀t ∈ T

pj (t) − pj (t − 1) ≤ RU
j vj (t − 1) + SUj yj (t), ∀j ∈ J, ∀t ∈ T

pj (t − 1) − pj (t) ≤ RD
j vj (t) + SDj zj (t), ∀j ∈ J, ∀t ∈ T

t∑
k=t−TU

j
+1, k≥1

yj (k) ≤ vj (t), ∀t ∈ [Lj + 1, . . . , |T|], ∀j ∈ J

vj (t) +
t∑

k=t−TD
j

+1, k≥1

zj (k) ≤ 1, ∀t ∈ [Fj + 1, . . . , |T|], ∀j ∈ J

Pj vj (t) ≤ pj (t) ≤ pj (t) ≤ Pj vj (t), ∀j ∈ J, ∀t ∈ T

pj (t) ≤ pj (t − 1) + RU
j vj (t − 1) + SUj yj (t), ∀j ∈ J, ∀t ∈ T

pj (t) ≤ Pj
[
vj (t) − zj (t + 1)

]
+ zj (t + 1)SDj , ∀j ∈ J, ∀t ∈ T

where the optimization variables in set Ξ are pj (t), pj (t), vj (t), yj (t), and zj (t), ∀j ∈ J, ∀t ∈ T .
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Example (§ 2.7.1)

Suppose that we have three generators with the following characteristics:

Unit (j) cUj cj P j P j SU
j SD

j RU
j RD

j TU
j TD

j

1 800 5 80 300 100 80 50 30 3 2
2 500 15 50 200 70 50 60 40 2 2
3 250 30 30 100 40 30 70 50 1 2

I Unit 1 can produce a large quantity of power at low cost, but it incurs a
high startup cost and ramps up relatively slowly (“baseload”)

I Unit 2 has lower production capacity than unit 1 and a slightly higher cost
but costs less to startup (“load following”)

I Unit 3 has the lowest production capacity and is expensive, but it has the
lowest startup cost and ramps up more quickly (“peaker”)

The expectation is that the model will aim to use unit 1 first, then unit 2, and
finally unit 3.
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Example (§ 2.7.1) (ctd)

Further suppose that at t = 0, i.e., just before our planning horizon starts, the
operating conditions are:

Unit (j) vj pj Uj Dj

1 1 120 2 0
2 0 0 0 0
3 0 0 0 0

Thus, at t = 0, unit 1 is on and producing 120 MW, and units 2 and 3 are off.
Furthermore, unit 1 is required to stay on for two time periods at the start of
the planning horizon.
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Example (§ 2.7.1) (ctd)

Let us now plan for the next six time periods with the following requirements:

Time period t 1 2 3 4 5 6
Demand D(t) 230 250 200 170 230 190
Reserve R(t) 10 10 10 10 10 10

The optimal solution has total cost equal to 8950:

Time period t 1 2 3 4 5 6
p1(t) 170 200 200 170 200 190
p2(t) 60 50 0 0 0 0
p3(t) 0 0 0 0 30 0
p1(t) 170 220 250 180 220 250
p2(t) 70 50 0 0 0 0
p3(t) 0 0 0 0 30 0

Dual of (2) 15 5 5 5 5 5
p1(t)− p1(t) 0 20 50 10 20 60
p2(t)− p2(t) 10 0 0 0 0 0
p3(t)− p3(t) 0 0 0 0 0 0
Dual of (3) 0 0 0 0 0 0
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Observations

I Unit 1 is committed throughout, unit 2 is turned on for the first two
periods, and unit 3 is turned on at t = 5 only.

I Unit 2 is turned on at t = 1 because the level of demand in the first time
period means that unit 1, which is operating at a level of 120 at t = 0,
cannot ramp up fast enough to satisfy both demand and reserve.

I The fact that the demand at t = 1 is high compared to the production
levels at t = 0 is reflected in the higher marginal price of energy at t = 1.

I Once on, unit 2 must run for two periods before it can be turned off.

I There is a peak in demand at t = 5, but it lasts only one period.
Therefore, the optimal solution is to turn on unit 3 for only that period
and to increase the output of unit 1 to make up the difference.
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DC Network-Constrained Deterministic UC
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Motivation
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DC Network-Constrained Deterministic UC

I The formulation on slide 28 only allocates sufficient power generation to
satisfy the demand plus the spinning reserves.

I It does not account for the transmission system that carries the electricity
from the generating units to the loads.

I Because there are limits on the power flow across the lines, our model will
provide better information if it ensures that the allocated power can flow
through the system.

I The impact of transmission is particularly important in markets where
accurate modeling of the congestion of the power lines and the consequent
differences in the locational marginal prices (LMPs) of electricity are
essential for proper market operation.
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Power Flow: AC versus DC

I The flow of power is typically modeled as either alternating current or
direct current, and both can be used for UC.

I Alternating current (AC) is an electric current which periodically reverses
direction, in contrast to

I Direct current (DC) which is an electric current that flows only in one
direction.

I AC is the form that consumers typically use when they access the energy
through a power socket.

I DC is the form of electricity provided by batteries, for example.
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Modeling Power Flows

I Mathematically, the AC power flow equations are nonlinear and
nonconvex, involving sin and cos functions.

I The DC equations are a linearized version of the AC ones.

I The DC approach is more efficient computationally and provides a
reasonably good estimate of the system behavior under normal conditions,
but it can lead to misleading results in extreme conditions.

I We consider the DC approach now, and the AC approach is presented in
Chapter 4.
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DC Power Flow

I Let N be the set of nodes in the power system network.

I Let nm be the line connecting nodes n and m, and ΛL
n be the set of nodes

directly connected to node n.

I The power flow on a line is proportional to the difference in voltage angles
between the nodes at the endpoints of the line:

Bnm (θn(t)− θm(t)),

where θn(t) is the voltage angle at node n, and Bnm is a positive constant
equal to the negative of the series susceptance of the line (see Chapter 4).

I Thus, the net power flow (generation minus demand) at node n is given by∑
m∈ΛL

n

Bnm (θn(t)− θm(t)) .
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Integration of Network Constraints

Step 1: Enforce power balance at each node independently.
The constraints ∑

j∈J

pj(t) = D(t), ∀t ∈ T

are replaced by∑
j∈ΛG

n

pj(t)−
∑
i∈ΛD

n

Di (t) =
∑
m∈ΛL

n

Bnm (θn(t)− θm(t)) ∀n ∈ N, ∀t ∈ T , (13)

where

I Di (t) is the load of demand i in period t,

I ΛG
n is the set of generating units located at node n, and

I ΛD
n is the set of demands located at node n.
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Integration of Network Constraints (ctd)

Step 2: Enforce transmission capacity limits for each transmission line.

− Pnm ≤ Bnm (θn(t)− θm(t)) ≤ Pnm, ∀n ∈ N, ∀m ∈ ΛL
n , ∀t ∈ T , (14)

where Pnm is the transmission capacity of line nm.

Step 3: Set a reference angle.

θn̂(t) = 0 ∀t ∈ T , (15)

where n̂ is the node of the reference angle.
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Integration of Network Constraints (ctd)

Step 4: Enforce appropriate reserve levels in each reserve area.
Constraints (3) are replaced by:∑

j∈ΩG
r

pj(t) ≥
∑
i∈ΩD

r

Di (t) + Rr (t) ∀r ∈ R, ∀t ∈ T , (16)

where

I R is the set of reserve areas,

I Rr (t) is the reserve required in reserve area r in time period t,

I ΩG
r is the set of generating units in area r , and

I ΩD
r is the set of demands in area r .

The required reserve in area r , Rr (t), should take into account the
interconnections of area r with neighboring areas, since these areas may also
provide reserve to area r (and vice versa).
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Recap: DC Network-Constrained UC

min
Ξ

∑
t∈T

∑
j∈J

(
cj (pj (t)) + cUj yj (t)

)
s.t.

∑
j∈ΛGn

pj (t)−
∑
i∈ΛDn

Di (t) =
∑

m∈ΛLn

Bnm (θn(t)− θm(t)) , ∀n ∈ N, ∀t ∈ T

−Pnm ≤ Bnm (θn(t)− θm(t)) ≤ Pnm, ∀n ∈ N, ∀m ∈ ΛL
n , ∀t ∈ T

θn̂(t) = 0, ∀t ∈ T∑
j∈ΩG

r

pj (t) ≥
∑
i∈ΩD

r

Di (t) + Rr (t), ∀r ∈ R, ∀t ∈ T

cj (pj (t)) ≥ αjspj (t) + βjs , s = 1, . . . ,Cj , ∀j ∈ J

vj (t − 1)− vj (t) + yj (t)− zj (t) = 0, ∀j ∈ J, ∀t ∈ T

Ramping constraints (6) and (7)

Uptime and downtime constraints (8) and (9)

Generation limits (10), (11) and (12)

where the optimization variables in set Ξ are pj (t), pj (t), vj (t), yj (t), zj (t), and θn(t), ∀n ∈ N,

∀j ∈ J, ∀t ∈ T .
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Example (§ 3.4)

Consider a small power network with six nodes, and with

I the three generators from § 2.7.1 located at nodes 1, 2, and 3 respectively,
and

I demand at nodes 4, 5, and 6.

For simplicity, we assume that there is a single reserve area, corresponding to
the whole network.

Recall the characteristics of the three generators:

Unit (j) cUj cj P j P j SU
j SD

j RU
j RD

j TU
j TD

j

1 800 5 80 300 100 80 50 30 3 2
2 500 15 50 200 70 50 60 40 2 2
3 250 30 30 100 40 30 70 50 1 2
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Example (§ 3.4.1)

Suppose that the demands at nodes 4, 5, and 6 are as follows:

Time period t 1 2 3 4 5 6
D4(t) 100 100 80 140 100 80
D5(t) 80 100 80 30 90 60
D6(t) 50 50 40 0 40 50

Total demand 230 250 200 170 230 190
Reserve R(t) 10 10 10 10 10 10

that the (negative of) the series susceptance equals 0.8 for every line of the
network, and that the lines have the following transmission capacities Pnm:

1 2 3 4 5 6
1 - - - 100 100 100
2 - - - 100 100 100
3 - - - - 100 100
4 100 100 - - - -
5 100 100 100 - - -
6 100 100 100 - - -
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Example (§ 3.4.1)

Solving the optimization problem on slide 42, first to find the commitment
decisions, and then with the commitment decisions fixed, we obtain the
following solution with total cost 8950:

Time period t 1 2 3 4 5 6
p1(t) 170 200 200 170 200 190
p2(t) 60 50 0 0 0 0
p3(t) 0 0 0 0 30 0

Dual at node 1 15 5 5 5 5 5
Dual at node 2 15 5 5 5 5 5
Dual at node 3 15 5 5 5 5 5
Dual at node 4 15 5 5 5 5 5
Dual at node 5 15 5 5 5 5 5
Dual at node 6 15 5 5 5 5 5
p1(t)− p1(t) 0 10 10 10 10 10
p2(t)− p2(t) 10 0 0 0 0 0
p3(t)− p3(t) 0 0 0 0 0 0∑
j

(
pj(t)− pj(t)

)
10 10 10 10 10 10
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Example (§ 3.4.1)

Constraints (13) enforce power balance at each node of the network, and their
corresponding dual optimal values can be interpreted as nodal energy prices.

In this example, they are equal to 15 at every node for t = 1, and equal to 5 at
every node for the subsequent time periods.
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Example (§ 3.4.1)

This network-constrained formulation also gives us information about the flows
of power in the system.

For instance, at t = 1 the power flows are:

1 2 3 4 5 6
1 - - - -68.33 -55.83 -45.83
2 - - - -31.67 -19.17 -9.17
3 - - - - -5.00 5.00
4 68.33 31.67 - - - -
5 55.83 19.17 5.00 - - -
6 45.83 9.17 -5.00 - - -

where positive/negative values are outflows/inflows w.r.t. the column node.
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Example (§ 3.4.1)

The flows are calculated using the optimal values of the voltage variables:

Node t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
1 85.42 93.75 91.67 122.92 104.17 89.59
2 39.58 31.25 8.33 52.08 20.83 10.42
3 21.88 15.63 12.50 78.13 50.00 15.63
4 0 0 0 0 0 0
5 15.63 5.21 4.167 71.88 20.83 13.54
6 28.13 26.04 20.83 84.38 41.67 17.71

and the expression Bnm (θn(t)− θm(t)). At t = 5, the flows are:

1 2 3 4 5 6
1 - - - -83.33 -66.67 -50
2 - - - -16.67 0 16.67
3 - - - - -23.33 -6.67
4 83.33 16.67 - - - -
5 66.67 0 23.33 - - -
6 50 -16.67 6.67 - - -
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Example (§ 3.4.2)

Changes in the transmission capacities can significantly affect the UC solution.

For example, if the capacity of the line between nodes 1 and 6 is reduced from
100 to 40, then the total cost is 11500 (28.5% more), and the solution is:

Time period t 1 2 3 4 5 6
p1(t) 150 157.5 147.5 120 162.5 137.5
p2(t) 50 92.5 52.5 50 67.5 52.5
p3(t) 30 0 0 0 0 0

Dual at node 1 5 5 5 5 5 5
Dual at node 2 5 25 5 5 15 15
Dual at node 3 5 30 5 5 17.5 17.5
Dual at node 4 5 15 5 5 10 10
Dual at node 5 5 20 5 5 12.5 12.5
Dual at node 6 5 40 5 5 22.5 22.5
p1(t)− p1(t) 20 10 0 10 0 0
p2(t)− p2(t) 20 0 100 0 10 75
p3(t)− p3(t) 0 0 0 0 0 0∑
j

(
pj(t)− pj(t)

)
40 10 100 10 10 75
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Example (§ 3.4.2)

Observation 1: The commitment decisions are different: units 1 and 2 are
turned on throughout, and unit 3 is on in the first time period.

Observation 2: The nodal (dual) energy prices are no longer equal throughout
the network in each time period.

I For t = 2, t = 5, and t = 6, the prices between nodes vary significantly.

I The highest prices occur at node 6.

I This is due to the reduced capacity on the line between nodes 1 and 6; the
capacity constraint on this line becomes binding in these time periods.

I Key point: A single binding constraint may suffice to cause the prices to
be different at every node.
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Example (§ 3.4.2)

For period t = 2 in which the highest prices are reached, the power flows are:

1 2 3 4 5 6
1 - - - -60.83 -56.67 -40.00
2 - - - -39.17 -35.00 -18.33
3 - - - - -8.33 8.33
4 60.83 39.17 - - - -
5 56.67 35.00 8.33 - - -
6 40.00 18.33 -8.33 - - -

Contrast them with the flows at t = 2 before the capacity reduction on the line:

1 2 3 4 5 6
1 - - - -75.00 -70.83 -54.17
2 - - - -25.00 -20.83 -4.17
3 - - - - -8.33 8.33
4 75.00 25.00 - - - -
5 70.83 20.83 8.33 - - -
6 54.17 4.17 -8.33 - - -
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Security-Constrained Deterministic UC
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Security-Constrained Deterministic UC

I The security-constrained UC (SCUC) is a formulation of UC that
integrates key aspects of system security while scheduling generation.

I The failure of a major system component is called a contingency.

I Our concern here is with contingencies whose impact cannot be handled
by the spinning reserves.

I The objective is that the system should be able to continue to meet all the
load demands if a contingency happens.
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Security-Constrained Deterministic UC

I We consider contingencies pertaining solely to transmission lines.
(Contingencies pertaining to generating units can be handled similarly.)

I The formulation we use embodies a corrective view, i.e., the objective is to
ensure that the system can transition from the contingency state (where
some transmission line limits are violated) to a safe post-contingency state
(where no transmission line limit is violated).

I The contingency may occur at any time within the planning horizon, and
the optimal schedule ensures that there is sufficient generation capacity
available to support the transition to a safe operating state.

I The (more expensive) preventive view that guarantees that all
post-contingency states are safe is more common in practice.
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Pre- and Post-Contingency Operating

Conditions

I Let C denote the set of possible contingencies.

I We identify each of them by the susceptances of the transmission lines
under the contingency, denoted Bc

nm, where the superscript c indicates
contingency c.

I For each contingency c ∈ C , we introduce additional variables:
I pcj (t) denotes the post-contingency c power produced at time t of unit j ,

and
I θcn(t) to denote the post-contingency c voltage angle of node n.
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Pre- and Post-Contingency Operating

Conditions (ctd)

The post-contingency versions of the network constraints (13), (14), and (15)
are respectively:∑
j∈ΛG

n

pc
j (t)−

∑
i∈ΛD

n

Di (t) =
∑
m∈ΛL

n

Bc
nm (θcn(t)− θcm(t)) ,∀n ∈ N, ∀t ∈ T ,∀c ∈ C

(17)

−Pnm ≤ Bc
nm (θcn(t)− θcm(t)) ≤ Pnm, ∀n ∈ N, ∀m ∈ ΛL

n , ∀t ∈ T , ∀c ∈ C (18)

θcn̂(t) = 0, ∀t ∈ T ,∀c ∈ C (19)
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Pre- and Post-Contingency Operating

Conditions (ctd)

In a similar manner, the post-contingency versions of the ramping constraints
(6) and (7) are:

pc
j (t)− pc

j (t − 1) ≤ RU
j vj(t − 1) + SU

j yj(t), ∀j ∈ J,∀t ∈ T ,∀c ∈ C (20)

pc
j (t − 1)− pc

j (t) ≤ RD
j vj(t) + SD

j zj(t), ∀j ∈ J, ∀t ∈ T , ∀c ∈ C (21)

Generation limits similar to (10) also apply to the post-contingency power
outputs:

P jvj(t) ≤ pc
j (t) ≤ P jvj(t), ∀j ∈ J, ∀t ∈ T , ∀c ∈ C (22)
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Pre- and Post-Contingency Operating

Conditions (ctd)

Finally, it is necessary to link the pre-contingency and post-contingency
conditions by bounding their difference:

pc
j (t)− pj(t) ≤ XU

j , ∀j ∈ J, ∀t ∈ T , ∀c ∈ C (23)

pj(t)− pc
j (t) ≤ XD

j , ∀j ∈ J, ∀t ∈ T , ∀c ∈ C (24)

where XU
j (respectively XD

j ) is the maximum increase (resp. decrease) in the
power that can be provided by unit j to transition the system to a safe
post-contingency state.
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Recap: Security-Constrained UC
(For simplicity, minimum up/down time and reserve constraints are omitted.)

min
Ξ

∑
t∈T

∑
j∈J

(
cj (pj (t)) + cUj yj (t)

)

s.t.
∑

j∈ΛGn
pj (t) −

∑
i∈ΛDn

Di (t) =
∑

m∈ΛLn
Bnm (θn(t) − θm(t)) , ∀n ∈ N, ∀t ∈ T

− Pnm ≤ Bnm (θn(t) − θm(t)) ≤ Pnm, ∀n ∈ N, ∀m ∈ ΛLn , ∀t ∈ T

θn̂(t) = 0, ∀t ∈ T

cj (pj (t)) ≥ αjs pj (t) + βjs , s = 1, . . . , Cj , ∀j ∈ J

vj (t − 1) − vj (t) + yj (t) − zj (t) = 0, ∀j ∈ J, ∀t ∈ T

Pj vj (t) ≤ pj (t) ≤ Pj vj (t) ∀j ∈ J, ∀t ∈ T

Ramping constraints (6) and (7)∑
j∈ΛGn

pcj (t) −
∑

i∈ΛDn
Di (t) =

∑
m∈ΛLn

Bc
nm

(
θ
c
n (t) − θcm(t)

)
, ∀n ∈ N, ∀t ∈ T, ∀c ∈ C

−Pnm ≤ Bc
nm

(
θ
c
n (t) − θcm(t)

)
≤ Pnm, ∀n ∈ N, ∀m ∈ ΛLn , ∀t ∈ T, ∀c ∈ C

θ
c
n̂ (t) = 0, ∀t ∈ T, ∀c ∈ C

pcj (t) − pcj (t − 1) ≤ RU
j vj (t − 1) + SUj yj (t), ∀j ∈ J, ∀t ∈ T, ∀c ∈ C

pcj (t − 1) − pcj (t) ≤ RD
j vj (t) + SDj zj (t), ∀j ∈ J, ∀t ∈ T, ∀c ∈ C

Pj vj (t) ≤ pcj (t) ≤ Pj vj (t), ∀j ∈ J, ∀t ∈ T, ∀c ∈ C

pcj (t) − pj (t) ≤ XU
j ,pj (t) − pcj (t) ≤ XD

j , ∀j ∈ J, ∀t ∈ T, ∀c ∈ C

where the optimization variables in set Ξ are pj (t), vj (t), yj (t), zj (t), θn(t), pcj (t), and θcn (t), ∀n ∈ N, ∀j ∈ J, ∀t ∈ T, ∀c ∈ C .
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Example (§ 4.3)

We use again an example with six nodes, with generators in nodes 1, 2, and 3,
and demand at nodes 4, 5, and 6. As in the formulation on slide 59, we do not
account for minimum up/down times nor reserve requirements.

Consider the following nodal demands over the six time periods:

Time period t 1 2 3 4 5 6
D4(t) 100 100 100 100 100 100
D5(t) 0 40 40 40 40 0
D6(t) 0 0 20 0 30 0

Total demand 100 140 160 140 170 100

and lines with susceptances Bnm = 0.8, and transmission capacities Pnm:

1 2 3 4 5 6
1 - - - 100 - 100
2 - - - 100 100 100
3 - - - - 100 100
4 100 100 - - - -
5 - 100 100 - - -
6 100 100 100 - - -
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Example (§ 4.3.1)

Solving the optimization problem on slide 59 with no contingencies (C = ∅)
and no power change limits, first to find the commitment decisions, and then
with the commitment decisions fixed, we obtain the following solution with
total cost 4850:

Time period t 1 2 3 4 5 6
p1(t) 100 140 160 140 170 100
p2(t) 0 0 0 0 0 0
p3(t) 0 0 0 0 0 0

Dual at node 1 5 5 5 5 5 5
Dual at node 2 5 5 5 5 5 5
Dual at node 3 5 5 5 5 5 5
Dual at node 4 5 5 5 5 5 5
Dual at node 5 5 5 5 5 5 5
Dual at node 6 5 5 5 5 5 5

Observe that all the power is provided by the generator at node 1, which is
already running at t = 0 with p1(0) = 120 (unchanged initial conditions).

We also note that all nodal energy prices are equal to 5 for every time period.
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Example (§ 4.3.2)

Now consider the possibility of a single contingency c corresponding to the loss
of the line between nodes 1 and 6.

We set XU
j and XD

j equal to half of the corresponding one-hour ramping
(up/down) rate of unit j :

Unit (j) RU
j RD

j XU
j XD

j

1 50 30 25 15
2 60 40 30 20
3 70 50 35 25
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Example (§ 4.3.2)

Solving the formulation on slide 59 with the highlighted constraints
corresponding to this contingency and the power change limits, we obtain the
following generation schedule with a (much higher) total cost of 7550:

Time period t 1 2 3 4 5 6
p1(t) 100 90 110 90 90 100
p2(t) 0 50 50 50 50 0
p3(t) 0 0 0 0 30 0

Dual at node 1 5 5 5 5 5 5
Dual at node 2 5 5 5 5 5 5
Dual at node 3 5 5 5 5 5 5
Dual at node 4 5 5 5 5 5 5
Dual at node 5 5 5 5 5 5 5
Dual at node 6 5 5 5 5 5 5
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Example (§ 4.3.2)

Observations:

I If the line between 1 and 6 stops operating, then there is no longer a
feasible solution with all the generation taking place at node 1 because
there would no longer be enough transmission capacity out of node 1 to
satisfy all the demand.

I Therefore the SCUC optimal schedule outputs less at node 1 and turns on
one or both of the more expensive generators, resulting in a higher total
generation cost.

In the event of the contingency, the generation schedule would be:

Time period t 1 2 3 4 5 6
pc

1 (t) 100 90 95 90 90 100
pc

2 (t) 0 50 65 50 50 0
pc

3 (t) 0 0 0 0 30 0

where the power levels in bold are those where pc
j (t) differs from pj(t).
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AC Network-Constrained Deterministic UC
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AC Network-Constrained Deterministic UC

I The DC linearization has many advantages, but it provides no information
about several key quantities, among them the changes in voltage
magnitude and the reactive power flows.

I For instance, losses in transmission cannot be accurately computed, and
this can significantly affect the conclusions drawn from the models.

I We will now incorporate the AC power flow equations into UC, but the
resulting formulation is a mixed-integer nonlinear optimization problem
that is computationally challenging.
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AC Power Flow

I An electric current produces a magnetic field around it.

I When the current is alternating, this magnetic field is constantly changing
as a result of the oscillations of the current.

I This change in the magnetic field induces another electric current to flow
in the same wire, in a direction opposite to the flow of the original current.

I This phenomenon is called reactance, and unless the voltage and current
are perfectly in phase, it limits the power that can be effectively
transferred.
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AC Power Flow

I The resistance of the line limits the power flow as well, and with the
reactance forms the impedance Znm of the line nm:

Znm = Rnm + Xnm

where Rnm is the resistance of the line, Xnm is its reactance, and  =
√
−1.

I The inverse of the impedance is the admittance Ynm, a measure of how
easily the current is allowed to flow:

Ynm =
1

Znm
= Gnm − Bnm =

Rnm

(R2
nm + X 2

nm)
−  Xnm

(R2
nm + X 2

nm)
,

where Gnm is the conductance (inverse of the resistance), and Bnm is the
susceptance from DC power flow (imaginary part of the admittance).
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Active and Reactive Power

I Reactive power accounts for the fact that power is not completely
transferred as active (or real) power when voltage and current are not in
phase.

I The resulting apparent power is equal to the magnitude of the vector sum
of active and reactive power.

I In principle, generating units can provide both active and reactive power,
and loads can have demand for reactive power.

I We will have the following as variables:
I qj (t) denote the reactive power output of generating unit j at period t, and
I Qi (t) denote the reactive power load of demand i at period t, and
I Vn(t) denote the voltage magnitude of node n.

I Also let Snm be the apparent power capacity of line nm, and bshunt
nm be half

of the shunt susceptance of the line (shunt means “in parallel”).
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Flows on a Line

Denote the difference between the voltage angles at the endpoints of line nm by

θnm(t) = θn(t)− θm(t),

so that

I θnm(t) > 0 means that real power flows from n to m,

I θnm(t) < 0 means that real power flows from m to n.

In general:

I Real power flows from higher voltage angle to lower voltage angle, and

I Reactive power flows from higher voltage magnitude to lower voltage
magnitude.
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AC Power Flow Equations–Load Flow

For all n and for all t,∑
j∈ΛG

n

pj(t)−
∑
i∈ΛD

n

Di (t) =

∑
m∈ΛL

n

Vn(t)Vm(t)
[
Gnm cos θnm(t) + Bnm sin θnm(t)

]
− GnmV

2
n (t) (25)

∑
j∈ΛG

n

qj(t)−
∑
i∈ΛD

n

Qi (t) =

∑
m∈ΛL

n

Vn(t)Vm(t)
[
Gnm sin θnm(t)− Bnm cos θnm(t)

]
+ V 2

n (t)
(
Bnm − bshunt

nm

)
(26)
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AC Power Flow Equations–Apparent Power

For all n, for all m ∈ ΛL
n , and for all t,(

Vn(t)Vm(t) (Gnm cos θnm(t) + Bnm sin θnm(t))− GnmV
2
n (t)

)2

+(
Vn(t)Vm(t)

[
Gnm sin θnm(t)− Bnm cos θnm(t)

]
+ V 2

n (t)
(
Bnm − bshunt

nm

))2

≤ S
2
nm,

(27)
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DC as a Simplification of AC

The DC linearization (25)–(27) is obtained by assuming that

I the conductance is negligible, and that

I in all time periods, the variations in voltage angle and voltage magnitude
between the two nodes of a line are small.

Under these assumptions, we can make the approximations:

Gnm ≈ 0, cos θnm(t) ≈ 1, sin θnm(t) ≈ θnm(t),

and
|Vn(t)| = |Vm(t)| = 1 (in normalized units).
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DC as a Simplification of AC

Substituting these approximations into (25), we obtain:∑
j∈ΛG

n

pj(t)−
∑
i∈ΛD

n

Di (t) =
∑
m∈ΛL

n

Bnmθnm(t),

which is precisely (13).

Because of the assumption that the voltage magnitudes are all unity, the
linearization cannot track reactive power flows, so constraint (26) is dropped
for DC.

Finally, with the same approximations, (27) is equivalent to (14) in the DC
formulation.
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Integration of AC Network Constraints

We integrate the AC network into the basic UC formulation on slide 28 by
replacing the constraints (2) with constraints (25), (26), and (27).

We also replace the reserve requirements (3) by the requirements per reserve
area (16) as done for the DC network-constrained UC.

Similar demand and reserve constraints can be enforced for reactive power, but
for simplicity we omit them.
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Integration of AC Network Constraints (ctd)

We also add bounds on the voltage magnitude at node n:

Vmin
n ≤ Vn(t) ≤ Vmax

n ∀n, ∀t, (28)

and on the reactive power output of each generating unit j :

qmin
j ≤ qj(t) ≤ qmax

j ∀j , ∀t. (29)

Finally, as in the DC case, we set a reference angle:

θn̂(t) = 0 ∀t ∈ T , (30)

where n̂ is the node of the reference angle.

(For simplicity, minimum up/down time constraints are omitted.)
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Recap: AC Network-Constrained UC

min
Ξ

∑
t∈T

∑
j∈J

(
cj (pj (t)) + cUj

)
s.t. θn̂(t) = 0, ∀t ∈ T∑

j∈ΩG
r

pj (t) ≥
∑

i∈ΩD
r

Di (t) + Rr (t), ∀r ∈ R, ∀t ∈ T

Vmin
n ≤ Vn(t) ≤ Vmax

n , ∀n ∈ N, ∀t ∈ T

qmin
j vj (t) ≤ qj (t) ≤ qmax

j vj (t) ∀j ∈ J, ∀t ∈ T∑
j∈ΛGn

pj (t) −
∑

i∈ΛDn
Di (t) =

∑
m∈ΛLn

Vn(t)Vm(t)
[
Gnm cos θnm(t) + Bnm sin θnm(t)

]
− GnmV 2

n (t), ∀n ∈ N, ∀t ∈ T

∑
j∈ΛGn

qj (t) −
∑

i∈ΛDn
Qi (t) =

∑
m∈ΛLn

Vn(t)Vm(t)
[
Gnm sin θnm(t) − Bnm cos θnm(t)

]
+ V 2

n (t)
(
Bnm − bshunt

nm

)
, ∀n ∈ N, ∀t ∈ T

{
Vn(t)Vm(t) (Gnm cos θnm(t) + Bnm sin θnm(t)) − GnmV 2

n (t)
}2

+
{
Vn(t)Vm(t)

[
Gnm sin θnm(t) − Bnm cos θnm(t)

]
+ V 2

n (t)
(
Bnm − bshunt

nm

) }2 ≤ S2
nm, ∀n ∈ N, ∀m ∈ ΛLn , ∀t ∈ T

cj (pj (t)) ≥ αjs pj (t) + βjs , s = 1, . . . , Cj , ∀j ∈ J

vj (t − 1) − vj (t) + yj (t) − zj (t) = 0, ∀j ∈ J, ∀t ∈ T

Ramping constraints (6) and (7)

Generation limits (10), (11) and (12)

where the optimization variables in set Ξ are pj (t), pj (t), vj (t), yj (t), zj (t), θn(t), qj (t), and Vn(t), ∀n ∈ N, ∀j ∈ J, ∀t ∈ T .
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Example (§ 5.5.1)

We use the six-node power network as for the example in the DC case, and
with the same simplifying assumption that there is a single reserve area
corresponding to the whole network.

We also start with the same nodal demand and reserve requirements:

Time period t 1 2 3 4 5 6
D4(t) 100 100 80 140 100 80
D5(t) 80 100 80 30 90 60
D6(t) 50 50 40 0 40 50

Total demand 230 250 200 170 230 190
Reserve R(t) 10 10 10 10 10 10
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Example (§ 5.5.1)

To allow for the increased power flow in apparent power due to accounting for
reactive power, we increase the line transmission capacity limits Snm by 20%
compared to the limits in the DC case:

1 2 3 4 5 6
1 - - - 120 120 120
2 - - - 120 120 120
3 - - - - 120 120
4 120 120 - - - -
5 120 120 120 - - -
6 120 120 120 - - -

For every line, we maintain the value of the susceptance Bnm = 0.8, and set the
conductance to Gnm = 0.08 and the shunt susceptance to zero.
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Example (§ 5.5.1)

At each node, we set the minimum and maximum voltage magnitudes (in
per-unit) to Vmin

n = 0.95 and Vmax
n = 1.05.

We set the nodal reactive power demands according to a typical power factor
of 0.75:

Time period t 1 2 3 4 5 6
Q4(t) 75.0 75.0 60.0 105.0 75.0 60.0
Q5(t) 67.5 75.0 60.0 22.5 67.5 45.0
Q6(t) 37.5 37.5 30.0 0.0 30.0 37.5

We set the minimum and maximum reactive power capacity (in absolute value)
of the three generating units to 50% of their maximum active power output:

Unit qmin
j qmax

j

1 -150 150
2 -100 100
3 -50 50
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Solver for a Nonlinear Formulation

I Unlike the previous formulations, the formulation on slide 77 is a
mixed-integer nonlinear optimization problem.

I The KNITRO solver is available on NEOS and can handle this formulation
for moderately sized instances of UC.
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Example (§ 5.5.1)

Solving the formulation on slide 77, we obtain the following generation
schedule for active and reactive power with a total cost is 10238.6:

Time period t 1 2 3 4 5 6
p1(t) 170.00 179.81 149.81 119.81 169.81 139.81
p2(t) 59.74 69.90 50.00 50.00 59.92 50.00
p3(t) 0 0 0 0 0 0
q1(t) 150.00 150.00 125.83 65.86 150.00 148.40
q2(t) 32.65 40.40 26.07 63.53 25.18 -4.01
q3(t) 0 0 0 0 0 0

I We see that unit 1 remains on for all time periods, and unit 2 is now also
on for all time periods (instead of only the first two periods).

I Because of the increased commitment of unit 2, unit 3 is never called
upon (before it came on at t = 5).

I This global increase in the commitment of the units with respect to the
DC case is due to the need to provide voltage support.
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Example (§ 5.5.1)

The voltage magnitudes are:

Time period t 1 2 3 4 5 6
Node 1 0.9565 0.9564 0.9718 1.0500 0.9567 0.9919
Node 2 0.9520 0.9522 0.9681 1.0500 0.9518 0.9860
Node 3 0.9513 0.9511 0.9674 1.0493 0.9515 0.9867
Node 4 0.9500 0.9500 0.9666 1.0445 0.9500 0.9857
Node 5 0.9507 0.9504 0.9669 1.0490 0.9508 0.9865
Node 6 0.9518 0.9518 0.9680 1.0497 0.9522 0.9868
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Example (§ 5.5.1) – Active Power Flows

At t = 1 the active power flows are as follows:

1 2 3 4 5 6
1 - - - -68.43 -55.91 -45.90
2 - - - -31.57 -19.09 -9.10
3 - - - - -5.00 5.00
4 68.32 31.55 - - - -
5 55.83 19.09 5.00 - - -
6 45.85 9.10 -5.00 - - -

where positive/negative values are outflows/inflows w.r.t. the column node.

We see that the flows of active power are similar to those in the DC case; the
small differences are not significant.



85/164

Example (§ 5.5.1) – Reactive Power Flows

Because we are using the AC description for the network, we obtain information
about the reactive power flows as well. For t = 1 they are as follows:

1 2 3 4 5 6
1 - - - -56.66 -50.45 -40.52
2 - - - -18.34 -12.03 -2.01
3 - - - - -5.02 5.03
4 57.74 18.52 - - - -
5 51.22 12.10 5.03 - - -
6 41.04 2.022 -5.03 - - -

where positive/negative values are outflows/inflows w.r.t. the column node.

I The reactive flows are not necessarily symmetric.

I Consider for instance the line between nodes 1 and 4: there is a injection of
57.74 units at node 1, but only 56.66 units, or 1.9% less, arrive at node 4.

I Similarly, 51.22 units are injected at node 1 into the line connecting it to
node 5, but only 50.45 units arrive at node 5, or 1.5% less.

I These differences reflect the transmission losses on the respective lines.
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Example (§ 5.5.2)

I Changes in the physical properties of the lines can significantly impact the
commitment outcomes.

I As an example, suppose that the value of the line parameter bshunt
nm is

greater than zero.

I In physical terms, this means that the lines are longer and behave more
like capacitors.
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Example (§ 5.5.2) (ctd)

For illustration, setting bshunt
nm = 0.0002 for all the lines in our example and

solving the model, we obtain a total cost is 8939, a decrease of 12.7%
compared to the previous cost.

Time period t 1 2 3 4 5 6
p1(t) 170.00 199.68 199.74 169.74 199.68 189.77
p2(t) 59.73 50.00 0 0 0 0
p3(t) 0 0 0 0 30.00 0
q1(t) 150.00 150.00 123.66 97.47 150.00 115.86
q2(t) 3.67 11.64 0 0 0 0
q3(t) 0 0 0 0 -3.33 0
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Example (§ 5.5.2) (ctd)

If we look at the reactive power flows for t = 1, we have:

1 - - - -61.47 -53.45 -43.54
2 - - - -13.52 -5.40 4.63
3 - - - - -8.64 1.41
4 58.97 10.07 - - - -
5 50.61 1.84 5.03 - - -
6 40.42 -8.24 -5.03 - - -

We see that the differences have noticeably increased with the increase in the
shunt susceptance.

If we again consider the line between nodes 1 and 4, we see 58.97 units
injected at node 1, and 61.47 units arriving at node 4, an increase of 4.2%.
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Stochastic Unit Commitment



90/164

Stochastic Unit Commitment

I A stochastic optimization formulation is relevant if the UC is affected by
important uncertainty in the data.

I Handling stochasticity is currently of great and increasing importance
because of the uncertainty arising from the variability in the output from
sources such as wind- and solar-based generating units.

I Typically these sources are not scheduled/dispatched per se but rather
their production is subtracted from the demand, and other units are then
scheduled to meet the resulting net demand, i.e., the actual demand minus
the stochastic production.

I One consequence is that the net demand curve fluctuations are increasing
with the greater penetration of such stochastic generation.
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Stochastic Unit Commitment

I Demand fluctuations have traditionally been handled by ensuring a
sufficient level of reserve generation.

I This approach can be economically inefficient, and the growing provision
of power from stochastic sources is increasing the cost of this inefficiency.

I With multiple jurisdictions around the world experiencing significant
increases in the proportion of electricity generated by stochastic sources,
the importance of models explicitly incorporating the uncertainty in
demand is increasing.

We will consider two approaches to handle the uncertainty in mathematical
optimization models:

I Stochastic optimization

I Robust optimization



92/164

Two-Stage Stochastic Optimization

To formulate a stochastic UC, we consider two stages:

I The first stage pertains to the optimal scheduling of generation capacity,
i.e., the decisions about which units to commit in advance of the actual
operation.

I The second stage constitutes a representation (prognosis) of a number of
plausible operating conditions that may arise as a result of the uncertainty
realization. These possible operating conditions are called scenarios, and
for each scenario, an optimal dispatch can be computed based on the
commitment decisions made in the first stage.

Reserves are scheduled in the first stage so that the system will be able to
accommodate any uncertainty realization, i.e., any operating scenario.
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Two-Stage Stochastic Optimization

Philosophy of this two-stage approach:

I In the first stage, scheduling decisions are made using only the information
that is available hours or days in advance of real-time operations.

I The uncertainty is then realized in the second stage, and the dispatch
adjusts the amount scheduled in the first stage up or down, as required
according to the scenario (realization).

I The scenarios take into account the possible net demand realizations over
the planning period.

I Each scenario is assigned a probability, and the optimization objective is to
minimize the sum of

I the deterministic cost of the first-stage decisions, and
I the expected cost of the second-stage decisions.
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Limitations of the Stochastic Optimization

Approach

I The quality of the solutions obtained critically depends on the choice of
the scenarios.

I A broader range of scenarios usually leads to a more accurate model.

I However, increasing the number of scenarios increases the computational
cost of the optimization.

I Another issue is that this approach assumes explicit knowledge of the
probability distribution of the (uncertain) net demand.

I In practice, this distribution is estimated empirically, using past data and
experience and/or using simulation models, and the limitations of the
probability estimation may impact the quality of the results.

The robust optimization approach avoids these limitations.
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Optimization Setup

The optimization model minimizes the sum of

I the deterministic cost of the first-stage decisions (including the cost of the
reserves scheduled), and

I the expected cost of the second-stage decisions (including the cost of the
reserve deployment actually called upon according to each scenario).

Some notation:

I Ω is the set of scenarios,

I ω is the index for the scenarios, and

I πω is the probability of occurrence of scenario ω.

We assume that
∑
ω∈Ω

πω = 1.
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Optimization Objective

For simplicity, we assume that

I the production and startup costs of all generating units are respectively
linear and constant, and

I the cost of deploying reserves is equal to the production cost of the
generating unit that deploys the reserve.

Under these assumptions, the objective function is given by:∑
t∈T

∑
j∈J

(
cjpj(t) + cUj yj(t)

)
+
∑
ω∈Ω

∑
t∈T

∑
j∈J

πωcj
(
rUjω(t)− rDjω(t)

)
(31)

where rUjω(t) and rDjω(t) are respectively the up-reserve and down-reserve
deployed by generating unit j during time period t under scenario ω.
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First-Stage Constraints

The first-stage constraints are a subset of those in the basic formulation on
slide 28:

I The logical constraints (5).

I The generation limits (10) without the reserve-related variable pj(t).

I The demand constraint (2) to ensure that the total amount of generation
in time period t meets the expected net demand Dexp(t) for that period:∑

j∈J

pj(t) = Dexp(t), ∀t ∈ T . (32)

The other constraints are not included for the sake of simplicity.

A comment about the ramping constraints:

I We choose to enforce the ramping constraints in the second stage, which
is the actual operation stage.

I However, in some electricity markets, the market rules require that
ramping constraints be imposed in the first stage.
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Second-Stage Constraints

For the second stage, the first set of constraints states that:

I The scenario-dependent amount produced by unit j at time t under
scenario ω

must be equal to

I the amount scheduled in the first stage adjusted by the amounts of
up-reserve and down-reserve provided by unit j under scenario ω:

pjω(t) = pj(t) + rUjω(t)− rDjω(t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω (33)

where pjω(t) is the actual output of unit j at time t under scenario ω.
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Second-Stage Constraints

The next sets of constraints are ω-indexed versions of other constraints from
the basic formulation:

I Match production and demand for each scenario:∑
j∈J

pjω(t) = Dω(t), ∀t ∈ T , ∀ω ∈ Ω (34)

I Ramping constraints:

pjω(t)− pjω(t − 1) ≤ RU
j vj(t − 1) + SU

j yj(t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω
(35)

pjω(t − 1)− pjω(t) ≤ RD
j vj(t) + SD

j zj(t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω
(36)

I Generation limits:

P jvj(t) ≤ pjω(t) ≤ P jvj(t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω (37)
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Second-Stage Constraints

The final set of constraints link the commitment decisions and the various
operating conditions:

0 ≤ rUjω(t) ≤ MU
j vj(t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω (38)

0 ≤ rDjω(t) ≤ MD
j vj(t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω (39)

where MU
j and MD

j are respectively the maximum up-reserve and the maximum
down-reserve provided by generating unit j .
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Recap: Stochastic UC Formulation

(For simplicity, minimum up/down time and network constraints are omitted.)

min
Ξ

∑
t∈T

∑
j∈J

cjpj (t) + cUj yj (t) +
∑
ω∈Ω

∑
t∈T

∑
j∈J

πωcj
(
rUjω(t)− rDjω(t)

)
s.t. vj (t − 1)− vj (t) + yj (t)− zj (t) = 0, ∀j ∈ J, ∀t ∈ T

P jvj (t) ≤ pj (t) ≤ P jvj (t), ∀j ∈ J, ∀t ∈ T∑
j∈J

pj (t) = Dexp(t), ∀t ∈ T

pjω(t) = pj (t) + rUjω(t)− rDjω(t) ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω∑
j∈J

pjω(t) = Dω(t), ∀t ∈ T , ∀ω ∈ Ω

pjω(t)− pjω(t − 1) ≤ RU
j vj (t − 1) + SU

j yj (t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω

pjω(t − 1)− pjω(t) ≤ RD
j vj (t) + SD

j zj (t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω

P jvj (t) ≤ pjω(t) ≤ P jvj (t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω

0 ≤ rUjω(t) ≤ MU
j vj (t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω

0 ≤ rDjω(t) ≤ MD
j vj (t), ∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω

where the optimization variables in set Ξ are pj (t), vj (t), yj (t), zj (t), pjω(t), rDjω(t), rUjω(t),

∀j ∈ J, ∀t ∈ T , ∀ω ∈ Ω.
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Example (§ 6.6)

I We consider the three-generator system from slide 29.

I We additionally set the maximum up-reserve and down-reserve provided by
each generating unit j as follows:

Unit (j) MU
j MD

j

1 25 15
2 30 20
3 35 25

I The expected net demand is:

Time period t 1 2 3 4 5 6
Dexp(t) 220 250 200 170 230 190

I No explicit reserves are required here.
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Scenarios

We consider three scenarios defined as follows:

Scenario Description Probability
1 Demands 10% lower than Dexp(t) in every period 0.15
2 Demands equal to Dexp(t) in every period 0.60
3 Demands 5% higher than Dexp(t) in every period 0.25
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Optimal Commitment

Solving the formulation, we obtain an optimal cost of 10130.75, and the on/off
status of the generators is:

Time period t 1 2 3 4 5 6
Unit 1 on on on on on on
Unit 2 on on on on on on
Unit 3 off off off off off off
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Optimal Schedules

Time period t 1 2 3 4 5 6
First-stage

p1(t) 160 175 145 118 166 125
p2(t) 60 75 55 52 64 65
p3(t) 0 0 0 0 0 0

Scenario 1
p11(t) 148 160 130 103 151 121
p21(t) 50 65 50 50 56 50
p31(t) 0 0 0 0 0 0

Scenario 2
p12(t) 170 180 150 120 170 140
p22(t) 50 70 50 50 60 50
p32(t) 0 0 0 0 0 0

Scenario 3
p13(t) 170 188 158 128 178 150
p23(t) 61 75 52 50 65 50
p33(t) 0 0 0 0 0 0
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Impact of Changing the Probabilities

Suppose that we change the probabilities to 0.40, 0.50, and 0.10 respectively,
so that scenario 1 is more likely, and scenario 3 is less likely.

The result is that, while the commitment decisions are unchanged:

I the total cost decreases by 2.6% to 9867.50,

I the dispatch for the scenarios is unchanged, and

I and the output schedule in the first stage changes slightly:

Time period t 1 2 3 4 5 6
First-stage

p1(t) 163 170 140 103 166 136
p2(t) 57 80 60 67 64 54
p3(t) 0 0 0 0 0 0
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Impact of Changing the Scenarios

Suppose that we change scenario 3 to represent demands 15% higher than the
expected demand in every time period, and that the other parameters remain
the same.

The commitment decisions are again unchanged, but the total cost increases by
10.6% to 11200.75.

There are no changes in the production schedule for the unchanged scenarios,
and the new output schedules for the first stage and for scenario 3 are:

Time period t 1 2 3 4 5 6
First-stage

p1(t) 163 175 145 118 166 136
p2(t) 57 75 55 52 64 54
p3(t) 0 0 0 0 0 0

Scenario 3
p13(t) 188 200 170 143 191 161
p23(t) 65 88 60 53 74 58
p33(t) 0 0 0 0 0 0
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Robust Unit Commitment
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Robust Optimization

I Adaptive robust optimization is a technique for modeling uncertainty that
overcomes some of the drawbacks of stochastic optimization at the cost of
comparatively more restrictive modeling assumptions.

I Robust optimization avoids the need to define scenarios and make
assumptions about their probabilities.

I Instead, a deterministic uncertainty set is defined using limited information
about the uncertain quantities:

I expected value
I some estimate of their variance (or a range of possible deviations from the

expected value).

I If additional information is available, it can often be incorporated to
improve the quality of the robust model.
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Robust Optimization for UC

I Under the same assumptions as for the stochastic programming
formulation, the uncertainty set is defined in terms of possible realizations
of net demand.

I Once the uncertainty set is defined, the model computes an optimal
solution that protects the system against every possible realization in the
set, and in particular the worst case.

I In this sense, the robust approach is more conservative than the stochastic
one.
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Three-Level Adaptive Robust Formulation

We consider a robust formulation with three levels:

First level The operator schedules the units so as to minimize the
generation cost.

Second level For every schedule feasible for the first level, the net demand
realizes in the worst possible manner within the uncertainty set,
i.e., the production cost is maximized.

Third level Given the schedule and the worst-case demand realization, the
operator dispatches the committed units so as to minimize the
production cost.
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Three-Level Adaptive Robust Formulation

I Note that the robust UC takes into account all possible future demands
represented in the uncertainty set.

I Therefore, the optimal robust UC solution will be feasible for any
realization of the uncertainty in the second level.

I This is in contrast with the basic formulation on slide 28 that guarantees
feasibility only for a single set of demands, and the stochastic optimization
formulation on slide 101 that considers only a finite set of preselected
scenarios.
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Uncertainty Set

I The second-level can realize the net demand d(t) at time t in the range:

D(t) ≤ d(t) ≤ D(t), ∀t ∈ T . (40)

I The budget of uncertainty Γ bounds the total deviation allowed, summed
over all t ∈ T , for the realized demand d(t) from D(t).

I The uncertainty set is a deterministic set defined in terms of Γ:∑
t∈T

max{0, d(t)− Dexp(t)}
D(t)− Dexp(t)

≤ Γ. (41)
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Uncertainty Set

∑
t∈T

max{0, d(t)− Dexp(t)}
D(t)− Dexp(t)

≤ Γ.

I The main concern is to schedule enough capacity to meet demand, so we
want to be protected against unexpected increases in demand.

I The numerator counts the deviation from expected demand only if d(t)
lies in the interval [Dexp(t),D(t)].

I Except for the max function, (41) is a linear constraint on the variable
d(t), and the max function can be linearized using binary variables.
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Practical Interpretation of the

Budget of Uncertainty

The value of Γ can be chosen anywhere between 0 and |T |:
I The value 0 corresponds to the realized demand d(t) being less than or

equal to Dexp(t).

I For small values of Γ, the realized demand d(t) cannot deviate too much
from Dexp, and hence there is limited uncertainty in d(t).

I As Γ increases, the range of values allowed for d(t) increases, and so does
the uncertainty.

I The value |T | corresponds to requiring protection for the maximum
possible values of d(t).

I The higher the value of Γ, the higher the robust protection.
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Optimization Objective

The overall objective is to minimize the total operation cost of the system.
The optimization objective is in three parts, each corresponding to one of the
levels of the robust formulation:

min
Ξ1

∑
t∈T

∑
j∈J

cUj yj(t) + max
Ξ2

min
Ξ3

∑
t∈T

∑
j∈J

cjpj(t)

 (42)

where the variables for each level of the optimization are:

I Ξ1 = {vj(t), yj(t), zj(t), ∀j ∈ J, ∀t ∈ T}
I Ξ2 = {d(t), ∀t ∈ T}
I Ξ3 = {pj(t),∀j ∈ J, ∀t ∈ T}
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Optimization Objective

The structure of this objective is aligned with the three levels on slide 111:

I The commitment of the units is determined using the variables in Ξ1 with
the objective that the total cost is minimized.

I The total cost is in two parts:
I the first part is the startup cost, and
I the second part is the cost of production.

I The cost of production, given a feasible commitment, is maximized over
the demand variables in Ξ2.

I Then, for each realization of the demand, the cost of dispatch is
minimized by the operator who assigns the amount of power produced by
each unit via the variables in Ξ3.
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First-Level Constraints

The first-level constraints are the logical constraints (5):

vj(t − 1)− vj(t) + yj(t)− zj(t) = 0 ∀j ∈ J, ∀t ∈ T .

that ensure consistency of the values of the binary variables with respect to the
decisions to start up or shut down units.
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Second-Level Constraints

As second-level constraints, we have (40) and (41) to define the uncertainty set:

D(t) ≤ d(t) ≤ D(t), ∀t ∈ T∑
t∈T

max{0, d(t)− Dexp(t)}
D(t)− Dexp(t)

≤ Γ

We also enforce ramping constraints to represent the fact that the net demand
cannot change too rapidly:

d(t)− d(t − 1) ≤ RU
d , ∀t ∈ T (43)

d(t − 1)− d(t) ≤ RD
d , ∀t ∈ T (44)
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Third-Level Constraints

For the third level, the constraints are the fundamental operational
requirements:

I balance of supply and demand (2),

I ramping up (6) or down (7) constraints, and

I generation limits as in (10) but omitting the variable pj(t).

For simplicity, we do not account explicitly for dispatching reserves or for
uptime and downtime requirements.
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Recap: Robust UC Formulation

(For simplicity, minimum up/down time and reserve constraints are omitted.)

min
Ξ1

 ∑
t∈T

∑
j∈J

cUj yj (t) + max
Ξ2

min
Ξ3

∑
t∈T

∑
j∈J

cj pj (t)


s.t. vj (t − 1) − vj (t) + yj (t) − zj (t) = 0, ∀j ∈ J, ∀t ∈ T

s.t. D(t) ≤ d(t) ≤ D(t), ∀t ∈ T

∑
t∈T

max{0, d(t) − Dexp(t)}

D(t) − Dexp(t)
≤ Γ,

d(t) − d(t − 1) ≤ RU
d , ∀t ∈ T

d(t − 1) − d(t) ≤ RD
d , ∀t ∈ T

s.t.
∑
j∈J

pj (t) = d(t), ∀t ∈ T

pj (t) − pj (t − 1) ≤ RU
j vj (t − 1) + SUj yj (t), ∀j ∈ J, ∀t ∈ T

pj (t − 1) − pj (t) ≤ RD
j vj (t) + SDj zj (t), ∀j ∈ J, ∀t ∈ T

Pj vj (t) ≤ pj (t) ≤ Pj vj (t), ∀j ∈ J, ∀t ∈ T

where the optimization variable sets for the three levels are respectively:

I Ξ1 = {vj (t), yj (t), zj (t), ∀j ∈ J, ∀t ∈ T}

I Ξ2 = {d(t), ∀t ∈ T}

I Ξ3 = {pj (t), ∀j ∈ J, ∀t ∈ T}
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Computationally Highly Challenging!

I Three-level optimization problems are extremely challenging to solve, even
for small instances.

I Indeed, even two-level optimization (usually known as bilevel optimization)
is known to be very challenging.

I In view of this, we consider an example with two generators and three time
periods.

I The computational methodology we used is described in § 8.2 of Anjos &
Conejo.
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Data for Examples (§ 7.8)

The two generators are units 1 and 2 with the respective parameters and
operating conditions at t = 0 as given in slides 29 and 30.

In particular, at t = 0, unit 1 is on and producing 120 MW, and unit 2 is off.

The characteristics of the demand for the three time periods are:

Time period t 1 2 3
D(t) 130 190 150

Dexp(t) 170 230 190

D(t) 210 270 230

We further assume that d(0) = 200, and that the ramping limits on the net
demand are RU

d = 50 and RD
d = 50.
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First Example (§ 7.8.1)

I For this initial case, we set Γ = 2.0 and solve the formulation on slide 121.

I As part of the solution method, we need to enumerate all the
combinations of the commitment decisions v , y , and z .

I Because the first-level constraints (5) completely determine the values of
yj(t) and zj(t) given the values of the vj(t) variables, it suffices to
enumerate the possible values of vj(t) for j = 1, 2 and t = 1, 2, 3.

I Furthermore, because p1(0) = 120 and SD
1 = 80, it follows that v1(1) = 1

must hold.

I This leaves us with 25 = 32 combinations to enumerate.

I It turns out that most of them are infeasible, i.e., the binary variables are
set in combinations for which there is simply not enough generation
capacity committed to satisfy demand.
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First Example (§ 7.8.1) (ctd)

The optimal values (maximum cost) for the nine feasible combinations are:

v1(2) v1(3) v2(1) v2(2) v2(3) Cost
1 1 0 0 0 3100
1 1 0 1 0 4050
1 1 1 0 0 4250
1 1 1 1 0 5050
1 0 1 1 1 7300
1 1 0 0 1 4150
1 1 0 1 1 5450
1 1 1 0 1 5350
1 1 1 1 1 7350
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First Example (§ 7.8.1 (ctd))

It follows that the optimal solution to the robust model has a total cost of 3100.

The corresponding generation schedule is:

Time period t 1 2 3
p1(t) 170 220 230
p2(t) 0 0 0

The realized demand is d(t) = p1(t), t=1,2,3 at optimality.
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Impact of the Choice of Γ (§ 7.8.2)

I Let us examine the sensitivity with respect to Γ of the optimal value of the
second-level problem for the optimal commitment:

v1(1) = 1, v1(2) = 1, v1(3) = 1, v2(1) = 0, v2(2) = 0, and v2(3) = 0.

I We already know that for Γ = 2.0, the optimal value is 3100.

I In principle, Γ can take any value between 0 and 3 (= |T |).

I Values of Γ equal to, or close to, zero correspond to fixing, or nearly fixing,
d(t) = Dexp(t) for all t ∈ T .
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Impact of the Choice of Γ (§ 7.8.2) (ctd)

Solving the formulation for six additional values of Γ, we obtain:

Γ Optimal
(maximum) cost

0 2900
0.5 3000
1.0 3100
1.5 3100
2.0 3100
2.5 3100
3.0 3100

We observe that reducing the budget of uncertainty reduces the optimal cost,
as would be expected.
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Current Challenges
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Current Challenges

I Mixed-integer linear optimization was first proposed for UC problems more
than 50 years ago, and it is now used daily by power system operators.

I Plenty of challenges remain when it comes to solving UC problems that
incorporate practical requirements such as:

I security constraints,
I network effects and power losses, and
I different uncertainty models.

I There is also great interest in incorporating into UC models the new
requirements of smart grids such as:

I the integration of wind and solar generation,
I the management of demand-response, and
I the scheduling of electricity storage devices.

I In summary, even after several decades of research, the UC problem
continues to pose challenges to practitioners and researchers alike, and
continues to be a very active area of research.
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Application of Logic Constrained Equilibria to Power Systems

with Storage
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Application of Logic Constrained Equilibria to Power Systems

with Storage

References:

I Fomeni, F.D., Gabriel, S.A., and Anjos, M.F. (2015).
An RLT approach for solving the binary-constrained mixed linear
complementarity problem. Cahiers du GERAD G-2015-60,
https://www.gerad.ca/en/papers/G-2015-60/view

I Fomeni, F.D., Gabriel, S.A., and Anjos, M.F. (2018).
Applications of logic constrained equilibria to traffic networks and to
power systems with storage. Journal of the Operational Research Society,
http://doi.org/10.1080/01605682.2018.1438761

https://www.gerad.ca/en/papers/G-2015-60/view
http://doi.org/10.1080/01605682.2018.1438761
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Linear Complementarity Problems

I The linear complementarity problem (LCP) is a well-known problem in
optimization. It is characterized by the presence of complementarity
constraints:

bi − aTi x ≥ 0, bj − aTj x ≥ 0, and (bi − aTi x)(bj − aTj x) = 0

I The mixed linear complementarity problem (MLCP) is an LCP in which
some of the terms involved in the complementarity constraints are not
required to be non-negative.

I The Binary-Constrained MLCPs (BC-MLCP) is an MLCP in which some
variables are restricted to be binary.

These classes of problems are NP-hard, and have numerous engineering and
economic applications.
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BC-MLCP: Applications and Past Research

The BC-MLCP has not been studied widely in the literature.

I Gabriel et al. (2013a) proposed a mixed integer linear programming
(MILP) approach that relaxes the complementarity constraints as well as
the integrality. They showed that their approach was suitable to
computing equilibria in energy markets.

I That approach was also successful in solving Nash-Cournot games with
application to power markets (Gabriel et al. (2013b)), and the electricity
pool pricing problem (Ruiz et al. (2012)).

The practical interest of BC-MLCPs can be motivated using a small example
from energy economics.
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Example:

An Energy Network Equilibrium Problem

Node 1

Price π1

Demand D1(π1)
Producer A
Producer B

Node 2

Price π2

Demand D2(π2)
Producer C
Producer D

g12

At Node 1: Production levels qA
1 and qB

1 and outflows f A12 and f B12 .

At Node 2: Production levels qC
2 and qD

2 .
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Formulation as an MLCP

Formulation for producer A:

max
sA1 ,qA1 ,f A12

π1s
A
1 + π2f

A
12 − cA1 (qA

1 )− (τ12 + τ reg12 )f A12

s.t. qA
1 ≤ q̄A (λA

1 )

sA1 = qA
1 − f A12 (δA1 )

sA1 , q
A
1 , f

A
12 ≥ 0,

where

I cA1 (qA
1 ) = γA

1 q
A
1 with γA

1 > 0 is the production cost function,

I τ reg12 ≥ 0 is a (fixed) regulated tariff for using the network from node 1 to
node 2, and

I τ12 is the (variable) congestion tariff for using the network from node 1 to
node 2.

The formulation for Producer B is similar.
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Formulation as an MLCP (ctd)

Formulation for producer C :

max
sC2 ,qC2

π2s
C
2 − cC2 (qC

2 )

s.t. qC
2 ≤ q̄C (λC

2 )

sC2 = qC
2 (δC2 )

sC2 , q
C
2 ≥ 0

The formulation for Producer D is similar.
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Formulation as an MLCP (ctd)

The transmission system operator (TSO) solves:

max
g12

(τ12 + τ reg12 )g12 − cTSO(g12)

s.t. g12 ≤ ḡ12 (ε12)

g12 ≥ 0,

where cTSO(g12) = γTSOg12 with γTSO > 0 is the network operation cost
function.
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Formulation as an MLCP (ctd)

KKT conditions for Producer A (similar for Producer B):

0 ≤ −π1 + δA1 ⊥ sA1 ≥ 0

0 ≤ γA
1 + λA

1 − δA1 ⊥ qA
1 ≥ 0

0 ≤ −π2 + (τReg12 + τ12) + δA1 ⊥ f A12 ≥ 0

0 ≤ q̄A
1 − qA

1 ⊥ λA
1 ≥ 0

0 = sA1 − qA
1 + f A12, δA1 free

KKT conditions for Producer C (similar for Producer D):

0 ≤ −π2 + δC2 ⊥ sC2 ≥ 0

0 ≤ γC
2 + λC

2 − δC2 ⊥ qC
2 ≥ 0

0 ≤ q̄C
2 − qC

2 ⊥ λC
2 ≥ 0

0 = sC2 − qC
2 , δC2 free
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Formulation as an MLCP (ctd)

KKT conditions for the TSO:

0 ≤ −τReg12 − τ12 + γTSO + ε12 ⊥ g12 ≥ 0

0 ≤ ḡ12 − g12 ⊥ ε12 ≥ 0

Market clearing conditions:

I Equality of supply and demand:

0 = [sA1 + sB1 ]− (a1 − b1π1), π1 free,

0 = [sC2 + sD2 + f A12 + f B12 ]− (a2 − b2π2), π2 free

I Congestion tariff:

0 = g12 − [f A12 + f B12 ], τ12 free.

The set of all these conditions is an MLCP.
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Binary-Constrained Version of the Example

Suppose that the formulation for Producer A is of the form:

max
sA1 ,qA1 ,f A12,v

A
1

π1s
A
1 + π2f

A
12 − cA1 (qA

1 )− (τ12 + τ reg12 )f A12

s.t. vA
1 q

A
min ≤ qA

1 ≤ vA
1 q

A
max

sA1 = qA
1 − f A12

sA1 , q
A
1 , f

A
12 ≥ 0

vA
1 ∈ {0, 1}.

Then the resulting model will be a BC-MLCP.
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General Form of a BC-MLCP

Let N denote the set of the indices of variables s.t. N = N1 ∪ N2, and

I z1 denotes the n1 complementarity variables with indices in N1, and

I z2 denotes the n2 free variables with indices in N2.

Given q =

(
q1

q2

)
∈ Rn and A =

(
A11 A12

A21 A22

)
∈ Rn×n,

find

(
z1

z2

)
∈ Rn1 × Rn2 with n1 + n2 = n such that

0 ≤ q1 +
(

A11 A12

)( z1

z2

)
⊥ z1 ≥ 0

0 = q2 +
(

A21 A22

)( z1

z2

)
, z2 free,

where some or all of

(
z1

z2

)
are required to be binary.
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The BC-MLCP: A Challenging Problem!

Some of the challenges in solving BC-MLCPs are:

I The feasible region is in general not convex nor connected.

I The complementarity and binary constraints may lead to an exponential
number of combinations to check.

There is only one earlier solution method in the literature:
Ruiz et al. (2012) propose to relax both complementarity and integrality, and
to trade-off between the two.

Our objective is a solution method that does NOT relax either of them.
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Preliminary: Boundedness Assumption

We assume that there exists a finite solution to the BC-MLCP,
i.e., all the continuous variables satisfy −∞ < li ≤ xi ≤ ui < +∞.

Under this assumption, we can write the set of all solutions of the BC-MLCP
(that satisfy the assumption) as:

F =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
qi + Aix ≥ 0 for i ∈ N1

(qi + Aix)xi = 0 for i ∈ N1

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N \ B
xi ∈ {0, 1} for i ∈ B


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Step 1:

Build an RLT relaxation of BC-MLCP

We relax F using the well-known Reformulation-Linearization Technique (RLT)
developed by Sherali and Adams (1986+, book in 2013).

Our use of RLT differs from the method in Sherali et al. (1998) to solve the
LCP (the special case of MLCP with n2 = 0) because no new binary variables
are introduced.

The RLT relaxation is constructed following three simple steps:

1. Relax xi ∈ {0, 1} to 0 ≤ xi ≤ 1 for i ∈ B.

2. Replace the terms xixj with new variable yij for all i , j ∈ N.

3. Relax the relationship yij = xixj to

yij ≥ 0, xi − yij ≥ 0, xj − yij ≥ 0, and yij − xi − xj + 1 ≥ 0.
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Step 1:

Build an RLT relaxation of BC-MLCP (ctd)

The RLT relaxation of the set F is:

F̃ =


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1

qixi +
n∑

j=1

Aijyij = 0 for i ∈ N1

qi + Aix = 0 for i ∈ N2

0 ≤ xi ≤ 1 for i ∈ N
yij ≥ 0 for i ∈ N
yij ≤ xi for i ∈ N
yij ≤ xj for i ∈ N

yij + 1 ≥ xi + xj for i , j ∈ N


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Step 2:

Refine Variable Bounds

The relaxation F̃ can be improved by tightening the bounds on each variable xi .

Given the nonconvex nature of F , finding such bounds is non-trivial.

We improve the upper bounds on each complementarity variable as follows:

1. Solve
x+
i0

= max
(x,y)∈F̃

xi0 .

2. The new upper bound is given by min{x+
i0
,
√

y+
i0,i0
}.

This procedure was proposed by different groups of researchers in the 1990s,
and is embedded in several global optimization solvers (including αBB,
COUENNE, ANTIGONE, SCIP, LaGO).



148/164

Step 3: Reduce the Number of

Complementarity Constraints

Theorem

For i0 ∈ N1, let x∗i0 be an optimal solution value of min
(x,y)∈F̃

xi0 .

We have the following:

I If x∗i0 6= 0, then the constraint (qi0 + Ai0x)xi0 = 0 can be replaced by
qi0 + Ai0x = 0.

I If x∗i0 = 0 and the problem min
(x,y)∈F̃+

i0

xi0 is infeasible, then the constraint

(qi0 + Ai0x)xi0 = 0 can be replaced by xi0 = 0.

where F̃+
i0

is obtained from F̃ by replacing the i th0 equation of the form

qixi +
n∑

j=1

Aijyij = 0 with qi0 + Ai0x = 0.
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Step 4:

MILP Reformulation of the BC-MLCP

Let
N+

1 = {i ∈ N1 : (qi + Aix)xi = 0 is replaced by qi + Aix = 0}

and
N0

1 = {i ∈ N1 : (qi + Aix)xi = 0 is replaced by xi = 0}.

Clearly either N+
1 ∪ N0

1 = N1 or N+
1 ∪ N0

1 ( N1.
In the first case, all the complementarity constraints have been replaced and
therefore the set F is equivalent to

F1 =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
qi + Aix = 0 for i ∈ N+

1

xi = 0 for i ∈ N0
1

qi + Aix = 0 for i ∈ N \ N1

0 ≤ xi ≤ 1 for i ∈ N \ B
xi ∈ {0, 1} for i ∈ B

 .

We find a solution to the BC-MLCP by solving an MILP over F1.
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Step 4:

MILP Reformulation of the BC-MLCP (ctd)

In the second case, only some of the complementarity constraints have been
replaced and the set F is equivalent to

F2 =


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

qi + Aix ≥ 0 for i ∈ N1 \ (N+
1 ∪ N0

1 )
(qi + Aix)xi = 0 for i ∈ N1 \ (N+

1 ∪ N0
1 )

qi + Aix = 0 for i ∈ N+
1

xi = 0 for i ∈ N0
1

qi + Aix = 0 for i ∈ N \ N1

0 ≤ xi ≤ 1 for i ∈ N \ B
xi ∈ {0, 1} for i ∈ B


.

In this case, we follow the work of Sherali et al. (1998) and define an MILP
equivalent to finding a solution in F2.
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Step 4:

MILP Reformulation of the BC-MLCP (ctd)

I Introduce new binary variables for each complementarity variables such
that:

vi =

{
0 if xi = 0
1 if xi > 0

I Introduce the variables wij = vixj

I Relax the quadratic equation wij = vixj using the McCormick inequalities.
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Final MILP Problem

min
x,v,w

qT v +
∑

i∈N1\(N+
1
∪N0

1
)

∑
j∈N Aijwij

s.t.
∑n

j=1Akjwij + qkvi ≥ 0 ∀i, k ∈ N1 \ (N+
1 ∪ N0

1 )∑n
j=1Akjxj + qk ≥

∑n
j=1 Akjwij + qkvi for i, k ∈ N1 \ (N+

1 ∪ N0
1 )

qi + Aix = 0 for i ∈ N+
1

x i = 0 for i ∈ N0
1

qi + Aix = 0 for i ∈ N \ N1

xj ∈ {0, 1} for j ∈ B

0 ≤ wij ≤ 1 for i ∈ N1 \ (N+
1 ∪ N0

1 ), j ∈ N

wjj = xj for i ∈ N1 \ (N+
1 ∪ N0

1 )

vi ∈ {0, 1} for i ∈ N1 \ (N+
1 ∪ N0

1 )

wij ≥ 0 for i ∈ N1 \ (N+
1 ∪ N0

1 ), j ∈ N

wij ≤ xj for i ∈ N1 \ (N+
1 ∪ N0

1 ), j ∈ N

wij ≤ vi for i ∈ N1 \ (N+
1 ∪ N0

1 ), j ∈ N

wij + 1 ≥ xj + vi for i ∈ N1 \ (N+
1 ∪ N0

1 ), j ∈ N.
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Solution For Two-Node Example

Prod. A Prod. B Prod. C Prod. D TSO

sA1 5 sB1 3 sC2 5 sD2 0 g12 5 # iter. 11
qA

1 10 qB
1 3 qC

2 5 qD
2 0 ε12 2 time 0.023

f A12 5 f B12 0 λC
2 0 λD

2 0 π1 12 compl. Yes
λA

1 2 λB
1 0 δC2 15 δD2 15 π2 15 B&B No

δA1 12 δB1 12 τ12 2.5

I Solution different from those reported in Gabriel et al. (2013)
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BC-MLCP for Market-Clearing

Example from Ruiz et al. (2012)

I 6 nodes, 8 producers, 4 demands

I DC power line model

I Start-up and shut-down costs modelled using binary variables

I Our algorithm replaced 99 complementarities (out of 248) by linear
equations
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Equilibria in Power Markets with Storage

Consider an energy storage operator in a power market as a service provider in
a context where the transmission capacity as well as the generation capacities
are limited in terms of satisfying the demand at peak times.

We use a small example with a network of two nodes, two producers and a
storage operator at node 2:

Node 1

producer A

Node 2

producer B

Storage Unit: S
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Equilibria in Power Markets with Storage

I We consider two time periods: an off-peak period followed by an on-peak
period.

I During the off-peak period, either producer can send a part of its
production to the storage unit which will then be released during the
on-peak demand period to be sold on the market at node 2.

I Given the economic opportunity of storage, the producers could respond
by expanding their generation capacity.
We investigate the profitability of the storage operator in two scenarios:

Scenario 1 Capacity expansion is not an option for the producers
Scenario 2 Producers are willing to expand their production capacities
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Formulation as an MLCP

Same as previously with the addition of the problem for the storage operator:

max
hS

ωShS − γShS

s.t. hS ≤ σS (θS)

hS ≥ 0

where

I σS is the storage capacity

I hS is the storage level used

I ωS is the unit tariff for using the storage facilities,

I γS is the unit cost of storage
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Additional Data for Example

We use the demand function

Dtn(πtn) = atn − btnπtn,

and the values of the parameters are:

γA = 7 γB = 7 γTSO = 1 γS = 0.5 ḡ12 = 30 τ reg = 0.5

a11 = 20 a21 = 40 a12 = 30 a22 = 80

b11 = 0.1 b21 = 0.1 b12 = 0.1 b22 = 0.1

qA
max = 60 qA

min = 5 qB
max = 40 qB

min = 5

EA
max = 25 EA

min = 5 EB
max = 25 EB

min = 5

Observations:

I At t = 2, after supplying up to 40 units to node 1, producer A can supply
only up to 20 units, which together with the existing capacity of B will not
satisfy the demand at a low cost:
A: 20 MW, B: 40 MW results in a price of 200 $/MWh (80− 0.1π22).

I Therefore, capacity expansion and/or storage may be profitable.
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Scenario 1: Impact of Storage Capacity
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Scenario 2:

Generation Expansion vs Storage

Let ρA and ρB be the unit costs of the expanded generation.

For our example,

I The unit cost of generation for each producer is 7, the unit cost of storage
is 0.5, and the unit cost of transport from 1 to 2 is 1

I It would cost B at least 7.5 to generate and store electricity, and it would
cost A at least 8 to sell electricity to node 2.

I Therefore we investigated three cases:

ρA = ρB = 7.4 less expensive than using storage
ρA = ρB = 7.6 more expensive than using storage but less than the cost

for A to sell directly to node 2
ρA = ρB = 8.1 more expensive than the previous two cases
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Scenario 2:

Generation Expansion vs Storage (ctd)

ρA = ρB = 7.4 ρA = ρB = 7.6 ρA = ρB = 8.1
t=1 t =2 t=1 t=2 t=1 t=2

Producer A
qA 19.3 39.3 19.3 39.3 26.9 60
EA 0 0 0 0 0 0

Producer B
qB 38.55 40 40 40 40 40
EB 5 25 5.0 23.53 0.00 0

Storage hS
t 14.25 0 15.71 0 18.4 0

(σS = 30) ωS 0.5 0 0.5 0 0.5 0

Profits (σS = 30)
Prod. A Prod. B TSO Storage

ρA = ρB = 7.4 0 20.50 0 0
ρA = ρB = 7.6 0 25.50 0 0
ρA = ρB = 8.1 30.00 100.00 0 0
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Scenario 2:

Generation Expansion vs Storage (ctd)

Case ρA = ρB = 8.1:
Profits Prices

σS A B TSO Storage π11 π21 π12 π22 hS

0 6 44 0 0 7 7.1 7 8.1 0
1 6 44 0 0.6 7 7.1 7 8.1 1
2 6 44 0 1.2 7 7.1 7 8.1 2
3 6 44 0 1.8 7 7.1 7 8.1 3
...

...
...

...
...

...
...

...
...

...
10 6 44 0 6 7 7.1 7 8.1 10
11 6 68 0 0 7 7.1 7.6 8.1 10.76

...
...

...
...

...
...

...
...

...
...

16 6 68 0 0 7 7.1 7.6 8.1 10.76
17 450 380 0 119 7 14.5 8 15.5 17
18 150 180 0 36 7 9.5 8 10.5 18
19 30 100 0 0 7 7.5 8 8.5 18.4

...
...

...
...

...
...

...
...

...
...

30 30 100 0 0 7 7.5 8 8.5 18.4
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Summary

I We proposed a novel solution approach for the BC-MLCP.

I It starts with an RLT relaxation of the BC-MLCP, fixes complementarity
constraints to linear equations as much as possible, then uses MILP.

I Neither the complementarity nor the integrality are relaxed.
I Applying this solution approach to power markets with the addition of a

storage operator, it is possible to quantify the extent to which:
I the presence of a storage operator is beneficial during on-peak demand

periods, and
I whether it can be profitable for a storage investor to operate as a service

provider.

Thank you for your attention.
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Conclusion
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Optimization has

Myriad Applications in Energy!

Optimization problems arise in particular from many current challenges in
smart grids, including:

I Demand response, smart buildings, and distributed resources

I Electric vehicles

I Energy storage, not restricted to batteries

I Optimal use and maintenance of existing infrastructure

I Isolated / islanded systems

I Economic aspects

You are welcome to contact me or to visit my group’s website:

Optimization for Smart Grids (OSG) • http://osg.polymtl.ca/

Thank you, and enjoy the week!

http://osg.polymtl.ca/
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