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VIBRATIONAL MODES OF THE VIOLIN FAMILY

ABSTRACT

The generic wave-mechanical properties of violin-shaped
instruments are described by considering their bodies as
simplified, shallow, thin-walled, guitar-shaped, shell
structures with the arched plates connected around their
edges by the ribs. COMSOL finite element software is
used to illustrate the strong dependence of the shapes and
frequencies of the low frequency A7/, CBR, BI- and Bl+
signature modes on the rib coupling strength, the island
area between the f-holes, coupling to the internal cavity
pressure fluctuations via the Helmholtz f~hole resonance,
and the soundpost position and strength. The model illus-
trates the relationship between the free pate modes and
those of the fully assembled instrument. It also identifies
the important B/- and B+ signature modes as normal
modes involving the in- and out-of-phase combinations
of a bending and breathing mode of the shell, with the
breathing component responsible for both the directly and
indirectly (via the 40 mode) radiated sound. The model
describes the vibrational modes over the whole playing
range of the violin and can be used to predict both the
admittance at the bridge and the radiated sound.

1. INTRODUCTION

Knowledge of the vibrational modes of the violin has
advanced rapidly over the last few years from experi-
mental modal analysis of instruments of widely varying
quality, including many fine modern and classic Italian
instruments by Stradivari and Guarneri instruments and
their contemporaries, notably — notably from modal anal-
ysis measurements by Marshall [1], Schleske [2], Bissin-
ger [3] and Stoppani [4]. In addition, several finite ele-
ment computational investigations have successfully re-
produced the shapes and frequencies of many observed
vibrational states, including those of Knott [5], Roberts
[6], Rogers and Anderson [7], and Bretos et al [8].

Nevertheless, the origin and nature of even the most
important A0, CBR, BI- and BI+ signature modes, re-
sponsible for almost all the sound radiated below around
800Hz tol kHz, has not been clearly understood. This is
largely because of the asymmetric and often complicated
shapes of the observed and computed modes

This investigation therefore adopts a somewhat differ-
ent approach to that of previous finite element computa-
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tions. It aims to explain and elucidate the origin and na-
ture of the important acoustical modes of vibration, rather
than simply to predict them for specifically chosen physi-
cal parameters related to a particular or typical violin.

To this end, we assume the simplest possible model
having the necessary symmetry and constraints to repro-
duce the vibrational modes of violin-shaped instruments.
This can be achieved by describing the hollow shell of
such instruments as shallow, thin-walled, arched plate,
guitar-shaped boxes, with f~holes cut into the top plates
and offset soundpost and bass bar. Despite the added
simplification of assuming uniform, isotropic, elastic
constants and plate thicknesses, the model closely repro-
duces the frequencies and shapes of the free plate modes
before assembly, reproduces the frequencies and shapes
of the signature modes of the assembled instrument
shapes, and correctly predicts modal densities of aniso-
tropic plates at high frequencies as recognized by Cremer
[9, §11.2]

As an aid to such physical understanding, the modes
of the instrument are first investigated for a symmetric
empty shell without soundpost or bass bar, then with a
centrally placed sound post and finally with the sym-
metry-breaking offset soundpost and bass bar. The
symmetry-breaking results in relatively complicated
asymmetric modes involving the coupling together of
previously symmetric and anti-symmetric modes about
the central axis.

The model describes how the modes of the initially
free plates are transformed into those of the assembled
instrument, as the interactions between the initially free
plates by the ribs, the internal cavity pressure fluctuations
and the offset soundpost are slowly increased from near
zero to typical values.

Although the focus of this paper is on the low fre-
quency signature modes, the shapes and frequencies of
the shell modes can be determined over the full playing
range of an instrument. The absence of damping in the
modal computations circumvents the practical problem of
the strong overlap of modal resonances from damping at
high frequencies leading to increasingly complex deflec-
tion shapes (ODS) involving combinations of the previ-
ous ideally symmetric and anti-symmetric flexural plate
modes.

Nevertheless, damping is easily introduced into the
computations. This enables the frequency dependence of
the input admittance at the bridge and radiated sound to
be derived as a continuous function of frequency over the
whole playing range.

As described in this paper, the model enables one to
investigate the dependence of important mode frequen-
cies and shapes on the rib strength, plate masses, arching
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profiles, internal cavity air resonances, and, most im-
portantly, the sound post strength and location. The po-
sition of the sound post within the island area relative to
the feet of the bridge is shown to have a major influence
on both the resonant frequencies of the signature modes
and the strength with which they can be excited by the
bowed string.

In the following sections, the model is introduced and
used to illustrate:

e the transformation of the front and back free plate
modes into those of the assembled instrument,

e the identification of the BI- and BI+ signature
modes as the coupled vibrations of the component
bending and breathing modes of the shell,

e the influence of the f~holes on both the internal cavity
air pressure vibrations and the coupling of such fluc-
tuations to the shell vibrations which excite them,.

e the dependence of the signature and higher frequency
modes on rib strength, the f~holes and island area,
coupling to the air inside the cavity via the f~hole
Helmbholtz resonance and, most importantly, the
soundpost position.

A longer paper will include and quantify the computed
influence of elastic anisotropy, the linings and corner/end
blocks, arching profiles and plate thicknesses, in addition
to the coupled vibrations of the strings, neck and finger-
board and higher-order cavity air modes, as well as a de-
scription of the generic properties of the higher frequency
modes.

2. FINITE ELEMENT MODEL

The finite element geometry of the violin illustrated in
Fig.1 is loosely based on the internal rib outline, arching
profiles and other physical dimensions of the Titian Strad
(Zygmuntowicz [10]). As we are interested in the vibra-
tional properties of all instruments of the violin family,
the exact dimensions and detailed geometry are only of
secondary importance. Variations in physical and geo-
metric properties can always be included later as relative-
ly small perturbations, changing specific mode frequen-
cies, but not the symmetry of their underlying shape.
The model will be described in detail in a separate publi-
cation.

The unmeshed geometric model used for the finite
element computations is illustrated in figure 1. The 15
mm high arching profiles of the plates were defined by
simple mathematical functions, with identical top and
back plate profiles across the width, but slightly different
profiles along the length.

For simplicity, plates of uniform thickness have ini-
tially been considered, with uniform elastic properties
representing the geometric mean of the anisotropic prop-
erties along and across the grains. This ensures the cor-
rect mode density at high frequencies (Cremer [9,
§11.2]). The top and back plate thicknesses (2.5 and 3.5
mm), densities (460 and 660 kg/m’ ), masses (57 and 118
g) and averaged along/cross-grain elastic constants (2.39
and 2.17 GPa) were chosen to closely reproduce typical
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arched front and back plate frequencies, as listed in table
1.

Frequency Hz #1 #2 #3 #4 #5
Back FEA 93 169 248 252 348
Hutchins 116 167 222 230 349
Front FEA 82 158 218 231 333
Hutchins 80 146 241 251 295
Cremonese 134 314

Table 1. Arched FEA back and front free plate
frequencies compared with Hutchins® “tuned”
plates (cited from Roberts [6]) and average val-
ues for nine Cremonese violins (Curtin [11) both
with f-holes in the front plate

The 2.1:1 ratio of the computed top plate #5 and #2
modes is slightly larger than the octave tuning advocated
by Hutchins [12], but lower than the average 2.3:1 value
for fine Cremonese violins measured by Curtin [11].
However, the values are well within the experimental
scatter amongst fine instrument, which justifies the use of
the use of the assumed isotropic plate parameters for our
subsequent development of the modes of the assembled
instrument. The influence of elastic anisotropy and grad-
uations of plate thicknesses on mode shapes and frequen-
cies will be described in a later paper.

Figure 1. The unmeshed geometric model before mesh-
ing used for the finite element computations illustrating
the guitar-shaped outline and arching of the plates and
schematic representation of the neck. The transverse
and longitudinal lines across define the cross-sections
along which the arching profiles were defined. The cir-
cular disc is used to demonstrate the induced f-hole
Helmholtz vibrations.

Although the computations presented in this paper are
for the violin, the mode shapes and dependencies of mod-
al frequencies on physical and geometric factors are ex-
pected to be much the same for instruments of any size,
as the symmetry of the mode is largely determined by the
symmetry of the shell structure, which is much the same
for all instruments of the violin family.

The computations were made using the structural shell
module of COMSOL 3.5 Multidisciplinary software. An
automated mesh with typically 50,000 degrees of free-
dom was generated, with the first 20 to100 or so vibra-
tional modes of the freely supported instrument computed
in a few tens of seconds on a desk-top PC.

The influence on the vibrational modes of the individ-
ual plates, the ribs, f~holes, central and offset soundpost,
and internal air cavity are now considered in turn. Space
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precludes a description of the influence of bass-bar and
neck/fingerboard assembly, which perturb but do not sig-
nificantly influence the generic properties of the vibra-
tional modes of the instrument of main interest her.

3. FREE PLATE MODES

Figure 2 illustrates the computed free plate modes used to
model the assembled instrument, before f~holes have been
cut or bass bar added. Throughout this paper a colour
scale will be used to illustrate displacements perpendicu-
lar to the plates, with dark red and blue representing
equal but opposite displacements perpendicular to the
plate, with the nodes at the transition between green and
yellow.

93 Hz 169 Hz

—=

158 Hz
#1 #2 #3 #4 #6 #5

218 Hz 231 Hz 331 Hz 333 Hz

Fig:2 top and back plate modes,ppt 9" Feb 13

top plat
Figure 2. The first six ?Iplgggs of the 1sotropic, uni-
form thickness, arched, top and back plates

Arching results in a strong coupling between the flex-
ural waves perpendicular to and longitudinal waves paral-
lel to the arched surfaces. This can double the frequency
of the low frequency plate modes, though it is less im-
portant as the mode frequencies increase. Such  cou-
pling also induces significant in-plane edge contractions

4. RIB COUPLING

1000

and extensions, responsible for the coupling between the
bending and breathing modes of the assembled instru-
ment. The plate frequencies are therefore strongly de-
pendent on how they are supported by the ribs both in
plane and perpendicular to their edges. Figure 2 demon-
strates that even relatively small changes in arching pro-
file along the lengths of the top and back plate can re-
verse the order of the mode frequencies, even though
their arching heights are the same.

The individual modes are either symmetric or anti-
symmetric about the longitudinal central axis. This re-
mains true for their coupled motions in the assembled
instrument in the absence of the symmetry-breaking bass
bar and offset soundpost.

Mode #1 is a torsional mode of relatively little acoustic
importance. Modes # 2 and #4 involve flexural bend-
ing vibrations in the lower and upper bouts of the freely
supported plates. Mode #4 is higher in frequency be-
cause it is confined to a smaller area. Mode #2 is often
referred to as the X-mode, on account of the shape of its
nodal lines, though they never cross. As we will show
later, the coupled #2 and #4 modes result in the largely
non-radiating bending mode component of the B/- and
BI+ signature modes. Mode #3 is a higher frequency
torsional mode, which includes some bending. Both
plates vibrating in the same direction result in the CBR
mode of the assembled instrument. Mode #5 is often
referred to as the ring-mode on account of the nodal line
around the central region of the plate moving in the same
direction. When coupled by the ribs, the resulting mode
with the two plates vibrating in opposite directions is
responsible for the breathing mode components of the
BI- and BI+ signature modes. These modes are directly
or indirectly (by excitation of the 40 f~hole resonance)
responsible for virtually all the sound radiated by the vio-
lin and other stringed instruments at frequencies over
their first two octaves.

vertical
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Figure 3 illustrates the rather complicated way in which
the modes of the individual free plates are transformed
into those of the assembled instrument on increasing the
rib coupling strength from close to zero to a representa-
tive normal value.

The coupling strength is proportional to E,;(t/h)3,
where E,;;, is an effective elastic constant across the ribs
of height 2 and thickness 7. In computing the depend-
ence on rib strength the rib height (3 cm) and thickness
(1mm) were held constant, while E,.;;, was scaled from a
very small value to 10 GPa - a typical value for maple.
For the cello, with its significantly larger rib height to
thickness ratio, the rib coupling strength will be signifi-
cantly weaker than that of the violin. This will result in
relatively larger stretching and bending of the ribs.

The density was also simultaneously scaled by the
same factor to maintain the frequency of the wave-guide
like, flexural, rib modes between the two plates at a high
frequency, typically >5-10 kHz for the violin and > 800
Hz for the cello (Stoppani, private communication) - well
above the range of frequencies considered here. At lower
frequencies, the ribs simply act as a series of parallel can-
tilevered springs inhibiting plate separation and bending
around their edges. Nevertheless the isolated rib garland
can easily be bent and twisted about its length with very
little energy. Such vibrations are involved in the CBR
and B/- and B+ signature modes of the violin, with
large amplitude twisting and bending of the ribs along
their edges, but relatively small amounts of stretching and
bending between opposing plate edges.

Figure 3 shows that the ribs have a major influence on
the frequencies and shapes of the low-lying modes of the
assembled shell, which become the signature modes of the
fully modeled instrument. The coupling is especially
strong between front and back plates sharing the same

symmetry and closely spaced frequencies.

As well as the coupled free plate modes, there are six
additional modes derived from the twelve zero-frequency
degrees of freedom of the two isolated plates describing
their rigid body displacements and rotations along and

about their three orthogonal symmetry axis.

Six of these modes become the six whole-body dis-
placements and rotations of the assembled instrument.
The remaining six modes are transformed into modes with
the displacements and rotations of the rigid plates in oppo-
Because such
modes involve the stretching and compression of the ribs,
strength  as

V Eribs/Mpiates » where My 405 Will be a mode-specific
effective plate mass. Their unperturbed frequencies there-

fore increase with slope Y, when frequency and rib

site directions, as illustrated in Figure 3.

their frequencies increase with rib

strength are plotted on logarithmic scales, as in figure 3.

At intermediate coupling strengths, these modes cross
and will couple to any of the flexural wave modes of the
top and back plates sharing a similar symmetry. This re-
sults in considerable veering and splitting of several mode
frequencies in the cross-over region. The splitting of
modes is proportional to the rib-induced interaction
strength. Modes not sharing a common symmetry do not

interact. Their frequencies simply cross.
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At full coupling strength, the influence of the rigid
plate modes are less important but still account for the
small amounts of rib stretching, rotations and twisting
observed in experimental modal analysis measurements.

Because of these interactions, the dependence of shell
mode frequencies on rib strength is rather complicated
and difficult to interpret. In figure 5a-d below, we have
therefore extracted those parts of the dispersion curves
that identify the transformations of specific plate modes
to the low frequency modes of the assembled instrument.

Before leaving figure 3, it is important to note that,
despite the complexity of the modal frequency plot, the
number of modes of the assembled structure is always
conserved and is equal number of the number of initially
non-interacting modes considered. It is therefore possible
to follow a single mode of the interacting system from
that of the original uncoupled modes as they adiabatically
(smoothly) transformed to those of the fully coupled
structure. However, as the coupling strength increases
each mode will increasingly include additional coupled
component vibrations of the initial system.

As a result of the increase in modal frequencies on
increasing rib strength, the number of low frequency
modes of the shell at full coupling strength is relatively
small. The five lowest modes are illustrated in Figure 4.
These will be referred to as the chr (centre bout rota-
tion), bi- (breathing), b/+ (bending), /d (longitudinal
dipole) and #d (transverse dipole) modes of the empty
shell. Note the use of small letters to denote what be-
come contributing component modes of the CBR, BI-
and B/+ normal modes of the assembled instrument.

td transverse dipole
Figure 4. The first five component or basis modes

of the assembled guitar-shaped box at full rib-
coupling strength.

The transformation of each of the first five free plate
modes into the above modes of the freely supported as-
sembled shell will now be described.

Figure Sa illustrates the influence of rib coupling on
the #1 torsional plate mode. Even at vanishingly small
coupling, the top and back plates are coupled together to
form two new normal modes with the plates twisting in
either the same or opposite directions. The mode with
both plates twisting in the same direction avoids stretch-
ing the ribs. Its stored energy, hence frequency, therefore
increases far less rapidly with rib coupling strength than
the contra-twisting mode, which rapidly rises in frequen-
cy into the multiplicity of flexural plate modes above a
kHz. The mode with plates twisting in the same direc-
tion also transforms into a relatively unimportant acous-
tic mode just below a kHz.
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Figure 5b illustrates a similar initial behaviour for the
coupled #2 and #4 free plate modes, with the frequency
of the modes with plates flexing in opposite directions
increasing much more quickly than when flexing in the
same direction, avoiding stretching the ribs. In contrast,
the pair of modes with plates vibrating in the same direc-
tion are coupled together by the ribs to form the im-
portant component, anticlastic (bending in opposite direc-
tions), bI+ bending mode of the B/- and B+ signature
modes of the fully instrument.

The #3 modes illustrated in figure 5c behave in much
the same way, with plates vibrating in opposite senses
increasing rapidly in frequency. However, in this case,
the lower frequency mode, with the two plates vibrating
in the same direction, crosses and interacts strongly with
the more rapidly increasing frequency shearing mode of
the rigid plates. After crossing, the emerging cbr mode
still describes the centre bout rotation, but retains a sig-
nificant amount of coupled shearing motion. This results
in a central bout rhombohedral distortional vibration,
explaining the origin of the CBR name. However, it is its
rotation rather than its shear motion that is important in
coupling to the rocking bridge. It would therefore argua-
bly be more appropriate to refer to this mode as a centre
bout rotation mode. Because such motion involves little
change in volume, the cbr mode, which transforms into
the CBR mode of the fully assembled instrument,
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usually only plays a minor role in the radiation of sound.

Figure 5d illustrates the very strong interaction of the
#5 plate modes with the rising frequency bouncing
mode. Inspection of the resulting mode shapes identifies
the lowest and highest frequency branches (the thicker
solid line) as the in- and out-of-phase of the coupled #5
“ring-modes” with the rigid plate bouncing mode (in-
volving the stretching and compression of the ribs). The
lower mode becomes the all-important component b/-
breathing mode responsible for almost all the sound ra-
diated directly or indirectly (via its excitation of the f-
hole Helmholtz resonance) by instruments of the violin
family over their lowest two octaves. On crossing the
rising bouncing mode frequency, the breathing mode re-
emerges at a significantly lower frequency than its initial
value, as expected for any pair of strongly coupled oscil-
lators. In contrast, the mode with the initial #5 ring plate
vibrations in the same phase simply crosses the bouncing
mode frequency and becomes another relatively unim-
portant acoustic mode in the transition region just below
1 kHz.

In every case, the mode frequencies are still rising
for a coupling factor of unity corresponding to typical
values. This reflects the increasing rigidity of the sup-
porting ribs, which increasingly constrain the bending
and stretching of the flexural waves around the plate
edges.
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s plate shearing. .
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Figures Sa-d. Extracted dispersion curves for the transformations of the first five free plate modes to the

lowest frequency modes of the assembled shell.
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6. ~FHOLES AND ISLAND AREA

The open f~holes on the front plate and the island area
between them play a major role in the sound of the violin
and related instruments, as recognized by Cremer [1,
chpt.10]. Firstly, the open holes result in the A0 Helm-
holtz cavity resonance, which boosts the sound of all
members of the violin family over their first octave or so.
Secondly, the free f~hole edges define the shape of the
island area, which strongly influences the penetration of
flexural waves from the lower and outer bouts towards
the two feet of the rocking bridge, which excite them.
As shown later, the penetration of flexural waves into the
island area and resulting excitation of radiating modes is
also strongly influenced by the strength and position of
the soundpost in the island area.

6.1 The island area

Figure 6 illustrates the influence of the f~holes on the low
frequency flexural wave modes of the shell. The frequen-
cies were computed as a function of f~hole strength varied
by simultaneously decreasing the elastic constant and den-
sity of the f~hole areas by the same factor from unity (no f-

holes) to 107 (effectively open f~holes).

1000 HZ__ ,.i;@,;
e -
900 | st
R T lower bout dipole
800 e —

700

&0 b d:_pole |

= bending = Id dipole "

500

bendin:

g &
400 ———————— cbr S
e i

300 »————— breathing ——_ =
200 N
1 17 W= 1 104 0% § W
no f-holes f-hole strength  open f-holes breatr-ung monapole

Figure 6. The influence of the f~holes on the empty
shell mode frequencies and shapes in the island area.

Opening the f~holes has little effect on mode shapes,
but lowers their frequencies by increasing their penetra-
tion into the island area towards the free edges of the is-
land area. As a result the inside edges of the f~holes can
vibrate with large amplitudes, almost independently from
the outer edges constrained by the ribs, as illustrated.

6.2 The Helmholtz A0 resonance.

The combined open area A of the two f~holes together
with the volume ¥ of the internal cavity, if rigid, would
form a Helmholtz resonator, with resonant frequency

2 fHeimnottz = Cov/ gAl/z/V'

where ¢, is the velocity of sound within the cavity and g
is an f-hole, shape-dependent, constant of order unity.
The resonance is excited by the volume-changing, b/-
component of the cavity wall flexural wave vibrations.

(1)
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Although the Helmholtz frequency, proportional to the
velocity of sound in air, is independent of pressure, the
strength of the coupling between the induced cavity pres-
sure fluctuations and flexural plate vibrations that excite
them is proportional to the ambient pressure. Figure 7
illustrates the dependence of the shell modes and A0 f-
hole frequencies on ambient pressure.

The computations assume a uniform acoustic pressure
within the cavity induced by the cavity volume changes.
These are computed self-consistently and describe the
interaction of the shell wall vibrations with the air inside
the cavity via their coupling to the f~hole Helmholtz 40
resonance. For uniform pressure changes, only volume
only volume changing shell wall vibrations can provide
such coupling.

Figure 7 illustrates the very strong perturbation of the
A0 and bI- breathing modes, as the ambient pressure is
increased. Neglecting, interaction with the enclosed air is
equivalent to zero ambient pressure. The previously com-
puted empty shell breathing mode frequency of around
300 Hz is then very close to that of the modeled ideal
Helmbholtz resonator at 309 Hz. On increasing the inter-
nal pressure to a “normal” value, the coupling is so great
that the predicted 40 mode would drop to around 200 Hz,
while the breathing mode would be raised to around 400
Hz. Analytic models, based on inertial rather than spring-
like coupling, provided via the acceleration of the cavity
walls and the pressure within the cavity, predict that the
product of the resulting a0 and b/- mode frequencies
should remain constant, as confirmed by the computa-
tions.

1000
800

3

vl Id

600 - b1+~

]

g

= 400——
|l

normalised pressure P

Figure 7. The variation of the low frequency modes of
the empty guitar-shaped shell with f~holes cut into the
top plate, as a function of ambient pressure normalized
to normal air pressure. The dashed line indicates the
unperturbed Helmholtz frequency of 307 Hz. Also il-
lustrated are the mode shapes and reversed baseball-
like nodal lines of the coupled b/-breathing and b7+
bending mode at high pressures.

As described in an accompanying paper (Gough [13]),
the internal pressure driving the Helmholtz vibrations of
the air in and out of the f~holes is reduced below the aver-
age pressure - because of the pressure drops associated
with flow along the length of the cavity towards the f-
holes. This reduces the effective pressure driving the f~
hole resonance by a factor of ~ 0.7, equivalent to reduc-
ing the effective ambient pressure by the same factor.
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Measurements on violins with and without a soundpost
show typical drops in A0 frequency from around 285 to
240 Hz, in qualitative agreement with the above model.

Initially, none of the other modes are significantly af-
fected. However, as the pressure increases, the frequency
of the b1- breathing mode approaches and would other-
wise cross that of the 57+ bending mode.

Because the bending and breathing modes similar but
different amplitude in-plane contractions and extensions
around the edges of the plates, they are relatively strongly
coupled.  They then form what become the dominant
BI- and B+ signature modes of the assembled instru-
ment with bending and breathing component vibrations in
either the same or opposite phases, as illustrated in figure
7. This is one of the major results of the present investiga-
tion and has been confirmed by modal analysis measure-
ments by Stoppani [invited talk at this conference] on
many fine instruments.

The coupling of the bending and breathing modes au-
tomatically accounts for the characteristic reversal of the
baseball-shaped nodal lines. Previous attempts to describe
the B/- and BI+ modes have suggested they involve the
reversal of #2 and #5 free plate modes in the top and back
plates, despite such modes having very different plate
edge displacements. Furthermore, the coupling explains
why the BI- and B/+ modes are never coincident. It also
explains the variations in relative monopole radiation
strengths of such modes, which will depend on the con-
tributing strengths of the component b/- breathing
(strongly radiating) and b7+ bending (weakly radiating)
modes.

There is also a somewhat smaller interaction with the
higher frequency longitudinal dipole mode illustrated in
figure 4 and with a higher frequency mode just above 900
Hz.

6. THE SOUNDPOST

The soundpost wedged between the plates acts as a
supporting beam exerting equal and opposite forces and
couples to the plates across its ends. This imposes almost
equal flexural wave plate displacements and slopes across
its ends assuming intimate contact between the ends of
the sound post and the plates.

As a result, the flexural wave displacements at both
ends of the sound post tend to be extremely small. This
involves a modification of the flexural mode of the empty
shell by the addition of a localised flexural wave decay-
ing exponentially as e " at large distances, where
k = 27/2 is given by the usual flexural wave dispersion
relationship, w octk? and A is the characteristic wave-
length of the standing waves excited in the upper and
lower bouts. The existence of such waves is a characteris-
tic feature of bending waves on thin-walled structures and
have to be added to the more familiar wave-like functions
at any boundary to satisfy the various boundary condi-
tions involved —around the plate edges, along the f~hole
slots and, in this case, at the ends of the soundpost.

When located within the island area, the soundpost
then acts as a kind of gate inhibiting the penetration of
flexural waves in the lower bout past the sound post into
the upper bout and vice versa. Because the flexural wave
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amplitudes are rather small and vary rapidly close to the
soundpost ends, its position relative to the two feet of the
bridge which excite the shell vibrations is crucial. The
strength with which any vibrational mode of the shell can
be excited by a horizontal bowing force at the bridge is
critically dependent on the wave amplitudes at the two
feet of the bridge, which excite such vibrations. The cru-
cial role of the soundpost on the sound of an instrument is
why the English call it the soundpost, while the French
and [talians more imaginatively refer to it is as the soul
and spirit of the instrument.

position on the frequencies and top plate mode shapes
of the b1- breathing mode, for the empty shell without
bass bar or other attachments, but coupled to the inter-
nal air via the f~hole resonance. Modes are illustrated
for the empty shell, a centrally placed soundpost, when
it is shifted longitudinally and transversely separately
by 2 cm, and when shifted in both directions together.

The gate-like function of the soundpost is evident
from Figure 8. Without a soundpost, the breathing mode
extends through the island area to both upper and lower
bouts, with the strongest amplitudes at the upper end of
the lower bout and within the island area. Because there
is little restriction on the area available for the waves,
the frequency is relatively low. In contrast, the nodal
regions created by the centrally placed sound post
strongly inhibits the penetration of waves from the low-
er to the upper bout, though there is still some penetra-
tion on both sides of the soundpost resulting in weak
displacement of opposite sign in the upper bouts. Be-
cause of the restriction on available area for the lower
bout vibrations, the frequency of the mode is increased
very significantly from 362 to 567 Hz. Displacing the
soundpost 2 cm towards the lower bouts further inhibits
penetration past the sound post and the area available
for vibrations is decreased, resulting in a further in-
crease in mode frequency from 567 to 620 Hz. Because
all the above modes are symmetric about the central
axis, they cannot be excited by a horizontal force caus-
ing a symmetric rocking of the bridge. The violin would
radiate very little sound.

Moving the soundpost 2 cm sideways from its central
position has two affects. It allows the lower bout waves to
penetrate more easily through the bass side of the island
area, significantly lowering the mode frequency from 567
to 453 Hz. The sideways displacement also introduces a
large asymmetry of the wave motion across the two feet
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of the bridge. A horizontal bowing force can then couple
strongly to the modes via the asymmetrically rocking
bridge and hence radiate strongly. Because the waves
already penetrate relatively easily past the offset sound
post, moving it further away from the bridge results in a
relatively small change in mode frequency from 453 to
451 Hz, though it results in quite a large change in the
wave motion within the island area and upper bouts, par-
ticularly in the region of the two bridge feet.

Although such displacements are very much larger
than the mm or so used by violin makers when setting up
a violin, the computations illustrate how such changes are
likely to change the sound of an instrument, both by
changing the frequency of the important breathing mode
component and the strength with which it can be excited
by horizontal bowing forces at the bridge.

In view of the relatively large variations in B/- and
BI+ signature mode frequencies and their component
breathing mode responsible for the radiated sound, even
amongst many fine Cremonese instruments, it is some-
what surprising that many luthier’s believe there is a “cor-
rect” position for the soundpost within a mm or so of its
placing relative to the treble side foot of the bridge. This
may well be true for fine instruments with properties al-
ready optimized for the “correct” soundpost position. But
one has to ask why use is not made of the sensitivity of
sound quality on soundpost position to “improve” the
sound of poorer quality violins by much more adven-
turous shifts than the mm or so usually considered.
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Figure 7. Influence on mode frequencies and shapes
of the strength of a centrally placed soundpost.

Figure 7 illustrates the dependence of mode frequencies
on the strength of a centrally placed soundpost in-line
with the f~hole notches, for the violin body shell without
bass bar, fingerboard/neck assembly and neglecting cou-
pling to the Helmholtz cavity resonance. As with the ribs,
the soundpost strength is varied by simultaneously in-
creasing its elastic constant and density to maintain its
resonant modes at a high value - above ~5 kHz for the
violin, to avoid complications from the multiplicity of
soundpost modes for small elastic constants. A centrally
placed soundpost only significantly perturbs symmetric
shell modes.

As already illustrated above, the most important fea-
ture is the strong increase in frequency of the /- breath-
ing mode. This first crosses the frequency of the cbr
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mode with a small amount of veering and splitting of
mode frequencies indicating an inherent coupling be-
tween the bending and chr mode. The frequency then
continues to rise, approaching and otherwise crossing the
initially higher frequency b/+ bending mode. In the
cross-over region one again observes the formation of the
BI- and B/+ modes observed on increasing the internal
cavity pressure.

Figure 8 illustrates the strong dependence of the low
frequency mode frequencies and interactions on shifting
the soundpost along the central axis. By shifting the sound
post over relatively large distance both below and above
the central bridge position, one can identify separate non-
interacting lower and upper bout breathing modes, which
cross without any significant veering or splitting, both of
which are coupled to the bending mode, which is scarce-
ly affected by soundpost position. As the centrally placed
soundpost is moved along the length, the lower
and upper bout breathing mode frequencies change in
opposite directions, as the areas in which they are con-
strained to vibrate increase and decrease. At a given posi-
tion — about a cm behind the bridge, their frequencies
would coincide. However, close to the bridge the lower
bout breathing mode is lower in frequency than the upper
bout mode,

For the violin, only the B/- and B/+ and sometimes
the CBR modes radiate strongly in the monopole signature
mode regime, though B2 and other higher frequency
modes can introduce additional weak resonant features.
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Figure 8. Influence on mode frequencies of shifting
the soundpost along the central axis.

The influence on the frequencies of the low-lying
modes, on displacing the initially centrally placed sound
post away from the central axis is illustrated in figure 9.
As described above, this results in a significant decrease in
the breathing mode frequency, but only has a small influ-
ence on the bending mode. However, as the b/- breathing
mode frequency crosses the chr mode there is a significant
veering of the modes describing their coupled vibrations,
implying quite a strong coupling between them.
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At present, the physical origin of the coupling involved
between the breathing and chr component modes is not
understood, but is likely to be a factor in determining why
the CBR mode of the assembled instrument makes a signif-
icant contribution to the radiated sound in some instru-
ments, but not in others.
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Figure 9. The influence of offsetting a central-
ly placed sound post from the central axis.

The added influence of anisotropy, bass bar, finger-
board-neck assembly and coupled air modes will be de-
scribed in a later paper, but do not significantly change the
predictions symmetries and coupling interactions in any
significant way.

8.SUMMARY

A wave mechanical model to describe and explain the
vibrational modes of all members of the violin family has
been introduced. The model is based on finite element
computer simulations of the generic properties of the
modes of vibration of thin-walled, doubly-arched, guitar
shaped, shallow, box-like shell structures. The connection
of such modes to the free plate modes had been demon-
strated, in addition to their dependence on rib-coupling,
the f~holes, Helmholtz cavity resonance, and sound post
strength and position.
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