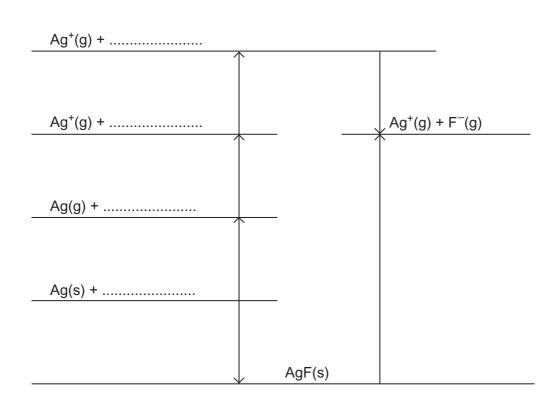
Section A

Answer all questions in the spaces provided.

1 (a)	Write an equation for the process that has an enthalpy change equal to the eleaffinity of chlorine.	ectron
	,	[1 mark]


1 (b)	In terms of electrostatic forces, suggest why the electron affinity of fluorine has a
	negative value.

[2 marks]

1 (c) (i) Complete the Born–Haber cycle for silver fluoride by adding the missing species on the dotted lines.

[3 marks]

1 (c) (ii) Use the cycle in Question 1 (c) (i) and the data in **Table 1** to calculate a value, in kJ mol⁻¹, for the bond enthalpy of the fluorine–fluorine bond.

[2 marks]

Table 1

Enthalpy change	Value / kJ mol ^{−1}
Enthalpy of atomisation for silver	+289
First ionisation energy for silver	+732
Electron affinity for fluorine	-348
Experimental enthalpy of lattice dissociation for silver fluoride	+955
Enthalpy of formation for silver fluoride	-203

Question 1 continues on the next page

1 (d)	A theoretical value for enthalpy of lattice dissociation can be calculated using a perfect ionic model.
	The theoretical enthalpy of lattice dissociation for silver fluoride is +870 kJ mol ⁻¹ .
1 (d) (i)	Explain why the theoretical enthalpy of lattice dissociation for silver fluoride is different from the experimental value that can be calculated using a Born–Haber cycle. [2 marks]
	[Extra enced
	[Extra space]
1 (d) (ii)	The theoretical enthalpy of lattice dissociation for silver chloride is +770 kJ mol ⁻¹ .
	Explain why this value is less than the value for silver fluoride. [2 marks]
	[Extra space]
	[Extra space] 12

2 Table 2 shows some enthalpy change and entropy change data.

Table 2

	ΔH / kJ mol $^{-1}$	$\Delta S/J K^{-1} mol^{-1}$
$AgCl(s) \longrightarrow Ag^{+}(g) + Cl^{-}(g)$	+905	
$AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$	+77	+33
$AgF(s) \longrightarrow Ag^{+}(aq) + F^{-}(aq)$	-15	to be calculated
$Ag^+(g) \longrightarrow Ag^+(aq)$	-464	

	3 (3)			
2 (a)	Define the term enthalpy of hydration	of an ion.		[2 marks]
2 (b)	Use data from Table 2 to calculate a vachloride ion.	alue for the enthalpy		e [2 marks]
2 (c)	Suggest why hydration of the chloride i		process.	[2 marks]
				4.

2 (d)	Silver chloride is insoluble in water at room temperature.
	Use data from Table 2 to calculate the temperature at which the dissolving of silver chloride in water becomes feasible. Comment on the significance of this temperature value. [4 marks]
	Calculation of temperature
	Significance of temperature value
2 (e)	When silver fluoride dissolves in water at 25 °C, the free-energy change is –9 kJ mol ⁻¹ .
	Use this information and data from Table 2 to calculate a value, with units, for the entropy change when silver fluoride dissolves in water at 25 °C. [3 marks]
	[o marko]

13

3		This question is about some Period 3 elements and their oxides.	
3	(a)	Describe what you would observe when, in the absence of air, magnesium is heate strongly with water vapour at temperatures above 373 K. Write an equation for the reaction that occurs.	:d
		[3 ma	arks]
		Observations	
		Equation	
3	(b)	Explain why magnesium has a higher melting point than sodium. [2 magnesium 1 magnesium 2 magnesium 2 magnesium 3 magnesium 3 magnesium 4 magnes	arks]
		[Extra space]	
3	(c)	State the structure of, and bonding in, silicon dioxide. Other than a high melting point, give two physical properties of silicon dioxide that	are
		characteristic of its structure and bonding. [4 ma	arks]
		Structure	
		Bonding	
		Physical property 1	
		Physical property 2	
			e

3 (d)	Give the formula of the species in a sample of solid phosphorus(V) oxide. State the structure of, and describe fully the bonding in, this oxide. [4 marks]
	Formula
	Structure
	Bonding
3 (e)	Sulfur(IV) oxide reacts with water to form a solution containing ions.
	Write an equation for this reaction. [1 mark]
3 (f)	Write an equation for the reaction between the acidic oxide, phosphorus(V) oxide, and the basic oxide, magnesium oxide. [1 mark]

Turn over for the next question

4	Consider the following reaction scheme that starts from aqueous [Cu(H ₂ O) ₆] ²	⁺ ions.
	$\begin{array}{c} \text{yellow/green solution} & \text{Reaction 4} & \text{Reaction 1} & \text{Reaction 2} \\ & \longleftarrow & \text{Equation 2} & \text{Pale blue } & \longrightarrow \\ & & \text{precipitate} & \longrightarrow \\ & & \text{Reaction 3} & \\ & & \text{green-blue precipitate} & \end{array}$	deep blue solution
	For each of the reactions 1 to 4, identify a suitable reagent, give the formula copper-containing species formed and write an equation for the reaction.	of the
4 (a)	Reaction 1	[3 marks]
	Reagent	
	Copper-containing species	
	Equation	
4 (b)	Reaction 2	[3 marks]
	Reagent	
	Copper-containing species	
	Equation	
4 (c)	Reaction 3	[3 marks]
	Reagent	
	Copper-containing species	
	Equation	

12

4 (d)	Reaction 4 [3 marks]	
	Reagent	
	Copper-containing species	
	Equation	

Turn over for the next question

9

Table 3 shows some standard electrode potential data.

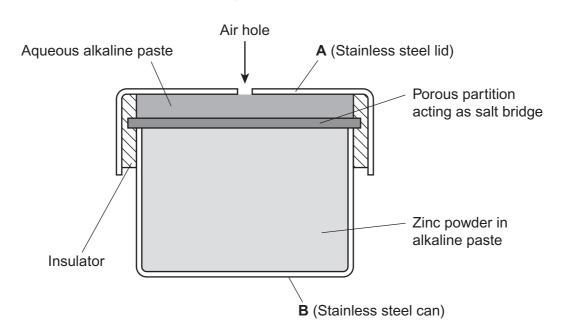
Table 3

	E [⊕] /V
$ZnO(s) + H2O(I) + 2e- \longrightarrow Zn(s) + 2OH-(aq)$	-1.25
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
$O_2(g) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(aq)$	+0.40
$2HOCl(aq) \ + \ 2H^+(aq) \ + \ 2e^- \longrightarrow \ Cl_2(g) \ + \ 2H_2O(I)$	+1.64

5	(a)	Give the conventional representation of the cell that is used to measure the selectrode potential of iron as shown in Table 3 .	standard [2 marks]
5	(b)	With reference to electrons, give the meaning of the term reducing agent.	[1 mark]
_			
5	(c)	Identify the weakest reducing agent from the species in Table 3 .	
		Explain how you deduced your answer.	[2 marks]
		Species	
		Explanation	

5 (d)	When HOCl acts as an	oxidising agent,	one of the a	atoms in the molecule is reduced.
5 (d) (i)	Place a tick (✓) next to	the atom that is r	educed.	[1 mark]
				[1 mark]
		Atom that is reduced	Tick (✓)	
		Н		
		0		
		Cl		
5 (d) (ii)	Explain your answer to of this atom.	Question 5 (d) (i)	in terms of	the change in the oxidation state [1 mark]
				[1 mark]
5 (0)	Liging the information of	ivon in Table 3 d	oduco an o	quation for the rodey reaction that
5 (e)	would occur when hydr			quation for the redox reaction that [2 marks]
				[2 marks]
	Quest	tion 5 continues	on the nex	t page

5 (f) Table 3 is repeated to help you answer this question.


Table 3

	E [⊕] /V
$ZnO(s) + H2O(I) + 2e- \longrightarrow Zn(s) + 2OH-(aq)$	-1.25
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
$O_2(g) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(aq)$	+0.40
$2HOCl(aq) \ + \ 2H^{+}(aq) \ + \ 2e^{-} \longrightarrow Cl_{2}(g) \ + \ 2H_{2}O(I)$	+1.64

The half-equations from **Table 3** that involve zinc and oxygen are simplified versions of those that occur in hearing aid cells.

A simplified diagram of a hearing aid cell is shown in Figure 1.

Figure 1

5 (f) (i) Use data from Table 3 to calculate the e.m.f. of this cell.	
--	--

[1 mark]

A november =		

5 (f) (ii)	Use half-equations from Table 3 to construct an overall equation for the cell reaction. [1 mark]
5 (f) (iii)	Identify which of A or B , in Figure 1 , is the positive electrode. Give a reason for your answer. [2 marks]
	Positive electrode
	Reason
5 (f) (iv)	Suggest one reason, other than cost, why this type of cell is not recharged. [1 mark]
	Turn over for the next question

6		Hydrogen-oxygen fuel cells are used to provide electrical energy for electric r in vehicles.	notors
6	(a)	In a hydrogen-oxygen fuel cell, a current is generated that can be used to dri electric motor.	ve an
6	(a) (i)	Deduce half-equations for the electrode reactions in a hydrogen—oxygen fuel	cell. [2 marks]
		Half-equation 1	
		Half-equation 2	
6	(a) (ii)	Use these half-equations to explain how an electric current can be generated	[2 marks]
6	(b)	Explain why a fuel cell does not need to be recharged.	[1 mark]
6	(c)	To provide energy for a vehicle, hydrogen can be used either in a fuel cell or i internal combustion engine.	
6	(c)	To provide energy for a vehicle, hydrogen can be used either in a fuel cell or i internal combustion engine. Suggest the main advantage of using hydrogen in a fuel cell rather than in an	n an
6	(c)	To provide energy for a vehicle, hydrogen can be used either in a fuel cell or i internal combustion engine.	n an
6	(c)	To provide energy for a vehicle, hydrogen can be used either in a fuel cell or i internal combustion engine. Suggest the main advantage of using hydrogen in a fuel cell rather than in an	n an ı internal
6	(c)	To provide energy for a vehicle, hydrogen can be used either in a fuel cell or i internal combustion engine. Suggest the main advantage of using hydrogen in a fuel cell rather than in an	n an ı internal

(d)	Identify one major hazard associated with the use of a hydrogen–oxygen fue a vehicle.	
		[1 mark]
	Turn over for the next question	

Section B

Answer all questions in the spaces provided.

- 7 The characteristic properties of transition metals include coloured ions, complex formation and catalytic activity.
- 7 (a) Consider the chromium complexes P and Q.

$$\begin{array}{ccc} [Cr(H_2O)_6]^{3+}(aq) & \longrightarrow & [Cr(H_2O)_5Cl]^{2+}(aq) \\ \text{red-violet} & & \text{green} \\ \textbf{P} & \textbf{Q} \end{array}$$

Explain, with reference to oxidation states and electron configurations, why the chromium ions in complexes **P** and **Q** contain the same number of d electrons. You should **not** consider the electrons donated by the ligands.

Explain, in terms of electrons, why the complexes are different colours. (You are not required to explain why the observed colours are red-violet and gree [6 r	en.) narks]

7 (b)	7 (b) Write an equation to show how the $[Co(NH_3)_6]^{2+}(aq)$ ion reacts with 1,2-diaminoethane. Explain the thermodynamic reasons why this reaction occurs.				
	[5 marks]				
	Question 7 continues on the next page				

7 (c)	The toxic complex cisplatin is an effective anti-cancer drug because it reacts DNA in cancer cells, preventing cell division.	with the
7 (c) (i)	Draw the displayed structure of cisplatin. On your structure, show the value of one of the bond angles at platinum. State the charge, if any, on the complex.	[3 marks]
7 (c) (ii)	When cisplatin is ingested, an initial reaction involves one of the chloride ligareplaced by water. Write an equation for this reaction.	nds being [1 mark]
7 (c) (iii)	Suggest how the risk associated with the use of this drug can be minimised.	[1 mark]

Explain, with the aid of equations, how and why vanadium(V) oxide is used in the Contact Process.
[4 marks]

20

Turn over for the next question

8	A student carried out an experiment to find the mass of FeSO ₄ .7H ₂ O in an impure sample, \mathbf{X} . The student recorded the mass of \mathbf{X} . This sample was dissolved in water and made up to 250 cm ³ of solution. The student found that, after an excess of acid had been added, 25.0 cm ³ of this solution reacted with 21.3 cm ³ of a 0.0150 mol dm ⁻³ solution of K ₂ Cr ₂ O ₇
8 (a)	Use this information to calculate a value for the mass of $FeSO_4.7H_2O$ in the sample of \mathbf{X} .
	[5 marks]

8 (b)	The student found that the calculated mass of FeSO ₄ .7H ₂ O was greater than the actual mass of the sample that had been weighed out. The student realised that this could be due to the nature of the impurity.	
	Suggest one property of an impurity that would cause the calculated mass of FeSO ₄ .7H ₂ O in X to be greater than the actual mass of X . Explain your answer.	
	[2 marks]	

END OF QUESTIONS