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PREFACE

   This book was written for the commemoration of the authors’ research works toward spaceplane, Authors have been conducting Japan’s Spaceplane program at National Aerospace Laboratory since early 1990’s, with the vehicle concepts focused on the airplane-like space vehicle powered by airbreathing rocket combined cycle (ARCC) engines.  
Single-Stage-To-Orbit (SSTO) vehicle was the leading reference concept.

 For SSTO vehicle to be feasible, development of the high performance propulsion system is of key ssues. With these objectives in minds, we had proposed the novel concept on the propulsion system ,continuous from low flight speed to the high flight speed regime based on the non-Brayton cycle. As compared to the Rocket-Based Combined Cycle (RBCC) propulsion system, ARCC’s unique features are on minimizing the variable geometries as possible.

Prof.Dr. Tatsuo Yamanaka, National Yokohama Unversity (retired)
Prof.Dr.Masataka Maita, Japan Aerospace Exploration Agency JAXA
Chapter 1
INTRODUCTION
   Eugen Saenger (1905-1964) is the first engineer to have a dream for designing the space transportation system (STS) as an aircraft like for takeoff, accelerate, cruise, and landing1.1. The first STS was launched as an expendable multi-staged rocket in 1957 for the International Geophysical Year (IGY) by the former Soviet Union. Many space transportation systems have been developed by many nations and unions since that time. All of them were, however, expendable multi-staged rockets, except the U.S. Space Shuttle. The U.S. Space Shuttle (1982- ) is a partly reusable multistage rocket and the Orbiter is designed to return to the landing site as a falling glider. The design concept of the U.S. Space Shuttle was deeply influenced the concept of Sanger. Therefore, the dream of Sanger has not yet been realized.

   The news of February 26, 1986 astonished the author. The news reported that the U.S. President Reagan mentioned “New Orient Express” that was to fly to Tokyo from Texas in two hours and to go and back to the Space Station as an aircraft, in his 1986 State of the Union message. The actual program was called the National Aerospace Plane (NASP) program, which was a joint U.S. Air force-NASA initiative that was seeking to develop the technologies of hypersonic flight. The goal of the NASP was to build and fly an experimental airplane, X-301.2, such as the x-aircraft of old – X-1, X-2, ---, X-15, and the like – this one was to explore the frontiers of flight, so as to research findings that were not otherwise attainable.

   Here, introducing the author’s back grounds, the author intends to describe the personal experience with the related technologies. The author graduated from University of Tokyo, Faculty of Aeronautics in 1957, and the major specialty was propulsion of aero engine and rocket engine. From 1957 to 1960, the author worked in Japan Air Lines Co. and Mitsubishi Heavy Industries Nagoya Work as an aero engine engineer of jet engine, and since 1960 moved to the former National Aeronautical Laboratory (later National Aerospace Laboratory; NAL) by the invitation of the author’s university day’s professor Fujio Nakanishi (The then Director General of NAL) to start research works of jet engine.     
   The Space Activities Commission reported a policy to the Prime Minister in 1962, for developing the national STS to launch the communication satellite. According to the policy, the National Aeronautical Laboratory changed the name into the National Aerospace Laboratory, and simultaneously the department of Rocket Propulsion was newly established in the NAL. The author moved to the new department and worked for constructing newly a LO2/Kerosene test stand in the Liquid Rocket Laboratory. For one year from 1964 to 1965, the author stayed as a graduate student in New Mexico State University, Department of Mechanics, on the former Science and Technology Agency’s scholarship together with the NASA International’s, and performed experimental research of the shock wave generated by air injection into the supersonic flow. 

   The author returned to Japan in August 1965, and found that the national space rocket program was changed of its configuration into the multistage solid rocket from liquid rocket. The development and procurement of the systems were in those days conducted by the Department of Space Development in the Science Technology Agency and the related research works were performed in the NAL. The development of thrust vector control technology for the solid rocket was, however, the urgent issue. The author became the charge for research and development of SITVC (Secondary Injection Thrust vector Control) in both organizations of the NAL and Department of Space Development. In 1969, Japan decided to establish a new organization called National Space Development Agency (NASDA) and simultaneously to import Delta Rocket technologies (Japan’s launcher name: N1) from Boeing Co. to the NASDA. In the early days of N1 development, the NASDA required a High Altitude Test Stand (HATS) for the second stage engine LE3. The author was deeply involved the construction specifically the steam ejector system. The author’s experiences of the SITVC and the HATS ejector system during this time-period has assisted very much to develop the new concept of airbreathing rocket combined cycle engine mainly described in this book.

   The U.S. President Mr. Reagan’s announcement of the initiative for the NASP impacted seriously Japan. It was reported like that the program would develop the succeeding vehicle of the U. S. Space Shuttle as a STS for the International Space Station, of which configuration should be a Single-Stage-To-Orbit (SSTO) taking-off and landing like an aircraft from and to the conventional airport by reducing the operational cost to 1/100 and increasing the mission safety to one hundred times. Many people (most of them were journalists) asked me what the NASP was because the author was the director of the Space Technology Research Group of the NAL and he was a member of the Japan’s Space Activities Commission of the Department of the Japanese International Space Station Program. The author was also astonished because that the author’s knowledge in these days was that a SSTO could be only feasible by the nuclear rocket using hydrogen as propellant. The rocket would be a huge size and the safety issues of the radioactive products would induce serious problems to the earth. The use of airbreathing jet engine based on the Brayton cycle could not be viable for the SSTO. However, the U.S. had shown the success of the presidential goal for which most of the world could not believe to be realized in the Apollo Program. These results confused the author.

The then Assistant Professor Nobuhiro Tanatsugu (the Former Institute of Space and Astronautical Science) returned from DLR (Deutsche Forschungsanstalt fur Luft- und Raumfahrt) Stttgart with a minute book of the U.S. Congress concerning with the NASP program and lists of the European supersonic and hypersonic wind tunnels collected by the Germany. Professor Makoto Nagatomo (Institute of Space and Astronautical Science) asked me to kick off a skunk team to study a concept of Japan’s informal aero-space vehicle based on the conceptual study of an Air-Turbo-Ram (ATR) jet engine which was already requested to an engineer of Ishikawajima Harima Industries, Tanashi Work; Tsuyoshi Hiroki. The author immediately accepted this proposal and asked Mr. Toshio Masutani (Director of Space Programs, Mitsubishi Heavy Industries), Mr. Hiroki Isozaki (Director of Aircraft Design, Kawasaki Heavy Industries) and Mr. Kenichi Makino (Executive of Aircraft Division, Fuji Heavy Industries) for supporting the skunk team job without finance. They willingly consented to the author’s request. The members of the skunk team was those Mr. Yuichi Honda and Mr. Masutani from MHI, Mr. Isozaki from KHI, Mr. Kouhei Tanaka from FHI, Mr. Hiroki from IHI, Professor Nagatomo, Assistant Professors Tanatsugu and Yoshifumi Inatani from ISAS and the author from NAL. Based on the performance calculation of Mr. Hiroki for the ATR engine and mass estimation program of NASA report, Dr. Inatani studied a conceptual design of Two-Stage-To-Orbit (TSTO) vehicle, to which the members presented technical comments. After several meetings, an unofficial preliminary report was completed in English by the author. The copies of the report were distributed to the abroad specialists who were acquaintances of the author’s and Professor Nagatomo’s. The report was a very preliminary one, and many problems to be studied further, however, the author believed that this was the first Japan’s STS concept with the airbreathing engine and it would inform to the world the Japan’s interest in the U.S. NASP program. 

Soon after, an invitation letter came to the author from Professor David. C. Webb, University of North Dakota, which told that he was planning an international conference of hypersonic flight and asked the author to send a Japanese delegation to the conference. Professor Webb was a member of the President Reagan’s Space Policy Commission. Therefore, the author decided to participate to the conference with several papers. Japan had the above stated preliminary study, and further, ISAS was preparing to start the ATR experiment, NAL Kakuda Branch studied ramjet engines and was preparing to construct the SRAM jet engine test facility, and some people of NASDA started the study of mini-Shuttle by the H2 launcher which was in the developing phase. The conference was held at University of North Dakota, Grand Folks, September 20-23, 1988, [The First International Conference on Hypersonic Flight in the 21 Century]. The author was selected as a Founding Member of the International Hypersonic Research Institute, Department of Space Studies – University of North Dakota.

From 1989, NASP Office sponsored the International Aerospace Planes Conference at every year and the author was invited to be the program member of the conference and to present the review of Japan’s hypersonic research activities. The author’s interest was mainly in the engines which were being carried out by the NASP. Since the first conference at Grand Folks, the contents of NASP’s engine study have been in highly classified issues of the U.S. government. Since 1993, the conference has been continued as [International Space Planes and Hypersonic Systems and Technologies Conference] under the sponsorship of the American Institute of Aeronautics and Astronautics (AIAA) because the U.S. government disassembled the NASP office.

During these time periods, NAL constructed a Ram/Scram Test facility, a hypersonic Shock Tunnel and renewed the old hypersonic Wind Tunnel and the Super Computer. NASDA constructed an Arc-Heated Thermal Test Facility. The author retired NAL and had a new job at Yokohama National University in 1994. During 1994-2001, the goal of the U.S. for the future space launch system had not changed; however, the related research and development activities had hardly obtain the technological direction for a fully reusable SSTO vehicle1.3. NASA finally decided not to continue the research and development activities for the reusable STS in March 2001. The references1.3-1.7 show the contents of the U.S. activities performed since the NASP program based on the airbreathing propulsion systems. Those systems were turbine-based combined cycle engine and rocket-based airbreathing combined cycle engine with ram/scram jet engine1.4-1.5. Since the fully reusable all-rocket SSTO (e.g. VentureStar) had failed because of the composite cryogenic tank of the NASA X-33, TSTO has been newly studied in various places. TSTO is a technologically acceptable concept because the required propellant weight fraction to the Gross Lift-Off Weight (GLOW) or Gross Takeoff Weight (GTOW) is much lower than for the all-rocket SSTO. The propellant weight fraction of the all-rocket TSTO (fly back booster + expendable launch vehicle) is essentially of the same order as for fully expendable multi-stage rocket vehicles. However, the launch cost will be reduced to about one third of that for fully expendable rocket vehicles1.6. If airbreathing power plants such as Turbo, Rocket Based Combined Cycle (RBCC), Ram and SCRAM jet are integrated to the fly back booster, the propellant weight fractions are about by 10% lower than for an all-rocket TSTO. These values, however, do not support heavy payloads more than five tones because of the limitation of GTOW1.7 and of a large enough reliability for human-rated design. Therefore, the TSTO vehicle does not improve the launch cost. It must be noted that, if the commercial, governmental and scientific satellites market size increases much more than the current post Iridium of Motorola Inc., expendable rockets will have the costs of a partially reusable TSTO, by the logarithmic diminution law of mass production and by mature manufacturing and operations.

During five years in Yokohama National University, the author had an enough time to think over the various problems of the viable SSTO vehicle, the specifically propulsion system. Those are such that a SSTO vehicle is only a solution to reduce the operational cost and to increase the safety. The required propulsion system should be based on the rocket engine and on the airbreathing engine. For lower flight speeds engine, the turbojet engine and the LACE (Liquefied Air Cycle Engine) had been generally supposed for the SSTO vehicle. The cooling capacity of the cryogenic hydrogen is used to produce liquid air from the atmosphere in the LACE so that it can be mechanically compressed easily and injected together with the now gaseous hydrogen into a rocket engine. For higher flight speeds engine the Ram/Scram jet engine is supposed to be integrated, however; the airflow should be changed the duct from the lower to the higher one. In a hypersonic flight, the vehicle is exposed very hard thermal loads, which induce severe thermal protection problems specifically to the moving parts. The author believes that the SSTO vehicle with multi-engine is conceptually impractical.

The conventional airbreathing engines are called the turbojet, the ramjet, and the scram jet engines which are based the Brayton cycle. The turbojet engine is required the geometrically variable inlet for transonic to supersonic flights, because the surging limit of the mechanical compressor expands to a higher flight Mach number. The limit of the turbojet engine is supposed to be the flight Mach number of about 3.5.  The ramjet engine requires also a geometrically variable inlet such that the inlet throat to reduce the total pressure loss due to the induced normal shock as well as the exhaust nozzle. The maximum flight speed limit is determined by the real gas effect of the air, i.e., the dissociation due to the high static temperature of the air, which induces combustion problem. Therefore, the supersonic combustion is required for burning the air with fuel in a lower static temperature. The transition from the Ram to the Scram is one of the concerning problem, because the starting of the supersonic combustion is another technological problem. The Scram jet engine is also required a geometrically variable inlet and diffuser to acquire the required static pressure for the combustion. The impracticality of the geometrically variable configuration for very high speed flight is previously stated.

Many studies of the Scram jet engine have been conducted in the world, based on the Brayton cycle; however, the flight speed limit of the hydrogen fueled Scram jet engine is supposed to be lower than the flight Mach number of about 12. Much hydrogen fuel injection than the equivalent value of fuel/air ratio is considered to extend the operational flight Mach number beyond about 8, where the mechanics can not be explained by the Brayton cycle. The extension of the flight speed limit to a higher flight Mach number is the common issue of the Scram jet engine specialists as well as the acceleration capability of the vehicle. Even if the limit would be extended to Mach number 14-15, the vehicle powered by the Scram jet engine could not achieve the mission capability by the SSTO vehicle as well as by the TSTO as previously stated. The flight speed limit of the conventional Scram jet engine is based on the Brayton cycle itself. The thrust of the Brayton cycle is generated by the released chemical energy of the air/fuel combustion; however the ratio of the released energy to the total energy of the incoming air energy becomes lower and lower depending on the flight speed because the released energy is determined by the incoming air mass flow rate. The incoming air mass flow rate does not increase with the increase of the flight speed in the high flight Mach numbers without a geometrically variable inlet and variable diffuser. The infeasibility of the geometrically variable engine concept is already discussed. The momentum loss of the engine main stream increases with the increase of the flight Mach numbers due to the drags of the struts and due to the friction on the internal walls. The energy loss also increases due to the convection and radiation heat transfers. If the loss becomes equivalent to the released chemical energy of the fuel/air combustion, then, the thrust can not be expected. The limit of this mechanism will appear at about flight Mach numbers 12-14. We have to solve this problem of the propulsion system to enable a SSTO with an adequate amount of mission payloads.

The author has had a belief such that the propulsion system of a STS vehicle should be simple and a viable reusable SSTO vehicle with highly safety could be provided with airbreathing engine. The flight speed limit of the Brayton cycle engine should be solved by some mechanically simple methodology. The LO2/LH2 rocket engine has been used as higher performance engines for the various STSs since the Pratt & Whitney had developed the RL-10 for NASA in 1959. The RL-10 is one of the most reliable engines and has a highly reusability on the ground test. If a LO2/LH2 rocket engine of the RL-10 (the thrust at sea level: about 60 kN, O/F=5) class is supposed to be an igniter of the Scram jet engine, the rocket engine will play various roles of a huge feeder for hydrogen fuel and energy sauce of the rocket engine combustion as well as momentum of the rocket exhaust gas stream to the air/fuel combustor. This concept may solve one of the conventional Scram jet engine problems for application to a SSTO. Based on the concept, the author began to study the flow analysis of an engine concept for low flight speed from the static condition to transonic flight speeds. The most important hints were those of the author’s experiences of the SITVC and the steam ejector facility for the HATS. The rocket exhaust gas, if it is an under-expanded, induces a rocket plume with normal shocks of compression and re-expansion in a duct for exhausting to the atmospheric pressure. Forming the jet-boundary of the rocket plume, the jet-boundary inhales the surrounding atmospheric air into the duct due to the over-expanded jet boundary and increasing the static pressure of the duct by the compressions through normal shocks, i.e. the ejector effect. The jet-boundary separates the rocket flow from the ambient atmospheric flow except the very narrow air entraining shear layer due to the viscous force before the first normal shock (Mach disk). The mixing of the rocket flow and the air flow will occur in the downstream of the first Mach disk and the following normal shocks will disappear during the mixing process. The excess hydrogen fuel of the rocket exhaust gas will burns during the mixing process with the oxygen of the air flow due to the very hot rocket exhaust gas. When the fuel/air combustion occurs during the mixing zone the static pressure will increase during the combustion process in a constant area duct. If the increased static pressure does not flow backward in these low flight speeds, a low speed airbreathing engine may be feasible as fluid-mechanically similar to the Ram jet engine for the supersonic flight. This phenomenon depends on the stability of the location of the first Mach disk.

When the author begins to study the above stated engine concept1.8-1.11 it was informed that the similar engine concepts had been studied as the ejector ramjet and the rocket based combined cycle (RBCC)1.12 engines. The ejector ramjet engine is required a geometrically variable configuration for the inlet and mixing and the most important point is that the induced normal shocks were not described as well as the stability. If the supersonic ejector flow approaches the critical condition after (according the concept) mixing with the secondary air flow at the internal exit plane to the fuel/air combustion chamber, the operational condition of the engine will be limited to a very narrow flight conditions and the geometrically variable inlet and the fuel/air combustor are stringently required. Further, the so called the bypass ratio will also be limited to a lower value specifically for the low flight speeds. The study of the stability of the first Mach disk will change the base of the ejector concept and that is the most important point to be described in this book (Chapter 2). 

The concept of the Aerojet Strutjet1.12 engine is one of the most similar ones with this book. The differences between both concepts are found as followings. The airbreathing phases of the Aerojet Strutjet are divided in four modes based on the flight Mach numbers. The Ducted-Rocket Mode is from Takeoff to Mach 2.5. The Ram Mode is from Mach 2.5 to 5. The Scram Mode is from Mach 5 to 8.0. The Scram/Rocket Mode is from Mach 8 to 10 or 11. The Ducted Rocket Mode, however, the ejector effects of the rocket plume are limited due to the very high combustion pressure of the rocket engine. The paper also did not describe any of the roles of the induced Mach disk of the rocket plume, which are very important from a point of view concerning with the thermodynamic cycle of the Ducted Rocket Mode of the Aerojet Strutjet. The Ram Mode and the Scram Mode are based on the conventional Brayton cycle. The conventional Ram and Scram Mode operations of the Aerojet Strutjet have the limits of the flight speeds and do not use the benefits of the previously stated rocket based combined cycle for the additions of the momentum and the energy to the air flow which assist to extend the flight speed limits. The most important differences are the optimization of the ejector effect of the rocket plume because that the too high pressure of the rocket engine combustion chamber will block the airbreathing capability. The Aerojet Strutjet did not describe the role of the normal shocks of the exhaust gas flow for stabilizing the recovered static pressure of the ingested air flow without the variable flow area. The author supposes that the Scram/Rocket Mode of the Aerojet Strutjet decreases the performance compared with the pure rocket engine attached to the external part of the vehicle, due to the incoming air flow. All these problems are discussed in the Chapter 2 of this book.

   Most of the contents of this book have been published in the references1.13-1.17. The first paper1.13 was the report conducted as a technical advisor of the NAL under the invitation of Dr. Masataka Maita. A basic computation ARCC engine program for the low flight speeds was originally studied by the students for their Master’ theses, under the author’s guidance at the Graduate School of Engineering of the Yokohama National University, and it were lately refined by the author. A computation ARCC engine program for the high flight speeds was developed by the author taking into account of the boundary layer effects. The low flight computation engine program was modified by the author adding the boundary layer effects1.14. For the papers1.13, 1.14 many questions have been given to the author, most of them were related the roles of the rocket plume. The paper1.16 was published to be much clearer the author’s concept of the propulsion system as well as the related theories for the analyses. The Chapter 2 of this book describes much more detailed concept and the related theories for the analyses specifically easy understandable for the beginners of the compressible thermodynamic flows and chemical reactions for the combustion processes.

   With advance of the engine computation programs, various problems of the ARCC engine powered vehicle have been the key issues not only for the vehicle design but also for the development of the engine computation programs specifically with respect to the requirements from the vehicle. For these issues, various knowledge are required of the configuration and planform, aerodynamics from low speed flight to hypersonic including interactions with the free jet-boundary of the single-sided external nozzle flows, and flight performance including the attitude control and the guidance of the flight trajectory. The author finally started to develop the flight simulation computation program alone by himself. The first paper1.15 was a preliminary one specifically for the aerodynamics; however it showed good suggestions for the transonic flight of the ARCC engine computation program. Improving the low flight speed engine computation program and taking into account of the interference between the single-side external nozzle flow and the free air flow, a much sophisticated flight simulation computation program was developed1.17. Summarizing these studies, the design of the ARCC engine powered SSTO vehicle are stated in the Chapter 3 as Configuration and planform, Wings, Takeoff and Landing, Numerical Vehicle, Mass Properties, and Aerodynamics including Interfering aerodynamics with nozzle exhaust gas flow. The flight dynamics and attitude control of an ascent trajectory are stated in the Chapter 4. The numerical example of an ARCC engine powered SSTO vehicle is discussed in the Chapter 5, specifically for a much slender propulsive lifting body wing complex vehicle. 
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Chapter 2

AIRBREATHING ROCKET COMBINED CYCLE ENGINE
2.1 Introductory Remarks

   The principle of thrust generation is simply stated in aerospace engineering. If a man on a vehicle wants to have a thrust to move, the thrust is easily obtained by throwing back either something on board or surrounding, away. The principle of rocket propulsion is the former case. If the surrounding something is air in the latter case, the air-breathing engine is exactly that for aero-engine, where role of the man is composed of thermodynamic cycle such that air-inlet, air compression, air heating, and acceleration of air by expansion. 

   The objective of this chapter is firstly to describe the features of thrust calculation for ARCC (Airbreathing Rocket Combined Cycle) engine by stating differences from those of aero-engines and rocket engines. Difference of the Brayton cycle from the ARCC is discussed, where the Brayton cycle is a basic cycle of turbojet, ramjet, and scram jet engines. Successively, each process of propulsion system is described by comparing with the corresponding Brayton cycle engine for air-inlet, compression, mixing and burning, and expansion. The calculation of exhaust nozzle flow is required the nozzle geometry and ambient condition, the therefore, the fluid flow description is limited in this chapter to the end of the burner. The nozzle performance is stated about the nozzle expansion flow for a single-sided external nozzle in the Chapter 3, Section 8.
2.2 Engine Thrust

   If the axial thrust of an airbreathing engine is ideally considered as that of an only internal flow (see Fig. 2.2.1), supposing control surfaces by engine inlet and exit, the difference of impulse function is defined as the stream thrust or uninstalled thrust by

F=(peAe+meve)-(p0A0+m0v0)            (2.2.1)

Where pe and p0 are pressures, Ae and A0 are areas, me and m0 are mass flow rates and  ve and v0 are velocities of inlet and exit flows, respectively.　The actual engine is used by integrating a vehicle. The actual thrust to the vehicle is different from Eq. (2.2.1), because the air inlet condition differs from not only by engine mounting configuration but by the vehicle flight conditions. To measure the engine thrust, accordingly, the wind-tunnel test is recently tried by engine-mounted-vehicle model. For the conventional vehicle which engines are installed under the main wings by means of pods, however, if the thrust is calculated by Eq. 2.2.1 and drags due to the engine mounting are added to those of the vehicle, the flight performance of the vehicle will be well described. 
   The ideal axial thrust of a rocket engine is expressed by Eq. 2.2.2, where mp is the mass flow rate of propellants　and Ve is the velocity of exhaust gas. The mp is determined by prc, Trc and A*, and Ve is determined by nozzle expansion ratio, the mean molecular weight and the mean specific heat ratio of the exhaust gas., where prc is the pressure of combustion chamber, Trc is the temperature of combustion, A* is the throat area. It must noted here, that, if the nozzle flow is over expanded to the ambient pressure (pe<p∞), the modification to the separated nozzle flow is necessary for the nozzle wall pressures. If the nozzle flow is under expanded (pe>p∞), the generated thrust is lower than the ideal value. Ground level experiments show that the thrust of partially over expanded nozzle flow is a little higher than those of under expanded, as far as the separation flows are induced, which is supposed due to the growth of boundary layer on the nozzle wall.

                    Frocket = mp × Ve                            (2.2.2)

If an ideal expansion to the ambient pressure is assumed, 

             Ve=( (γRT/M)1/2)rc × [2/(γ-1){1-(p∞/prc)(γ-1)/γ}]1/2         (2.2.3)

where R is the universal gas constant and M is the molecular weight.
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                     Fig. 2.2.1 Schematic of an idealized Airbreathing engine
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Fig. 2.2.2 Schematic of a rocket engine
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Fig. 2.2.3 Schematic of ARCC engine
   The thrust of the ARCC engine is closely related with aerodynamic flow fields around the vehicle, Fig. 2.2.3 shows schematically the related flow fields. The pressure integrations of the ramp, ∬prampnds, and that of the half exit nozzle, ∬pjet-boundarynds, are vectors, and the axial components contribute mainly to drags. Where, pramp and pjet-boundary are static pressures on the ramp and free jet-boundary of the single-sided nozzle exhaust gas flow, respectively, and n is the unit normal vector on the surfaces. In this chapter, the thrust is discussed only for momentum change of the engine internal flow, and the pressure distribution on the vehicle surface as well as the single-sided free jet-boundary will be discussed in the Chapter 3. Then, Fmomentum is defined by Eq. 2.2.3

Fmomentum = m5ve-m1v1     　　　　　　　　　　(2.2.4)

Where, the subscripts 1 and 5 show the engine inlet and internal engine exit, respectively, and ve is the expanded velocity to the ambient pressure. 

2.3 ARCC Engine Geometry and Its Special Features

   The ARCC engine is very simple compared with the Brayton cycle based airbreathing aero engines such as without variable engine geometry for the whole flight speeds of the SSTO airbreathing mission. The requirement of variable geometry for the Brayton cycle engine is due to various mechanisms of engine for various flight speeds. Understanding the various mechanisms of the Brayton cycle engines, an avoiding method is alternately adopted for the ARCC engine. Before discussing the alternate method, the description of the related mechanisms of the Brayton cycle engine is stated.

The Brayton cycle based airbreathing aero engine is generally designed for cruising conditions of a vehicle. The design characteristics of a turbojet inlet vary much depending on whether the inlet is to be flown at subsonic or supersonic speed. In either case, the requirement of the inlet is to provide the incoming air to the mechanical compressor (or fan) face at as far as possible with the minimum loss of the stagnation pressure. Because if normal shock waves are induced in the inlet, the loss of the total pressure of the incoming air flow induces stalls of the fans of the mechanical compressor, these are fatal to the compressor for a high altitude flight. For both supersonic and subsonic flight, modern design practice dictates that the inlet should deliver the air to the fan or compressor face at a Mach number of approximately 0.45. As a result, even for flight in the high subsonic regime, the inlet must provide substantial retardation (diffusion) of the air. It is to be noted that the great difficulty of providing acceptable inlet performance over a wide range (from takeoff to transition flight speed of ramjet mode starting for a turbo-ramjet engine powered spaceplane) interacts with the proper determination of a vehicle’s flight envelope. The necessary geometry and actuation equipment can so increase the vehicle weight that insistence upon a high Mach number capability compromise the vehicle performance at lower Mach numbers.

   The ramjet engine requires a convergent-divergent nozzle (diffuser) to induce normal shock waves in front of air/fuel mixing and burner and an exhaust nozzle for supersonic expansion. The geometry of diffuser must be designed such that a first normal shock may stand as low Mach number region (M>1) as possible to decrease the associated pressure loss, otherwise the stagnation pressure after combustion would be lower than the supersonic expansion to the ambient pressure through the exhaust nozzle (un-starting of ramjet). In order to start the ramjet mode in a lower flight Mach number (which is required to hand over from turbojet mode to ramjet in a very low flight Mach number) and successively to hand over to the scramjet mode, geometrical variations are necessary for diffuser and exhaust nozzle. 

   The scramjet engine does not require any of convergent-divergent diffuser and exhaust nozzle. In the flight conditions of scramjet engine, the stagnation pressure of the incoming airflow is enough high for en expansion to the ambient, however, another diffusing mechanism is required. The purpose of the scramjet diffuser is to increase the static pressure for air/fuel mixing and combustion, because the static pressure of the vehicle flight altitude is very low. The diffusing mechanism of the scramjet engine is generally performed by engine main-flow area contraction, which requires geometry variation. The variable geometry, in these flight speeds, not only increases the vehicle weight but also requires very hard thermal protection technologies such as materials, structures, joints and lubricants, seals and sealants, and actuators. There exist no such technologies in the very high flight Mach numbers.

   The author has supposed a simple engine concept for the SSTO vehicle since he has been involved in the reusable STS program, however, no such concept was found in NAL. Since about 1995 in his Yokohama National University days, the author has imagined a preliminary concept such that a LO2/LH2 rocket engine becomes a huge flame holder as well as an injector of fuel hydrogen for an airbreathing engine, because the conventional LO2/LH2 rocket engine is usually operated by fuel-rich O/F condition and the exhaust gas is surrounded by fuel hydrogen to cool the rocket engine internal walls. Supposing a LO2/LH2 rocket engine is placed in a long duct and the rocket engine combustion pressure is controlled under a condition of fuel-rich O/F, the exhaust plume of the rocket engine will play various roles in airbreathing engine cycle such as pumping the air into the duct (ejector), mixing the incoming air with the outer side fuel-rich exhaust gas by the turbulent shear layer, increasing the pressure through the mixing, conforming the air inlet to the mixing at supersonic through transonic air flow, the diffuser at ramjet mode of the incoming air flow, and the supersonic diffuser at scramjet mode. These hypotheses suggest feasibility of a simple propulsion system of airbreathing rocket combined cycle (ARCC) for the SSTO vehicle from sea-level static to a very high flight speed of a vehicle. 

   In order to testify the hypotheses, the ground-based experiment is the first step. The author has been an adviser of NAL since soon after he moved to National Yokohama University in 1994, however, he has had any methods to perform the intensive experiments. My position of NAL is the adviser to Reusable Launch Vehicle Group of Space Transportation Project Center, which has no related facilities. To perform the related experiments, the concept must be understood by the facilities stuff. The unique methodology available to the author has been only by computer.

   By trying various engine geometries for the relevant flight conditions, the author has developed several kinds of computing programs with my students in Yokohama National University. The computed results suggest the appropriateness of the author’s concept2.3.1-2.3.2. In this section, the detailed concept of the references 2.3.1 and 2.3.2 is described2.3.3. The roles of rocket plume will be described in Section 2.4, specifically comparing with the conventional Brayton cycle airbreathing aero engines.
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Fig. 2.3.1 Schematic of an ARCC engine powered vehicle
   The ARCC engine propulsion system is an integrated system into a vehicle, specifically the under half body from the leading head to the tail, the sketch is shown in Fig. 2.3.1. The longitudinal section of the under half body and the frontal view of the vehicle are shown in Figs. 2.3.2 and 2.3.3. The horizontal section view of the engine is shown in Fig. 2.3.4. A LO2/LH2 rocket engine is integrated into a strut, and the back side of the strut is faced to the exit plane of the rocket nozzle expansion. Fig. 2.3.4 shows an example of three struts, but it must be noted that the number of struts will be determined by vehicle design. The parameters which optimize the number are strengths of strut-rocket structures, the maximum and minimum pressures controllable of rocket engine combustion chamber, the limits of ejector performance of the rocket plume and mixing/combustion of air/fuel, and flight performance, specifically takeoff and acceleration during transonic flight, of a vehicle.
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Fig. 2.3.2 Longitudinal section view of ARCC engine
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Fig. 2.3.3 Frontal view of ARCC engine powered vehicle

   The engine reference station designation scheme employed hereafter for the ARCC engine is schematically given in Fig. 2.3.5, where (a) shows the side view and (b) shows the horizontal section of fluid dynamic control surfaces. Table 2.3.1 is provided below in order to further clarify the reference station.
Table 2.3.1 ARCC engine reference station locations
Reference station              Engine location

   ∞              Undisturbed free stream conditions

    0              Ambient conditions at the leading head and tail

1              Inlet and leading head of strut

2              Exit plane of rocket exhaust gas

3              Initiation of air/rocket-exhaust-gas mixing

4              Initiation of air/fuel combustion

5              Burner or Combustion exit

e              End of external nozzle
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Fig. 2.3.4 Horizontal section view of ARCC engine

   In the conventional high speed airbreathing engine such as ramjet and scramjet, the inlet is defined at the location of leading edge of the under-cowl-panel, but it does not necessarily correspond to the leading head of the strut of the ARCC engine. In this book, however, both locations are defined at the same station for simplicity of analysis. The station 3 depends on the static pressure of the incoming air and the engine operation conditions such as the rocket engine combustion pressure and the rocket nozzle expansion ratio. The station 4 is much more ambiguous because mixing is based on complicated fluid dynamic mechanisms. In the actual state, fuel will be supplied via active coolants of the internal walls, by the fuel injector, through fuel rich rocket exhaust gas, and oxygen also by the rocket exhaust gas due to fuel lean or unburned combustion. In such cases, local ignitions might start soon after station 3. The station 4 is a hypothetical location which distinguishes the mechanical mixing zone from the heating and changing process of the main stream properties by combustion. However, the distinction between mixing and combustion has no effects to the engine performance calculation based on the chemistry, but a little on the growth of the boundary layer. Although the above stated one-dimensional approach can never be perfectly correct, the alternatives are both hopelessly complex and completely unwieldy for reaching a basic understanding build upon fundamental principles of the ARCC engine performance.
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Fig. 2.3.5 ARCC engine reference station numbers and terminologies
   It must be noted here that the air mass flow rate through engine and the flight Mach number are closely related, specifically in high flight Mach numbers. Fig. 2.3.5 shows an air flow at the inlet. An airbreathing engine generates the thrust in direct proportion to the rate at which it is able to capture and process the surrounding atmosphere. In order to produce enough thrust to reach and sustain the mission flight speed, the high speed airbreathing engine must have the ability to collect a large amount of air. If the mass flow rate of air entering into the ARCC engine is given by the expression,

m1 = ρ1V1A1                      　　　　　   (2.3.1)

where A1=b
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   The free stream mass flow per unit area for any flight altitude and Mach number can be calculated fro the following equation,

ρ∞V∞ =ρ∞M∞(
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)∞              　　　　　　 (2.3.2)

   The flight dynamic pressure is given by

q∞ = 1/2ρ∞V∞2 = 1/2γ∞p∞M∞2           　　    (2.3.3)

The flight dynamic pressure is not only directly related with aerodynamic lifts and drags of a vehicle and the structural load limitation of the vehicle but also with the magnitude of the engine thrust. Current aircrafts are generally designed for the maximum q∞ limit of about 1800 psf (0.85 atm); however, some unmanned vehicles are beyond the limitation. The minimum limitation is determined by the allowable minimum static pressure at air/fuel combustion for the Brayton cycle based hypersonic scramjet engine, which will be stated in Section 2.8.

   Generally speaking, in subsonic and transonic flight speeds, A∞≈A1 for very low flight speeds, and A∞>A1, for transonic and low supersonic flight speeds. In the very high flight Mach numbers, however, the oblique shock reduces the mass flow rate per unit area. When a single ramp is supposed for a vehicle, the ramp angle is δb, the mass flow rate of air entering the ARCC engine at a high supersonic speed, Eq. 2.3.1, is expressed by the free stream parameters as,

m1 = ρ1V1A1 =ρ∞V∞A1sin(σ)/sin(σ-δb) = 2q∞ /V∞ •A1 sin(σ)/sin(σ-δb) 

= 2q∞ / [M∞(
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)∞]•A1 sin(σ)/sin(σ-δb)                     (2.3.4)

where σ is angle of oblique shock to incoming flow. The oblique shock angle σ decreases in the higher flight Mach number, therefore, sin(σ)/sin(σ-δb)/ M∞ determines the  mass flow rate of air entering the ARCC engine, which decreases little not inversely to flight Mach number for a constant flight dynamic pressure ascent trajectory. 
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2.4 Comparisons with the Conventional Airbreathing Engines
   The ARCC engine is basically an airbreathing engine viewing from thermodynamics such as turbojet, ramjet and scramjet engines. The differences from them are in processes of air-intake, compression, subsonic and supersonic diffuser, and air/fuel mixing. A lot of papers and books of turbojet and land-gas-turbine engines have been published since 1940’. Many papers had been published mainly during 1950’-1960’ in the U.S. of ramjet and scramjet engines. Since U.S. NASP program2.4.1 in 1986, recent high speed airbreathing propulsion studies have been summarized2.4.2, however, the related studies of rocket-based combined-cycle engines were for very limited engine geometries and operational conditions2.4.3-2.4.5. In this section, it is discussed　its specific features by comparing with the conventional airbreathing engines before describing theories and analyses of the ARCC engine. 

2.4.1 The Governing Fluid Dynamic and Thermodynamic Equations

2.4.1. a General Finite Control Volume Analysis

   Consider the air flow in a duct between the inlet (signifies ( )ei) and outlet (signifies ( )ee) of a single ARCC engine as schematically sketched in Fig. 2.4.1.1, where the geometry is chosen to be suitable for the finite control volume one-dimensional analysis of the ARCC engines. In this duct flow, gases are injected into the stream at the mass rates of flows mrc and wg with the forward components of velocity of injected gases Vrc and Vg, respectively, liquid evaporates into the stream at the mass rate of flow wL with the forward component of velocity liquid VL, heat in the amount Q is added to the stream from external sources, and shearing work through the boundary layer growths along the surfaces Wx and aerodynamic drag work due to the strut Wd are delivered by the stream to external bodies. In the ARCC engine analysis, the external nozzle must be dealt together with aerodynamics of the vehicle; therefore, the control volume is defined here only between the engine inlet and the engine outlet by excluding the external nozzle flow. Since each entering and leaving flow will be treated as one-dimensional, summation over the individual streams is more appropriate to the analysis than integration.

Conservation of mass (Continuity). The equation of conservation of mass for the control volume of Fig. 2.4.1-1 is

ρeiVeiAei+ mrc+wg+wL=ρeeVeeAee                  (2.4.1.1)

Conservation of Momentum. The net force acting on the material within the control surface of Fig. 2.4.1.1 is equal to the increase of momentum flux of the streams flowing through the control surface. Here we consider forces only in the direction of axial flow acting on the control surface of Fig. 2.4.1.1.


[image: image12]
Fig. 2.4.1.1 Geometry and nomenclature for finite control volume one-dimensional analysis

Assuming that the injected gas and liquid streams (wg and wL) are at the control-surface pressure as they cross the boundary layer, the momentum equation is written

pei+(ρeiVeiAei)Vei + mrcVrc +wgVg+wLVL-Wx-D=peeAee+(ρeeVeeAee)Vee  (2.4.1.2)

where Wx is the net external work delivered to outside bodies, D is the aerodynamic force of the strut, and the drag of liquid droplets and filaments are assumed to be negligible because of traveling more slowly than the main stream. The external work includes shaft work, electrical work, and shear work on moving bodies adjacent to the control-surface boundaries. Here, however, only the sear work is considered, then, Wx=Σ∬τwds and τw is the shearing stress exerted on the stream by the walls and the integration is for the whole engine internal surfaces to the engine flow. The τw is given by τw=fρV2/2, where f is the coefficient of friction. The friction coefficient depends on the roughness of the surface and Reynolds number for subsonic flow and the effect of Mach number is added for supersonic flow. Vrc, Vg, and VL are the rocket exhaust velocity, the forward components of the injected gas and liquid cross the control surfaces, respectively。

Conservation of Energy (First Law of Thermodynamics). Only the liquid crossing the control-surface boundary and evaporation within the control-surface is taken into account in evaporating the flux of enthalpy. Changes in temperature of the liquid traveling along with the stream are taken to be the result of external heat exchange to or from the main stream. As the flows, mrc, wg, and wL, mixed with the main stream, pass out of the control-surface, they are assumed to be at the temperature of the latter.

   The energy equation for the flow through the control-surface of Fig. 2.4.1.1 is written, assuming gravity effects to be negligible, as 

ρeiVeiAeih0ei + mrch0re +wgh0g+wLh0v+Q+W+Hpr=ρeeVeeAeeh0ee    (2.4.1.3)

where h0ei = hei+Vei2/2                                         (2.4.1.3-a)

h0rc = hrc+Vrc2/2                                        (2.4.1.3-b)

h0g = hg+Vg2/2                                         (2.4.1.3-c)

h0v = hv-hL+VL2/2                                       (2.4.1.3-d)

here, hv denotes the enthalpy of the evaporated liquid mL at the stream temperature T. Q is the total rate at which heat is added to the control volume stream by conduction or radiation, W is the total external work rate at which the shearing stress and the aerodynamic drag do work, and Hpr is the total heating rate of combustion in the stream, and

h0ee = hee+Vee2/2                                       (2.4.1.3-e)

   Definition of Impulse Function and Stream Thrust. The impulse function is defined by

                     I = pA + ρAV2 = pA(1+γM2)              (2.4.1.4)

For a one-dimensional flow into which no mass is injected and all properties at the inlet and exit planes of a duct flow are known,

                     Sa = I/ma                              (2.4.1.5)

is known as the stream function or mass flow rate specific thrust of air.

   Second Law of Thermodynamics. Application of the second law of thermodynamics is simplified through use of the entropy. For a semi-perfect gas and no changes in chemical composition, the entropy of the main gas stream alone is 

                     ds/cp = dT/T – (γ-1)/γ•dp/p               (2.4.1.6-a)

   More important, however, is the total entropy change of the main stream plus injected gas and evaporated liquid. It may be shown that for unchanged chemical composition.

                  dŝ = ds + (s-sg)•dwg/m + (s-sL)•dwL/m         (2.4.1.6-b)

where dŝ is the total change per unit mass of main gas stream.

   The static entropy, s, is in frequently evaluated because it serves as an effective indicator of the state of the flow. Experience has also shown that constant entropy or isentropic flow is an important (and often best case) baseline from which useful qualitative and/or quantitative comparisons can be made. The another expression of the entropy change for a pure substance is called the Gibbs equation

                  Tds = dh – dp/ρ                           (2.4.1.6-c)

2.4.1. b General Differential Finite Control Volume Analysis
   If we consider the flow in a duct of Fig. 2.4.1.1 between two sections an infinitesimal distance dx apart as shown in Fig. 2.4.1.2, the similar observations can be made for differential control volume analysis as for the finite control volume analysis of Sec. 2.4.1.a. In this element of duct length gas is injected into the stream at the mass rate of flow dmg, liquid evaporates into the stream at the mass rate of flow dmL, heat in the amount dQ is added to the stream from external sources and shearing work is delivered by the stream to external bodies in the amount dWx. If we try the differential control volume one-dimensional analysis for the flow of the ARCC engine (Figs. 2.3.5 and 2.4.1.1), however, several problems must be considered. The first is the treatment of the flow of the early phase of rocket plume. The second is the mixing flow of air and rocket exhaust gas, which is non one-dimensional. The third is process of air/hydrogen-fuel combustion, which is chemical. For the first case, if the entrainment airflow into the exhaust gas flow is neglected because of small effects, the free jet-boundary separates the main air flow and the rocket exhaust gas flow. The free jet-boundary forms area change for each of main and exhaust flow. For the second case, the flow is essentially non one-dimensional. If the mixing and combustion are assumed to be instantly over at the reference station numbers 4 and 5, respectively, each flow analysis between 1 and 2, 2 and 3, 3 and 4, and 4 and 5 is approximately dealt with the differential control volume method. 

   The various physical equations and definitions will be expressed in logarithmic differential form. It will be seen that this procedure allows easy separation of the physical variables.

   Equation of State The pressure-density-temperature relations is

                     p = ρR*T/
[image: image13.wmf]                         (2.4.1.7)

where R* is the universal gas constant, R*=8.314510 J/(mol⋅K), and 
[image: image14.wmf] is the mean molecular weight such as kg/mol. If ρ is expressed by the unit of kg/m3, then, p is expressed by the Pascal unit as Pa/m2. Taking logarithms, we obtain

               log p = log ρ +log R*+logT –log 
[image: image15.wmf]          

The, taking the differential of each side, we obtain

dp/p =  dρ/ρ + dT/T – d
[image: image16.wmf]/
[image: image17.wmf]                (2.4.1.8)

   Sound Velocity. The expression for the sound velocity in a semi-perfect

                    a2 = γR*T/
[image: image18.wmf]                         (2.4.1.9)

or             da/a = 1/2•(dγ/γ+dT/T- d
[image: image19.wmf]/
[image: image20.wmf])               (2.4.1.10)

   Definition of Mach number. 

　　　　　　　　　　　M2 = V2/a2 = V2
[image: image21.wmf]/(γR*T)            (2.4.1.11)

or

          dM2/M2 = dV2/V2 + d
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[image: image23.wmf]- dγ/γ – dT/T            (2.4.1.12)
   Equation of Continuity. Fig. 2.4.1.2 shows several methods by which the injected gas and liquid may be brought into the main stream. Also shown are the corresponding control surfaces employed for purposes of analysis. Any liquid traveling through the duct, whether it is in the form of droplets, filaments, or sheets, is considered to lie outside the control volume. Accordingly, liquid which travels through the length dx without evaporating neither enters nor leaves the control volume. The infinitesimal flow dmL which evaporates in the length is considered to be liquid which enters the control volume at the liquid-gas interface and which leaves as a gas with the main stream. 
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Fig. 2.4.1.2 Geometry and nomenclature for differential control 

volume one-dimensional flow analysis

   The injected gas flow dmg is assumed to be injected continuously along the length of the duct, i.e., dwg/dx is assumed to be finite or zero. This may be thought of as a simple model of real injections. It is assumed here further that the injected streams dwg and dwL are mixed perfectly with the main stream at the downstream boundary of the control volume.

   The mass flow of the main gas stream may be expressed as

                       m = ρAV                          (2.4.1.13)

or

                dm/m = dρ/ρ + dA/A + dV/V                 (2.4.1.14)

   In this expression dm denotes the total increase of mass flow in the main stream and includes both injected gas and evaporated gas. The equation of continuity is, therefore, 

                dm = dwg + dwL                           (2.4.1.15)

If vapor is condensed, dwL is negative. It is important to note also that dA refers to the change in cross-sectional area occupied by the main gas stream and also does not include the cross-sectional area of the injected streams before mixing. Nor does it include that part of the cross section of the pipe occupied by liquid, although usually the volume of liquid may in fact be neglected in comparison with the volume of gas. 

   Energy Equation. Only the liquid crossing the control-surface boundary and evaporating within the control surface is taken into account in evaluating the flux of enthalpy. Changes in temperature of the liquid traveling along with the stream are taken to be the result of external heat exchange to or from the main stream. As the flows dwg and dwL, thoroughly mixed with the main stream, pass out of the control surface, they are assumed to be at the temperature of the latter.

   The energy equation for the flow through the control surface of Fig. 2.4.1.2 may be written, assuming gravity effects to be negligible, as 
m(dQ-dWx)=[m(h+dh)+hgT+dwg+hvdwL]-[mh+hgdwg+hLdwL]
+(m+dwg+dwL)(V2/2+d•V2/2)-[mV2/2+Vg2/2dwg+VL2/2dwL]    (2.4.1.16)

   In this expression dQ is the net heat added to the stream by conduction or radiation from sources external to the main gas stream, per unit mass of gas entering the control surface. Likewise dWx is the net external work delivered to outside bodies per unit mass of gas entering the control boundary. The external work includes, generally, shaft work, electrical work, and shear work on moving bodies adjacent to the control-surface boundaries, however; only shear work will be dealt with in the later section of the ARCC engine flow in this book. The symbol hgT and hg denote, respectively, the enthalpy of the injected gas dwg at the temperature T, and the enthalpy at the temperature Tg with which dwg enters the control volume. The symbol hv denotes the enthalpy of the evaporated liquid dwL at the temperature T, and hL denotes the enthalpy of the liquid about to evaporate as it enters the control volume.

   Eq. (2.4.1-16) may be rearranged in the form

dQ-dWx=dh+d(V2/2)+[hgT-hg+(V2/2-Vg2/2)]dwg/m

+[hv-hL+(V2/2-VL2/2)]dwL/m                       (2.4.1.17)

   The enthalpy change of the main gas stream, dh, is the sum of the changes due to chemical reaction and to temperature change. Thus

                          dh = -dhpr +cpdT                       (2.4.1.18)

where dhpr, the enthalpy increase at the temperature T and pressure p reactions. It is usually called the constant-pressure heat of reaction and, in special cases, the constant-pressure heat of combustion. In evaluating dhpr, one considers of course only the chemical changes which actually occur, but computes dhpr per unit mass of the main gas stream.

   We may also write

hgT-[hg+Vg2/2]=hgT-hg0=ĉpg(T-Tg0),              (2.4.1.19)

where 

                          ĉpg = 1/(T-Tg0)
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cpgdT                (2.4.1.20)

and h0g and Tog are, respectively, the stagnation enthalpy and stagnation temperature of the injected gas stream.

   Substituting Eqs. 2.4.1.18 and 2.4.1.19 into Eq. (2.4.1.17), the energy equation is finally put into the convenient form

dQ – dWx + dH = cpdT + d(V2/2)                 (2.4.1.21)

where dH is an energy term defined by

        dH=dhpr-[ĉpg(T-T0g)+V2/2]dwg/m-[hL-hv+V2/2-VL2/2]dwL/m         (2.4.1.22)

Dividing Eq. (2.4.1-21) by cpT, we obtain

        (dQ-dWx+dH)/( cpT) = dT/T + (γ-1)/γ•M2•dV2/V2                 (2.4.1.23)

   Momentum Equation. The net force acting on the material within the control surface of Fig. 2.4.1.2 is equal to the increase of momentum flux of the streams flowing through the control surface.

   Consider forces in the direction of flow acting on the control surface in Fig. 2.4.1.2. Assuming that the injected gas and liquid streams are at the control-surface pressure as they cross the boundary and that the angle of divergence of the walls is small, the momentum equation may be written

pA+pdA-(p+dp)(A+dA)-τwdAw-dX=(m+wg+wL)(V+dV)-Vg’dwg-VL’dwL-mV  (2.4.1.24)

Here, if the injected gas stream is not at the control-surface pressure as it crosses the boundary, the term (pg-p)dAg’ should be added to the left-hand side of Eq. (2.4.1.24), where pg is the pressure of the injected stream at the boundary and dAg’ is the projected area of the part of the control surface occupied by the injected gas stream. 

   In the foregoing expression τw represents the frictional shearing stress acting on the wall on the duct wall area dAw ; dX is the sum of (i) the drag of stationary bodies immersed in the stream within the control-surface boundaries, (ii) the drag of liquid droplets and filaments traveling more slowly than the main stream, and (iii) the component of body or gravity forces acting on the material within the control surfaces in the direction opposite to that of the velocity vector. Letting Vg’ is the forward component of the velocity Vg with which the injected gas dmg crosses the control surface, and similarly for VL’.

   The wall shearing stress is related to the coefficient of friction, f, through the definition of the latter:

                           τw ≡ fρV2/2                     (2.4.1.25)

   It is convenient to define the quantities

                         yg=Vg’/V, and yL=VL’/V             (2.4.1.26)

and

                            dAw=ls(x)dx                         (2.4.1.27)

where ls(x) is the surrounding side length of the control volume.

   Substituting Eqs. (2.4.1.25, 2.4.1.26, 2.4.1.27) into Eq. (2.4.1.24), and noting that ρV2=γpM2, we obtain, following rearrangement,

dp/p+γM2/2•dV2/V2+γM2/2•[lx/A•dx+dX/(γpAM2/2)]+γM2(1-y)dm/m=0     (2.4.1.28)

where

                      (1-y)dm/m≡(1-yg)dwg/m+(1-yL)dwL/m          (2.4.1.29-a)

                              dm/m=dwg/m+dwL/m               (2.4.1.29-b)
                             ydm/m=ygdwg/m+yLdwL/m            (2.4.1.29-c)

   Definition of Impulse Function. The impulse function is defined by Eq. (2.4.1.4). The increase of this function represents the total force exerted by the stream on the internal walls on the duct and acting on the duct walls in the direction opposite to the flow. The differential form,

dI/I=dA/A+dp/p+γM2/(1+γM2)•dM2/M2+γM2/(1+γM2)•dγ/γ           (2.4.1.30)

   Second Law of Thermodynamics. Application of the second law of thermodynamics is given by Eq. (2.4.1.6-b). More important, however, is the total entropy change of the main stream plus injected gas and evaporated liquid. It may be shown that for unchanged chemical composition

                         dŝ = ds + (s-sg)•dwg/m + (s-sL)•dwL/m       (2.4.1.31)

where dŝ is the total entropy change per unit mass of main gas stream.

   Working Equations. Eight independent relations between the differential parameters have been set forth, namely, Eqs. (2.4.1.8), (2.4.1.10), (2.4.1.12), (2.4.1.14), (2.4.1.23), (2.4.1.28), (2.4.1.30), and (2.4.1.6). As there are fourteen differential variables, six may be chosen as independent variables and eight as dependent variables. For the independent variables Shapiro chooses those most easily controlled in practice, as indicated below2.4.6.

Table 2.4.1.1

             Independent                          Dependent
               dA/A                                dM2/M2
        (dQ-dWx+dH)/(cpT)                           dV/V

       lx/A•dx+dX/(γpAM2/2)-2ydm/m                  da/a

              dm/m                                 dρ/ρ
              dM/M                                dp/p

              dγ/γ                                  dI/I

                                                    dŝ/cp
                                                    dT/T

   The usual methods for solving a system of simultaneous, linear, algebraic equations may be employed for obtaining each dependent variable in terms of the six independent parameters. Each dependent parameter will be easily formulated by using the coefficient of the independent variables, i.e., influence coefficient2.4.6.

   In addition to the differential relations, a number of useful relations are obtainable from Eqs. (2.4.1.7), (2.4.1.11), (2.4.1.13), (2.4.1.23), and (2.4.1.4). They may be summarized as follows:

Q-Wx+△H≈cp2T2[1+(γ-1)/γ•M22]-cp1T1[1+(γ-1)/γ•M12]

-(cp2-cp1)(T1+T2)/2                              (2.4.1.32)

      p2/p1=m2/m1•A1/A2•M1/M2•(T2/T1)1/2•(γ1
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      V2/V1=M2/M1•(γ2/γ1•T2/ T1•
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　    ρ2/ρ1=m2/m1•A1/A2•V1/V2=p2/p1•T1/T2•
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[image: image31.wmf]1                (2.4.1.35)

      I2/I1=p2/p1•A2/A1•(1+γ2M22)/ (1+γ1M12)                       (2.4.1.36)

   In deriving Eq. (2.4.1.32) it was assumed for a moderate temperature interval it is valid to write
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cpdT ≈ (cp1+cp2)/2•(T2-T1)

2.4.1. c Thermodynamic Closed Control Volume Analysis
   Many of the familiar airbreathing propulsion systems are representatives of the Brayton cycle which is characterized by adiabatic compression, heat addition and expansion of the working fluid, Fig. 2.4.1.3. These representatives include the turbojet, the subsonic-combustion ramjet, and the supersonic-combustion scramjet. Exceptions are the cryo-pumping airbreathing engines (e.g. LACE) and precooled turbojet, which involve non-adiabatic compression processes. There, it must be possible to treat the atmospheric air as the working medium of a pure substance. That is to say, specifying the values of any two independent intensive thermodynamic properties must fix the values of all other intensive thermodynamic properties. This can be achieved in the present case by assuming the air is in its equilibrium state at all times, and that the combustion process is replaced by a heat addition process that supplies energy equal to that released by combustion, but with no mass addition or change in the chemical constituents of the air. The deviations of actual cycles from these two idealizations can be significant, particularly at very high speeds of the conventional airbreathing engines and much more significant for the ARCC engines. However, consideration to the ignition delay time simultaneously with the combustor length as well as to the small fuel/air ratios of the conventional airbreathing engines suggests that the two assumptions are a reasonable representation of nature in those situations. Therefore, the specific features and treatments of the ARCC engine will be stated in the following Sections of 2.4.2 ∼2.4.6.
   Point 0 to Point 3 is adiabatic compression from the free-stream static temperatures T0≡T∞ to the burner entry static temperature T3. The irreversible or “losses” due to aerodynamic drags (turbojets), skin friction, and shock waves cause the entropy to increase from the free-stream value to the burner entry values s3. 

   Point 3 to Point 5 is constant static pressure, frictionless heat addition from the burner entry static temperature T3 to the burner (combustor) exit static temperature T5, but with no mass addition or change in the chemical constituents of the air. The axial component of the control volume conservation of momentum equation shows that the velocity of the air is constant. The second law of thermodynamics, Eq. 2.4.1.6, allows the change of entropy to be determined directly by integration, whether or not the gas is calorically perfect. 


[image: image33]
Fig. 2.4.1.3 Brayton cycle

   The combustion or heat addition process could easily have been modeled by keeping some other flow property constant, such as through flow area, Mach number, or static temperature, but constant pressure is preferable for at least four reasons. First, constant pressure is desirable from the aerodynamic standpoint because it avoids the possibility of boundary-layer separation, as well as the necessity of designing the structure primarily to withstand the peak pressure. Second, for scramjets this merely extends the traditional gas-turbine and ram-jets analysis where, fortuitously, the burner static pressure is also constant because the flow velocity is brought as close to the Point 3 as possible. Third, constant area combustors often actually operate at constant pressure during the chemical energy release because of boundary-layer separation. Fourth, this adds gracefulness to the ensuing mathematical manipulations.

   It must be noted that the process of heat addition reduces the stagnation pressure for both of subsonic and supersonic speeds in the Brayton cycle. However, the process of air/fuel combustion of the ARCC engine is different because of the mixing of the incoming air and the rocket exhaust gas. If the stagnation pressure of the latter is larger than the former (for low flight speeds), p5s may be larger than p3s, and the reverse (for high flight speeds) is smaller. The mixing gives the much more gracefulness to the ensuing exit nozzle problem of the ARCC engine excluding variable geometry.
   Point 5 to Point j or 10 Adiabatic expansion from the burner static pressure p3=p5 to the free-stream static pressure pj=p10≡p∞, consists of internal and external flows. The irreversibility or losses due to friction, shock waves causes the entropy to increase from the burner exit value s5 to s10 at the end of the adiabatic expansion process and matching to the surrounding atmosphere.

   Point j or 10 to Point 0 The thermodynamic cycle is closed via an imaginary constant static pressure, frictionless process in which sufficient heat is rejected from the exhaust air possibly to the surrounding atmosphere, and it is returned to its original temperature entropy state.

   Thermodynamic Cycle Efficiency Referring to the T-s diagram of Fig. 2.4.1.3, and assuming the heat addition and rejection interactions with the surroundings to be reversible, it is possible to directly evaluate several physical quantities of immediate interest. For example, the heat added per unit mass of air to the cycle from Point 3 to Point 5 is given by Eq. 2.4.1.6 under the condition of constant pressure,

Heat added = 
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And the heat rejected per unit mass of air from the cycle from Point j or 10 to Point 0 is given by

                          Heat rejected = 
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Moreover, since there is no thermal energy exchange with the surroundings during the adiabatic compression and expansion processes, it follows that per unit mass of air 

Cycle work = Heat added–Heat rejected=Vjor102/2-Vo2/2=
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And therefore that the thermodynamic cycle efficiency is

ηtc=Cycle-work/Heat-added=(V102/2-V02/2)/ 
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Applying Eq. 2.4.1.40 to Fig. 2.4.1.3 confirms our expectation that the thermodynamic cycle efficiency generally improves as the ratio of the absolute temperature at which heat is added to the absolute temperature at which heat is rejected is increased, provided, of course, that the entropy does not increase excessively during the adiabatic compression and expansion processes.

   It is sometimes helpful to eliminate entropy from Eqs. 2.4.1.39 and 2.4.1.40 in favor of enthalpy by means of the Gibbs equation (Eq. 2.4.1.6-c), in which case they become, respectively, 

Cycle work = 
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Tds = (h5-h3)-(hjor10-h0)        (2.4.1.41)

and

                    ηtc = 1 – ((hjor10-h0)/ (h5-h3)                        (2.4.1.42)

   It is also helpful to note that the heat added can be replaced in any of the above equations by the equivalent fuel chemical energy release,

Heat added = ηbwfhpr/m0 = ηbfhpr = 
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where the fuel heating value has been multiplied by the combustion efficiency ηb in order to account for the possibility that some of the chemical energy of the fuel is not released because of inadequate mixing or reaction time for complete combustion, and the fuel contributes only heat to the cycle and no mass addition in this analysis.

   Maximum Allowable Compression Temperature The static temperature at the end of compression or the beginning of combustion cannot be increased indefinitely, but must be limited to a value that prevents excessive dissociation in the exhaust flow. As the burner entry and exit static temperatures increase, the “loss” of energy to un-equilibrated dissociation of first gradually eats into the benefits usually expected from the higher thermodynamic cycle efficiencies and eventually overwhelms them. This is a serious limitation for real hypersonic airbreathing engines, one that must be avoided in practice.

   Required Burner Entry Mach number The limit on compression temperature of very high speeds Brayton cycle engines such as ramjet leads directly to restrictions2.4.7 on the burner entry Mach number M3 of Fig. 2.4.1.3. The stagnation temperature of the inlet flow, which is a fixed property, is given by the expressions

                 T00=T0[1+(γ-1)/2•M02]= T3[1+(γ-1)/2•M32]         (2.4.1.44)

So that the burner entry Mach number must equal

           M3={2/(γ-1)•{T0/T3•[1+(γ-1)/2•M02]-1}1/2                (2.4.1.45)

For the given maximum allowable compression temperature T3, first when
                M0<{2/(γ-1)•[T3/T0-1]}1/2                        (2.4.1.46)

There is no solution because the allowable T3 is higher than the stagnation temperature of the free-stream flow. Second, when 

                M0>{2/(γ-1)•[(γ+1)/2•T3/T0-1]}1/2                  (2.4.1.47)

The flow entering the burner must remain supersonic or the allowable T3 will be exceeded. This makes the supersonic combustion ramjet, or scramjet, inevitable. Third, in the hypersonic limit of the real air effects due to dissociations, it leads to 

                 M3/M0 ≈0.38                                  (2.4.1.48)
   The above stated maximum allowable compression temperature means practically the maximum allowable flight Mach number of the Ramjet as well as the Scramjet engine of the Brayton cycle. Generally speaking, the transition from the Ramjet to the Scramjet is a concerned problem because of the difficulty for starting the scramjet in the lower Mach number. The ARCC engine of this book has a different feature for the limit concerning with the real gas effect of the air, which is stated in detail in the later sections; however, the introduction to this problem is stated in this paragraph. The starting of the scramjet-mode of the ARCC engine is earlier than the flight Mach number of the Brayton cycle because of the ejector effect of the rocket plume. This means that; even if a normal shock is induced for the air-stream in front of the mixing zone of air/rocket-exhaust-gas (one of the phases, because the ARCC engine has many phases of the Ramjet-mode depending the flight Mach number), the static temperature of the normal shock down-air-stream is lower than the maximum allowable temperature T3 of the Brayton cycle Ramjet engine. For the hypersonic flight, if an enough length is given to the combustor, the combustion pressure of the air/fuel of the ARCC engine might be lower than that of the Brayton cycle engine because of the rocket plume which plays a role of a huge flame holder. The static pressure of the incoming air flow of the ARCC engine is viable to be lower than the Brayton cycle; that is the corresponding static temperature is lower than the Brayton cycle. This means that the ARCC engine can be operable under the condition that the corresponding static temperature of the incoming air flow of the ARCC engine is lower than the maximum allowable compression temperature of the Brayton cycle engine, during the mixing zone of the hypersonic flight.  

2.4.1. d Conventional Airbreathing Engine Performance Measures
   To measure how efficiently the energy input per unit mass of air is converted into available thrust work V0(Vj-V0), an overall propulsive efficiency can be defined:

                     ηp= V0(Vj-V0)/(fhpr)                         (2.4.1.49)

The quantity should be as large as possible.

   It is convenient to split up the overall propulsive efficiency into two components, one mechanical and the other thermal, so that

                     ηp=ηth×ηj                                 (2.4.1.50)

The thermal efficiency ηp measures the kinetic energy in the jet in terms of the energy input:

      ηth=(Vj2/2-V02/2)/(fhpr)=[(Vj/V0)2-1]/[fhpr/(Vo2/2)]= ηb×ηtc          (2.4.1.51)

The difference between engine thermal efficiency ηth and thermodynamic cycle efficiency ηtc is that the latter is not penalized for the fuel chemical energy not released in the burner, whereas the former must account for all the chemical energy the fuel can make available. 

   The mechanical (jet) efficiency ηj measures the available propulsive work in the jet in terms of the kinetic energy lost in the jet:

ηj=V0(Vj-V0)/[(Vj2-V02)/2]=2/(Vj/V0+1)=2/{[ηthfhpr/(V02/2)+1]1/2+1}    (2.4.1.52)

For completeness, and eventual comparison with rocket propulsion, the airbreathing engine fuel-mass-flow specific impulse is given under the condition of injected fuel mass neglect,

                       Isp=1/(g0f)•F/m0=hpr/(g0V0)•ηp              (2.4.1.53)

   It will be assumed that reasonable empirical models exist to describe the adiabatic compression, constant pressure combustion, and adiabatic expansion processes under the condition that the equilibrium air behaves as a calorically perfect gas across of the four individual thermodynamic processes of the Brayton cycle. To begin with, they will be described by process efficiencies that are take to be constant. The process efficiencies for compression and expansion are extensions of the definitions ordinarily applied to gas turbine and ramjet components, wherein the actual or real change in static enthalpy is referred to the ideal or isentropic change in static enthalpy that would accompany the same change in static pressure. Referring to Fig. 2.4.1.3 for nomenclature, the adiabatic compression efficiency definition is
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and the adiabatic expansion process efficiency definition is
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The combustion process efficiency definition is as given in Eq. 2.4.1.43. 
2.4.1. e Stream Thrust Analysis
   The thermodynamic analyses are unable to easily account for several phenomena that can have a significant influence on airbreathing engine performance, such as mass flow, momentum, and kinetic energy fluxes contributed by the fuel, and exhaust flows that are not matched to the ambient pressure. Such phenomena can usually be accounted for, which sacrificing some insight and generally and requiring substantially more initial information, by one-dimensional flow approaches that use the entire set of control volume conservation equations.

   Uninstalled Airbreathing Engine Thrust Stream thrust analysis is greatly simplified if the control volume under consideration is selected in such a way that the desired results arise effortlessly. The control volumes to be used in this analysis are shown in Fig. 2.4.1.4, where it should be noted that the dividing streamlines that constitute the boundary between internal and external flow coincide with the outside surface of the engine. The most important quantity to be evaluated is the uninstalled thrust F, which is defined as equal and opposite to the net axial force acting on the internal flow when the external flow is perfect (i.e., reversible). It can be shown that perfect external flow is equivalent to either the net axial force acting on the external flow or the integral of the axial projection of the gauge pressure (i.e., local static pressure minus free-stream static pressure) plus frictional forces acting on the dividing stream lines being zero. The thrust is transformed to the vehicle through the engine support (sometimes called the mount, pylon, sting or thrust frame) by means of material stresses that also act on the control volume boundary.

   This definition of uninstalled thrust is a common practice that leads to a convenient division of responsibilities between engine and vehicle designers. The bookkeeping system of the vehicle designers equates installation drag De to the net axial force acting on the external flow in the negative direction due to such irreversibility as form and frictional drag. The installed thrust T is defined as the uninstalled thrust less the installation drag, and is therefore equal to the net axial force acting on the entire flow. Thus, this accounting system leaves the engine designers primarily responsible for the forces acting on the internal surfaces, although they certainly apply their talents to help minimize installation drag. You should bear in mind in this regard that installation drag can be generated along the free streamlines that constitute the control volume boundary as well as the external material surfaces.
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Fig. 2.4.1.4 Control volume used in the evaluation of uninstalled engine thrust

For example, in the typical supersonic or hypersonic flow situations depicted in Fig. 2.4.1.4, a commonsense conclusion is that, since Aj is usually larger than A0, the static pressure along the external surfaces of the control volume will exceed the free stream static pressure, with the result that the gauge pressure will be positive and the integrated force on the external flow amounts to an installation drag. It must be noted here that the treatment of the free jet-boundary of the exhaust gas stream is not as simple as the above stated because the free jet-boundary interferes with the external free air flow, which is one of the difficult problems of aerodynamics. The recent studies by the author will be described in the later chapter in the Chap. 2 Sec. 8 External Nozzle Expansion Gas-dynamics and Interaction with Free Air-stream. Next, it is assumed that, because the flow is supersonic or hypersonic, the flow is undisturbed to the control volume inlet plane (station 0). Furthermore, it is assumed that the flow properties at the control volume exit plane (station 10 or j) are represented by suitable one-dimensional averages, and that the average static pressure there is no necessarily equal to the free-stream value.

   Finally, in order to simplify the equations and calculations that follow, it is assumed that the entire velocity at each engine station is aligned with the thrust or axial direction, and that the through-flow area is oriented perpendicular to that direction. These assumptions can be removed without great intellectual effort, but the additional mathematical and arithmetical complications are disproportionate to their benefits. These very simplified assumptions are useful however only for the Brayton cycle. The thermodynamic fluid mechanics of the ARCC engine is far from them and the main contents of this chapter are stated in the followings of this section.

   Returning to Fig. 2.4.1.4, it follows from the foregoing discussions and momentum equation Eq. 2.4.1.2 that the net uninstalled engine thrust can be written as

F = mjVj - m0V0 + (pj-p0)Aj                (2.4.1.56-a)

= (mV+pA)j - (mV+pA)0 - p0 (Aj-A0)      (2.4.1.56-b)

If the uninstalled engine specific thrust is defined for an airbreathing engine as

the uninstalled engine specific thrust = F/m0              (2.4.1.57)

it is expressed by 

         F/m0 = (1+f)Sa10 or j – Sa0 –R0T0/V0•(A10 or j/A0-1)          (2.4.1.58)

where the perfect gas law has been used in order to eliminate density.

   Installed Airbreathing Engine Thrust Aerodynamic drag acting to the vehicle as shown in Fig. 2.2.3 is related to the summation for the axial components of integrals with respect to the static pressure on the whole surface of the vehicle. However, the integrals of the pressure deference between the static pressure on the surfaces and the atmospheric pressure of the under half body, specifically on the forward ramp as well as on the free jet-boundary of the exhaust gas stream are directly related with the engine thrust. Those are expressed as 
[image: image49.wmf] and
[image: image50.wmf], respectively. Therefore, the responsibility of the under half body of the vehicle is reduced to the engine designer. It must be remembered that the normal components of them contribute to the lift of the vehicle; i.e., the responsibility of the under half body of a vehicle should be reduced to the engine designer.  
　　　Here, it must be noted that the heat addition process of the Brayton cycle reduces the stagnation pressure at the end of burner for both of subsonic and supersonic speeds. However, the process of air/fuel combustion of the ARCC engine may increase the stagnation pressure of the main stream for a condition of pc>p3s because of the mixing of the incoming air and the rocket exhaust gas flow.  The result may induce such a condition of [∬prampnds] axial < [∬pnozzlends] axial, which means that the installed engine thrust is larger than the uninstalled engine thrust in Fig. 2.2.3. If the stagnation pressure of the rocket exhaust gas is smaller than that of the incoming air flow as pc<p3s , then, [∬prampnds] axial < [∬pnozzlends] axial, i.e., the installed engine thrust is smaller than the uninstalled engine thrust.
Influence of Fuel Mass Addition. In contrast to airbreathing engines that operate at subsonic and slightly supersonic speeds, for which the overwhelming purpose of the fuel is to heat the air, scramjets can derive a considerable fraction of their thrust from the fluxes of mass, momentum, and kinetic energy that accompany the introduction of the fuel into the combustor. It is therefore imperative that any realistic performance prediction method incorporate the diverse influences of fuel mass addition. Even when the fuel flow contributes no axial momentum or kinetic energy whatsoever, the engine propulsive overall efficiency (Eq. 2.4.1.49) increases sharply with fuel/air ratio, f. The improved propulsive overall efficiency is primarily due to increased jet efficiency (Eq. 2.4.1.52) as far as Vj>V0 and Vj approaches V0, while the thermal efficiency (Eq. 2.4.1.51) actually decreases slightly due to the combustion efficiency. This outcome agrees with the intuitively appealing observation that spreading the available energy out across more matter increases the thrust produced, as in the case of bypass turbofan engines. 
Influence of Free-stream Velocity With regard to the conventional ramjet and scramjet performance, it has been found that the main influence of increasing free-stream velocity or flight speed, all other things being equal, is to increase the jet efficiency and, therefore, the propulsive overall efficiency. The focus here, rather, is upon the engine geometry required to bring about the desired flow conditions. The responses of the three benchmark area ratios of A3/A0 (inlet to the burner), A5/A0 (exit of the burner), and Aj/A0 (exit of the nozzle) are required dramatically to change in the supersonic and hypersonic velocities below a free-stream Mach number of about 10. They change, however, relatively little beyond that velocity. The change of A3/A0 is due to supersonic inlet problem for ramjets and supersonic diffuser problem for scramjets. A5/A0 corresponds to the variation of A3/A0 to keep the required combustion pressure for chemical reactions. The variation of A5/A0 is due to the change of the total pressure of the exhaust flow. Therefore, variable engine geometry is a virtual necessity for the conventional Brayton cycle engines, specifically, in the supersonic and hypersonic flight speeds below Mach number of about 10.

2.4.2 ARCC Engine Performance Measures

   The thrust generation mechanism of the ARCC engine is basically that of an airbreathing engine. The most different mechanisms from the conventional airbreathing engine are, however, the mixing of the incoming air flow with the rocket exhaust gas flow, the specific roles of the rocket exhaust gas plume, and the mass flow rate, the momentum, and the kinetic energy of the rocket exhaust gas can not be neglected compared to the incoming air flow for the whole flight speed regions such as subsonic, transonic, supersonic and hypersonic. Therefore, Thermodynamic Closed Control volume Analysis of Sec. 2.4.1.c for the Brayton cycle is not directly applied to the ARCC engine internal flow analysis. However, 2.4.1.a General Finite Control Volume Analysis and 2.4.1.b General Differential Finite Control Volume Analysis are directly applied to the ARCC engine analysis. If appropriate assumptions are supposed, 2.4.1.c Thermodynamic Closed Control Volume Analysis as well as 2.4.1.e Stream Thrust Analysis will be also applicable. In the ARCC engine, the mixing of the incoming air with the rocket exhaust gas changes greatly the main stream properties such as the mean molecular weight, the specific heat ratio, the stagnation pressure, and the stagnation temperature so that some special treatments are required in the processes of the mixing and combustion. 

   The rocket exhaust gas plays various roles in the engine internal flow, which will be stated in Sec. 2.5. There exists one performance measure of the conventional rocket engine, which is an ideal expansion velocity (Ve) vacuum of the rocket nozzle exhaust gas to the vacuum environment. The ARCC engine has the similar aspects of the conventional airbreathing engine as well as the conventional rocket. Therefore, the ideal expansion velocity (Ve) vacuum of the following expression can be derived by referring to Eq. 2.2.3 and Fig. 2.3.5 for comparison with the airbreathing engine and with the rocket engine, while the ideal expansion velocity never exists for the ARCC engine. 
(Ve)vacuum, = [2γ5/(γ5-1)R*/
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where γ5, 
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, and T5s are, respectively, the specific heat ratio, the mean molecular weight, and the stagnation temperature at the combustor exit (station 5). We suppose that the rocket engine of the ARCC is the LO2/LH2 engine hereafter in this book. Because the coolant of the engine internal walls is supposed to be hydrogen as described in the later section, then, the fuel is only hydrogen in the ARCC engine. Therefore, γ5 and 
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 are, respectively, smaller than those of the Brayton cycle airbreathing engine because of the mixing while those are larger than the pure rocket’s. The larger specific heat ratio affects the ideal expansion velocity to be decreased. The stagnation temperature of the rocket engine corresponds to the combustion temperature. Comparisons of T5s with each other are not so simple. The rocket’s is designed to keep the engine internal wall temperature, then, it is constant through the whole flight speeds. The turbojet’s is designed to keep the turbine temperature under the limit. The ramjet’s of the Brayton cycle is limited to keep the static temperature at the inlet of the combustor to keep it under the limit temperature of the air dissociation. The scramjet’s of the Brayton cycle depends on the flight Mach number. Generally speaking, the ramjet’s is lower than the ARCC’s due to the mixing with the rocket plume. The scramjet’s of the Brayton cycle is higher than the ARCC’s because the stagnation temperature of the incoming air flow becomes to be higher than the rocket’s in the very high flight Mach numbers. Considering the previously stated discussions Eq. 2.4.2.1 tells the following approximate conclusions.
The ideal expansion velocity of the ARCC engine is higher than those of the Brayton cycle airbreathing engines in subsonic, transonic, and low-supersonic flight speeds, while it is lower than the pure rocket engine. The actual ARCC engine performance is controlled by the ejector effect of the rocket exhaust gas in these flight speeds. The actual engine performance of the ARCC engine must be evaluated from different measures from Eq. 2.4.2.1 in these low flight speeds because of low altitude flights. The ARCC engine performance shows a beneficial potentiality compared to the pure rocket engine in these low flight speeds. The actual ARCC engine performance will be evaluated by the very complicated implicit relations between the various parameters and the mixing ratio of air-mass-flow-rate to rocket-mass-flow-rate, therefore, a simple conclusion can not be obtained from Eq. 2.4.2.1, and however, it suggests that the actual expansion velocity of the ARCC engine will be improved in the very high flight Mach numbers than that of the Brayton cycle airbreathing engine.

   The static and stagnation pressures of the aft-mixing main stream increase through the mixing of entering air and rocket exhaust gas in subsonic/transonic/low-supersonic flight speeds, therefore, compression performance measures of the ARCC engine is different from those of turbojet engines. Considering the specific features of the ARCC of Sec 2.3 and the previous statements, the ARCC engine specific performance measures are defined as followings in this section.　　
   The stream function or the mass flow rate specific thrust (refer to Eq. 2.4.1.57) of the ARCC engine is defined as 

                            Sef = I/mef                          (2.4.2.2)

where mef is the mass flow rate of the engine internal gas stream.
   The net uninstalled thrust of the ARCC engine is given by Eq. 2.4.1-56 as

Farcc= m5Vj-m1V1+(pj-p∞)Aj                (2.4.2.3-a)

                            = (Sef)jm5-Sam1-p∞(Aj-A1)             (2.4.2.3-b)

The effective work of the propulsive force, Farcc, to the environment atmosphere equals to FarccV∞. If the environment atmosphere is considered to be a reference coordinates, the whole energy contained in the exhaust jet is [FarccV∞+mj(Vj-V∞)2/2] while the effective work is FarccV∞, so the relative velocity of Vj-V∞ is considered to be loss. If (ηp)arcc is defined as the ratio of the effective work to the whole exhaust jet energy, the overall propulsive efficiency of the ARCC engine is

                      (ηp)arcc = FarccV∞/[FarccV∞+mj(Vj-V∞)2/2]         (2.4.2.4-a)

An ideal exhaust jet is obtained under the condition of pj=p∞, then, the mechanical (jet) efficiency is rewritten by using Eq. 2.4.1.52 as

(ηj)arcc=ηj[1+(1-ma/mj)V∞/(Vj-V∞)]/[1+(1-ma/mj)ηpV∞/(Vj-V∞)]

      =ηj /{1-[(1-ma/mj)(1-ηp)V∞/(Vj-V∞)]/[1+(1-ma/mj)V∞/(Vj-V∞)]}  (2.4.2.4-b)

Because ma<mj and 0<ηp <1, expansion gives

     (ηj)arcc
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ηj {1+[(1-ma/mj)(1-ηp)V∞/(Vj-V∞)]/[1+(1-ma/mj)V∞/(Vj-V∞)]}  (2.4.2.4-c)

Eq. 2.4.2.4-c gives also (ηj)arcc>ηj. That is, the overall propulsive efficiency of the ARCC engine is always larger than that of the Brayton cycle engine. 
   The thermal efficiency of the ARCC engine is a little complicated than the conventional. There are two places in the ARCC engine, which release the chemical energy such that one is at the LO2/LH2 rocket combustor and the other is at the air/hydrogen-fuel combustor. Each combustor can be operated for either case of fuel-lean or fuel-rich. The conventional rocket engine is generally operated in fuel-rich (lower O/F than stoichiometric value), while the conventional airbreathing engine is generally operated in fuel-lean. The rocket engine of the ARCC engine can be operable in fuel-lean and the combustor at station 4-5 can be operable in fuel-rich. Each case has a different chemical equation for the released energy, (Hpr)arcc, which will be discussed in detail in Sect. 2.6. Then, the thermal efficiency of the ARCC engine (ηth)arcc is defined by

            (ηth)arcc = [FarccV∞+mj(Vj-V∞)2/2]/ (Hpr)arcc             (2.4.2.5)

where (Hpr)arcc = (Hpr)rocket + (Hpr)air/fuel
Then, the overall propulsive efficiency of the ARCC engine, (ηp)arcc , is 

             (ηp)arcc = FarccV∞ /(Hpr)arcc                         (2.4.2.6)

and 

              (ηp)arcc = (ηth)arcc (ηj)arcc                          (2.4.2.7)

The thermal, mechanical (jet), and overall propulsive efficiencies are expressed by the same equations of the conventional aerospace engines, however, it must be noted that the contents of the chemical released energy term (Hpr)arcc is different.

   The specific impulse of the ARCC engine is, under the condition of pj=p∞
(Isp)arcc = (mjVj-maV∞)/mp/g0=[Vj+ma/mp•(Vj-V∞)]/g0          (2.4.2.8)

here, mp=mrc+mhwc+mhf. It must be noted that the second term of Eq. 2.4.2.8 is zero for a pure rocket, and the first term is assumed to be zero for the Brayton cycle engine. This means that the specific impulse of an airbreathing engine, Eq. 2.4.1.53, is underestimated for very high flight speed region of scramjet. 

   For the propulsive lifting body type vehicle design, specifically in the process of conceptual studies, the thrust per unit air intake area is important. A new measure of the ARCC engine performance of uninstalled engine inlet area specific thrust is defined (refer to the uninstalled engine specific thrust; Eq. 2.4.1.57) in this book as

                   Tinlet-area = Farcc/A1                         (2.4.2.9)

2.4.3 Comparison with the Turbojet Engine

   The turbojet engine is now operable for flight Mach numbers until about 3.5. To compare the ARCC engine with the turbojet engine, firstly the specific features of the turbojet engine must be described. Those are functions of mechanical compressor and the air inlet. Later, the corresponding functions of the ARCC engine are discussed. 2.4.3 (a) Specific features of the turbojet engine : In order to generate a reasonable thrust force of the jet engine, the thermodynamic analysis of the Brayton cycle (2.4.1.c) requires a much higher stagnation pressure of the exhaust stream than the ambient atmospheric for an expansion. The high stagnation pressure of the exhaust stream requires simultaneously a high stagnation pressure of the incoming airflow at the burner inlet. While the flight Mach number is low such as M0<2-4, the stagnation pressure of the free-stream is generally not so high. Providing a mechanical system for the entering air-stream that receives its power from a turbine driven by the exhaust stream gives a solution. This is the configuration of the modern turbojet engine. In the turbofan engine, the compression ratio of the fan (the stagnation pressure ratio of the exit stream to the inlet) is not so high compared with those of the main compressor. The fan increases the thrust level by increasing the entering airflow as well as improves the mechanical (jet) efficiency ηj (2.4.1.52) at the low flight speeds by decreasing the engine system exhaust stream velocity due to mixing with the main exhaust stream.

   A typical subsonic turbine engine installation consists a of a high compression engine with a short fixed inlet and probably a variable convergent nozzle. The supersonic installation, on the other hand, requires a power plant with a sophisticated variable geometry inlet having its own automatic control system and a fully variable convergent-divergent nozzle in order to extract the full performance from the engine throughout the speed range.

   The performance of the turbine engine inlet design is related to the following four characteristics;

(1) Total pressure recovery

(2) Quality of airflow-distortion and turbulence

(3) Drag

(4) Weight and cost.

   The overall value of an inlet must always be determined by simultaneously evaluated all four characteristics since the gain in one is often achieved at the expense of another. We should also keep in mind that the most serious aspect of the engine-inlet problem is concerned with off-design operation; any of the first three characteristics should deteriorate rapidly under conditions of varying power settings and angles of attack. As a result, in actual vehicles many comprises have to be made in order to achieve an acceptable performance throughout the variations in flight Mach number, angles of attack, and sideslip as well as variations in the properties of the atmosphere.

   The supersonic airflow entering into an inlet is decelerated through a normal shock wave or series of oblique shock waves to a subsonic value. The flow is further decelerated in the subsonic diffuser (the mechanical diverging section of the inlet between the throat and the compressor face) to a value of about Mach 0.4 at the mechanical compressor face. 

   The total (stagnation) pressure recovery of the inlet is defined as the ratio of the total pressure at the mechanical compressor face to that of the free stream, i.e. 

         ηR = total pressure recovery = P0c/P0∞           (2.4.3.1)

The total pressure recovery of the inlet is an important measure of the inlet performance. It is desired to recover the total pressure at the mechanical compressor face as much as possible (high value of ηR) because the total pressure of the free stream represents the available mechanical energy of the flow which can be converted into a static pressure increases as the flow is decelerated. A large static pressure is desirable at the mechanical compressor face because then the compressor section of the turbine engine does not have to be as large (the surge due to stalls) in order to compress the flow to the required pressure for combustion. If the entering air flow is far small compared with the design value, the attack angle of the compressor blade is increased at each stage of the axial compressor, then the aerodynamic stall is easily induced. The stall induces strong vibration of the blades (surge) and the mechanical compressor will not work. There is a surge limit for the mechanical compressor. Total pressure is also lost due to the viscous dissipation (friction) in the shock waves, the boundary layer and separated regions.

   Typical subsonic and supersonic turbine engine installation has three types of inlet, characterized by their shock wave system. The three types are pitot or normal shock, external compression and mixed compression. The simplest type is the pitot inlet with the supersonic compression being achieved through a normal shock, and further compression carried out in the subsonic diffuser (see Fig. 2.4.3.1 a). The pitot inlet gives tolerable total pressure recoveries up to about flight Mach number 1.6. For flight speeds above Mach 1.6, the flow needs to be decelerated gradually through one or more oblique shocks before the final deceleration through normal shock. The external compression inlet accomplishes the flow compression external to the inlet throat (see Fig. 2.4.3.1 b). The desired operation is with the normal shock located at the aft-flow side close location to the inlet throat. This inlet provides tolerable pressure recoveries up to about Mach 2.5. A flight Mach numbers above 2.5, the inlet must provide a multiple shock system and would be a mixed compression inlet (see Fig. 2.4.3.1 c). Here again the external ramp can be a series of ramps providing a series of external oblique shocks. The shock system continues into the supersonic diffuser with the normal shock located in the subsonic diffuser. The location of the normal shock is dependent on the back pressure at the mechanical compressor face. The ideal location for the normal shock is just slightly downstream of the throat in order to minimize the strength of the normal shock and the total pressure loss across it. However, this position is very sensitive to the back pressure. Any perturbation downstream can cause the normal shock to be disgorged (“to pop out”) and move to a position forward of the lip, un-starting lip. The mixed compression inlets usually have vents in the subsonic diffuser to control the back pressure and thereby the location of the normal shock. These vents can also be used to bypass the excess air in the inlet that cannot be accommodated by the engine. If this excess air is not bypassed it must be spilled ahead of the inlet causing the mixed compression inlet to un-starting.

   The mixed compression inlet, sometimes called an internal contraction inlet, must have a variable geometry feature in order to obtain peak performance. The compression ramps will be able to fold down giving a little smaller inlet throat area in order to swallow the normal shock and locate it in the subsonic diffuser. Once the inlet is started, the throat area must be decreased much more so that the normal shock may locate just downstream of the throat for minimum total pressure loss, depending on Mach number.
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Fig. 2.4.3.1 Types of inlets operating at supersonic “Design” Mach numbers

2.4.3 (b) The corresponding features of the ARCC engine : In the ARCC engine, the rocket exhaust gas plume plays important roles fluid-dynamically in stead of the mechanical compressor and the inlet of the turbojet engine. Fig. 2.4.3-2 shows a horizontal view of ARCC engine of Fig. 2.3.5 (b) by adding the transpiration cooling of the wall by means of hydrogen fuel, where mhwc1 and mhwc2 are mass flow rate of hydrogen coolant before the mixing zone and at the combustion zone, respectively. If the flight Mach number is low, the active cooling area will be limited to the area between the station number 2 and 5 because of rocket exhaust gas and air/fuel combustion. If the flight Mach number is very high, the active cooling area should be covered the whole exposed surfaces to the very high enthalpy flow. 
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Fig. 2.4.3.2 Horizontal view of ARCC engine

The most important functions of the rocket exhaust gas plume are ejector effect for the incoming air, air compression through mixing with the incoming air. The mixing is very important for combustion with the excess hydrogen fuel of the rocket exhaust gas as well as with the hydrogen fuel wall coolants. The increase of pressure at the process of mixing and combustion is essentially needed for expansion to the ambient atmosphere. In the supersonic turbojet flight speeds such as flight Mach number about 1.5-3.5, the rocket exhaust gas plume induces the Mach disks (normal shock waves; normal-shock-train) in the station 1-3 for adjustment of the main stream static pressure to an optimum combustion static pressure at the station 4. The normal-shock-train is a phenomenon of repeating of normal shocks and following re-expansions in a supersonic duct flow, where the boundary layers on the walls play important roles in the formation. The rocket exhaust gas plume in the ARCC engine should be an under-expanded supersonic flow. An under-expanded rocket exhaust gas jet is schematically shown in Fig. 2.4.3.3. An under-expanded jet flow generates fee jet boundary adjusting the ambient incoming air flow (station number 2-3). The free jet-boundary separates the incoming air-flow from the rocket exhaust gas flow, if the entrainment air flow into the rocket exhaust gas flow into the free jet-boundary layer is neglected because that the thickness of the free jet-boundary is very narrow. In the subsonic, transonic and low supersonic flight speeds, generally, an incoming air-flow into the station number 2-3 is subsonic (for a low supersonic flight, normal shocks stand in the fore flow of the station number 2) and the static pressure is lower (for a low supersonic flight, the normal shocks reduce the stagnation pressure of the incoming free air flow) compared to the ambient atmospheric pressure in front of the air/rocket-exhaust-gas mixing (i.e., ejector effect of the rocket plume), therefore, the normal- shock-train follows in the down stream. The phenomena are very complicated, therefore, here in this paper, only one Mach disk is assumed to describe the following down-stream phenomena.
   This one Mach disk model can describes well physical states of the down-stream of after several repletion of normal-shock-train. After the first Mach disk, the exhaust gas flow repeats re-expansion and re-compression, in the processes, induced violent turbulences build up turbulent shear/mixing layers. The turbulent shear/mixing layer plays important roles in combustion. The mixing raises the pressure of the incoming air flow instead of a mechanical system, and simultaneously plays roles of a starter, igniter, and flame holder of the turbojet engine. 
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Fig. 2.4.3.3 Under-expanded jet flow 

The Mach disk plays important roles in the subsonic, transonic and low supersonic flight speeds, then, the stability of the Mach disk is most important, because it is against the propagation of pressure disturbances to the fore-subsonic-stream. The pressure disturbances are easily induced in the down stream specifically during mixing and combustion. The stability of the Mach disk is especially important for the transonic air flow at the station numbers 1-3, because the propagation of the pressure disturbances that would be occurred in the down-stream is different for a subsonic from for a supersonic flow. The condition corresponds to transonic and low supersonic flight speeds, in which flight regions, the turbojet engine requires mechanically sophisticated three kinds of inlets as described previously, while the rocket plume of the ARCC engine plays the roles of them by the Mach disk fluid dynamically. The momentum losses of the engine internal flow are mainly due to boundary layer growths on the internal walls and aerodynamic drags of struts. The aerodynamic drag of the strut should be referred to the aerodynamics of the vehicle in the Chapter 3 Section 8. The boundary layer development is closely related with the transpiration cooling which is very important for the ARCC engine, then, the boundary layer and the transpiration cooling will be discussed later in Section 2.8.
Mach Disk　Fig. 2.4.3.4 shows a schematic sketch of the rocket exhaust gas flow with a single Mach disk in the ARCC engine. The free jet-boundary separates the entering air flow at the station 2-3 from the rocket exhaust gas plume as stated previously. State properties of the fore and down stream of a Mach disk are described by normal shock wave relations. Assuming that the mixing of air with rocket exhaust gas begins just after the first Mach disk and the static pressure balance must be kept as p3a=p3rc because of the jet boundary condition, then V3rc’>V3a and p3a<p2a in the subsonic, transonic, and low supersonic flight speeds.
Ejector Effects　The velocities condition induces the higher V3a due to viscous effects of the free jet boundaries than of the flow path area reduction of Bernoulli Equation due to the rocket plume, and therefore, the lower static pressure of p3a will be induced. This is an ejector effect of the rocket plume, and the effect pumps up the inlet air into the mixing zone of the ARCC engine increasing the total pressure of the incoming air flow into the mixing zone. The ejector effect becomes larger if the velocities difference becomes larger; therefore, the ejector effect will be the maximum when the engine is at the ground-level static condition before takeoff.
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Fig. 2.4.3.4 Rocket plume and free jet boundaries with a Mach disk (v3rc’>v3a)
Starting and re-starting The turbojet engine has a stating system. There exist various kinds of systems such as electric motor, pneumatic starter, mechanical link starter driven by the auxiliary onboard power unit, and direct impinging starter in which the high pressure air is directly blown into the turbine from the pneumatic source (ground based, or onboard, or by the extraction from the other running engine-compressor). Any of them needs provision of a sophisticated mechanical system with the turbojet engine. The above stated ejector effects of the ARCC engine, however, induces the ambient air into the engine if the rocket engine is started by means of the conventional rocket engine method raising the pressure of the air/fuel combustion chamber with the mixing, then, the ARCC engine is easy to start not only for the static condition at takeoff but also during the non-powered flights of subsonic, transonic, and low supersonic, exactly as the re-starting of the conventional rocket engine during coasting flight. The re-starting mechanism of the ARCC engine is such that the normal shock will be swallowed (“pop in”) by the ejector effect of the rocket plume for the engine-off condition during transonic or low supersonic non-powered (coasting) flight. 

   The inlet configuration of a turbojet engine for supersonic flight is required a sophisticated design. As it is easily understood from Figs. 2.3.2 and 2.3.5, the inlet of an ARCC engine is basically that of external compression of the turbojet of Fig. 2.4.3.1-b. Because the ARCC engine does not limit the entering Mach number in front of the mixing, there is no variable geometry problem such as the supersonic-subsonic diffuser of the supersonic turbojet engine inlet. 

Mixing and air/fuel combustion　After the first Mach disk, the exhaust gas flow repeats re-expansion and re-compression, in the processes, induced violent turbulences build up turbulent shear/mixing layers. The turbulent shear/mixing layer generates vortices due to large velocity differences which accelerate the interfacial diffusion, generate fully micro-mixed regions, and induce exothermic chemical reactions, i.e., combustion. In the subsonic flight speeds, the air-ram pressure is not so high, the stagnation pressure increase through the mixing by means of high rocket combustion chamber pressure. This mechanism is only one way for keeping enough stagnation pressure of the exit of the air/fuel combustor (station number 5), and therefore, some over-expansion problem might occur in the expansion nozzle flow. If the stagnation pressure is enough high for a supersonic expansion to the ambient pressure, an external engine flap will support the mechanism. A two-dimensional configuration of the ARCC engine is preferred for a controllable external engine flap, because of structural mechanically easier. 

   The over-expanded nozzle flow induces separations on the external nozzle flow, which will cause a stability problem of the vehicle’ attitude control, however, the over-expanded nozzle flow can be limited only to the ground-run operation of the vehicle if the matching of the ARCC engine integrated vehicle is well designed. This problem will be easier for the attitude control specifically during the ground-run operation (refer to Chap. 4. Sec. 1).

Trans-sonic and Low Supersonic Flight Speeds The low supersonic flight speed of this section means such that; if the rocket plume velocity just behind the Mach disk is much faster than the speed of the air flow at the station 3 as V3r’>>V3a, the ejector effect of the rocket plume is large. Ejector effects, mixing and air/fuel combustion are exactly similar to those of subsonic flight because the related air flows of M3a and M3r’ are subsonic. The specific problems to be discussed for these flight speeds are effects of momentum losses and stability of Mach disk.
Effects of Momentum Loss　It was stated previously that the momentum losses are mainly due to boundary layer growths on the internal walls and aerodynamic drags of struts. The latter has maximum value in the transonic air flow at the station numbers 1-2 (refer to Chap. 3 Sec. 3 and Sec. 7). The growth of boundary layer will be described in the Section 8 of this chapter; there the development of it on the internal wall of an engine main flow is better described by the turbulent boundary layer than the laminar. The development of the turbulent boundary layer is expressed by the thickness δ, which is given in a smaller exponent of the Blasius formula for the smooth pipes of circular cross-section to the flat plate as2.4.8
δ(x)
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 0.37x4/5(μ/ρV)core1/5                      (2.3.4.2)

where μ is the coefficient of viscosity and (ρV)core is the mass flow rate per unit flow-path area of the core stream. If the transpiration cooling is applied to the wall, the growth of the boundary layer thickness is bolstered. Along a constant dynamic pressure flight path as q∞=constant, (ρV)∞=2q∞/V∞, which is inversely to flight speed, however, (ρV)core is different in the ARCC engine flow because of much added mass. The actual (ρV)core of the ARCC engine does not decrease so much in the very high flight speeds. The maximum μcore is mainly determined by the static temperature of the air/fuel combustion T5, which is in a moderate temperature. Therefore, the thickness of the turbulent boundary layer on the engine internal wall can be designed within a moderate value. Then, the mass, momentum, and energy losses due to the boundary layers also can be moderately designed by the engine geometry.
Stability of Mach Disk　When the flight speed is subsonic, the incoming air flows are subsonic in the ahead of the Mach disk. In this condition, if the static pressure small disturbance, ±
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p, occurs at the mixing or in the air/fuel combustor, it propagates to the up-stream because of subsonic main stream. For either case, the Mach disk of Fig. 2.4.3.4 goes back or downward depending on the signs of ±, then, the mass flow rate of the incoming air decreases or increases, which tends to suppress the growth of the disturbance. If the flight speed is supersonic such that the normal shock stands at the station 1-3, the incoming air flows are still subsonic in the ahead of the Mach disk, therefore, the above stated discussion is also applicable to this flight speed. However, if flight speed is at a higher supersonic, there could appear such a condition that normal shock appears in the air stream between the exit of the rocket and the first Mach disk of the rocket exhaust gas plume as shown in Fig. 2.4.3.5. If the above stated disturbance occurs in the downstream, the first Mach disk of the rocket plume also goes back or downward depending on the signs of ±, however, the mass flow rate of the incoming air does not change for the either case, while the normal shock of the air stream behaves similarly with the Mach disk, as far as the normal shock of the air stream stays between the exit of the rocket and the first Mach disk of the rocket exhaust plume. Because the up-stream air stream is supersonic, the mass flow rate of the incoming air does not change. That is, the rocket plume plays automatically and fluid-dynamically the roles of the inlets described for the turbojet engine in Fig. 2.4.3.1-a, -b, and -c, without variable geometry of the ARCC engine.

When M3a=1, such condition is very interested in because many references2.4.3, 2.4.4 of the ejector rocket engine were dealt with this condition. If we suppose to apply this condition to Fig. 2.4.3.4, the small movement of the first Mach disk is similar to the above stated small pressure disturbances such that the incoming air mass flow decreases to the +Δp in the downstream and increases to the –Δp, therefore, the function of the first Mach disk is for stabilization to the pressure disturbances in the downstream. If the first Mach disk does not exist at the station 3 and M3a=1 as supposed in the references2.4.3, 2.4.4, it will correspond to the mixing of the supersonic air flow with the supersonic rocket exhaust flow, which occurs only during supersonic and hypersonic flights, those require the geometrically variable inlet. It must be remembered that the ejector effects of the rocket plume are efficient only for the low flight speeds region such that V3r’>V3a. The mixing of the supersonic incoming air flow with the supersonic rocket exhaust flow without the Mach disk will be discussed in the following parts of Sec. 2.4.4 and Sec. 2.4.5.
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Fig. 2.4.3.5 Stability of Mach disk 

2.4.4 Comparison with the Brayton Cycle Ramjet Engine
   It was stated in the former section that the current turbojet engines are operable for flight Mach numbers until about 3.5 and those are required the sophisticated inlets. The Brayton cycle engines are only ramjet and scramjet engines for the higher flight Mach numbers, which are still in the research and development phases. The operable limit of the ramjet engine is supposed to be under the Mach No. of 6. Beyond the Mach number, scramjet engine should be compared with the ARCC engine. The comparison of the ARCC engine with the ramjet engine is described in this section. Firstly the specific features of the ramjet engine will be described. Later, the corresponding functions of the ARCC engine are discussed.   
2.4.4 (a) Specific features of the ramjet engine : The ramjet engine is basically described by the Brayton cycle analysis as well as the turbojet engine. Ramjets are the engine of choice for flight in the Mach number range 3-6, and are predominantly used for supersonic flight. Because the supersonic flight of such a high Mach number generates a very high total pressure. In contrast to the turbojet engine, therefore, the working cycle is accomplished by means of fluid dynamic compression of the working fluid through normal shocks instead of the mechanical compression. Fig. 2.4.4.1 shows a schematic of ramjet engine. Note that ramjet engines are not necessary to be axial symmetric about a centerline because they contain no rotating machinery. In fact, it is often convenient to make the outside surface of the vehicle serve as the inside surface or boundary of the engine. The fluid dynamic compression of the entering air flow is called as a total (ram) pressure recovery which is usually carried out in several steps.
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                      Fig. 2.4.4.1 Schematic of the Brayton cycle ramjet engine

   The first step is by the fore-body of the vehicle or of the diffuser generating one or more oblique shock waves as the supersonic inlet of the turbine engine. The second step is by a convergent section of the diffuser which decelerates the supersonic flow. The third step is by a divergent section of the diffuser which transforms the supersonic flow into subsonic flow through normal shock waves, and further decelerates the subsonic flow in a divergent section. This third step is called that the shock wave snaps into or “swallowed” by the inlet and the ramjet engine is said to be started. This duct flow is expressed in another way by supercritical. The position of the normal shock wave in the flow-path depends on the back pressure due to downstream conditions. The Mach number at the throat of the diffuser is a minimum such as Mt≧1. The flow must be made subsonic before entering the burner in the ramjet engine, beginning with normal shock waves located downstream of the throat.

   If the position of the first normal shock wave is close to the throat (e.g. a very low Mach number), the normal shock is easily “popped out” or “disgorged” due to the pressure perturbation in the downstream, i.e. “un-starting”. If the position of the first normal shock is located in an enough downstream side (e.g. a higher Mach number) to absorb the effects of the pressure perturbation in the burner section, the total pressure loss becomes greater, and the engine performance poorer. If a fixed geometry inlet is adopted for a ramjet powered accelerator in supersonic flight speeds, the flight Mach numbers region will be limited in a narrow area, and the inlet might be designed for an optimal geometry to the “normal shock wave swallowed; pop in” condition of the ramjet engine. In an off-design flight speed, the engine performance will rapidly deteriorate because the entering air mass flow rate decrease, while the engine will be “normal shock is swallowed; starting” in a lower flight Mach number region. Therefore, a variable geometry for the diffuser is required for a ramjet engine specifically for an accelerator from the starting flight Mach number to a very high flight Mach number in order to keep the Mach number at the throat of the diffuser, Mt, to be a tolerable value for the full range of flight Mach numbers. The structural body design of an accelerator vehicle usually requires a constant flight dynamic pressure trajectory, which tends to decrease the entering free stream air flow even if the inlet diffuser is a variable geometry type. The total pressure at the combustion chamber, however, increases as well as that of the entering free stream air flow at the inlet due to the increasing flight Mach number. This means that a variable geometry exit nozzle is also required for the matching of the entering and exhausting streams. 
It must be noted here that the boundary layer affects the fluid dynamic compression system to the terminal normal shock wave. The effects clearly require an analysis that is not only much more complex but also specific to a given configuration. The results would therefore be correspondingly less transparent and general. As far as the oblique shock wave system plus terminal normal shock wave is concerned, the tendency would be for the oblique shock waves to decrease the Mach number just upstream of the normal shock wave, and thus increase the static pressure of the fore stream of the normal shock wave. The mass and momentum losses due to the boundary layer would also tend to reduce the average Mach number just upstream of the normal shock wave. The severe influence of the boundary layer is to displace the flow-field away from the compression surface, a phenomenon often picturesquely referred to as boundary-layer-blockage. The presence of the blockage reduces the through-flow areas available at the inlet face and throat to “effective” sizes that are less than their purely geometrical dimensions. Thus, all other things being equal, the free stream capture area and engine thrust are reduced in direct proportion to the effective throat through-flow area. This condition will be greatly aggravated in sub-critical operation if the terminal normal shock wave also separates the boundary layer upstream of the inlet face, causing a substantial increase in the downstream blockage. Provision is therefore often made to remove (by means of bleeds or diverters) the boundary layer in the neighborhood of the expected location of the terminal normal shock in order to avoid that possibility.

   The flight speed limit of ramjet engines is another problem, different from the “starting” and ”un-starting” of the Baryton cycle scramjet engine. In order to discuss the flight speed limit of the Brayton cycle ramjet engine, the quantum and chemical states of molecules should be stated. Supposing a bow shock wave in front of a hypersonic vehicle, the gas molecules that pass through the bow shock wave are exited to very much energy modes such as quantum mechanical (vibrational) and quantum-chemical (dissociated) modes. A large amount of the energy that would have gone into increasing the static temperature behind the normal shock wave is used instead to excite the vibrational energy levels or to dissociate the gas molecules. The dissociated molecules take part hardly in chemical reaction to release chemical energy (combustion) as well as transport the internal energy into the fluid dynamic property such as expansion velocity (non-equilibrium).

The dissociation characteristics of air depend on the ambient pressure and the temperature. For the Brayton cycle ramjet engine, the stagnation pressure behind the bow shock wave of a vehicle is varied from several to a little over ten atm along a reasonable dynamic pressure trajectory. In these ambient conditions, the oxygen dissociation begins from about 1800-2100 K of the stagnation temperature and the nitrogen dissociation from 3000-5500 K2.4.9. The condition of nitrogen dissociation beginning corresponds almost to the completion of the oxygen dissociation.

The heat addition process of the Brayton cycle ramjet engine is basically carried out at the ram pressure which is very close to the stagnation pressure of the entering air flow. Therefore, the static temperature of the entering air flow into the burner is almost that of the free flight ambient stagnation temperature, even if the inlet is adjusted sophisticatedly to the flight condition. Because of the dissociation of air, the speed limit of the Brayton cycle ramjet engine2.4.10 is believed to be about M ≈ 6. Scramjet engines are required beyond these flight speeds because the static temperature of the entering air flow at the inlet of the combustor becomes to be lower due to the supersonic flow. 
2.4.4 (b) The corresponding features of the ARCC engine : The specific features of the Brayton cycle ramjet engine are summarized as the requirement of variable geometry for inlet and exit nozzle, the boundary-layer-blockage, and flight speed limit due to the air non-equilibrium problem. If normal shock waves or normal-shock-train exist in the ARCC engine main flow in the station 1-5, except the Mach disk of the rocket exhaust gas flow, the fluid dynamical state of the ARCC engine corresponds to the Brayton cycle ramjet engine mode. The corresponding flight speeds region of the ARCC engine is about M∞=2 - 5. It must be noted that the initiation of the ramjet mode as well as the transition into the scramjet mode of the ARCC engine is earlier due to the rocket exhaust gas plume than those of the conventional Brayton cycle ramjet engine. The Mach disk of the rocket exhaust gas plume also plays various roles in the ramjet modes of the ARCC engine.

   As previously discussed the stability of the Mach disk of the rocket plume in the Sub-Section 2.4.3 (b), the normal shock wave of the entering air flow stands at the station 1-2 or that of the main stream at the station3-5 (the later phases of the ram modes) because of fluid dynamic mechanism of the Mach disk of the rocket plume. If M∞ ≈ 2.0-2.6, a normal shock wave stands at the station 1-2, and if M∞ ≈ 2.6-5.0, a normal shock wave stands at the station 3-5. As long as a normal shock wave stands at the station 1-2, the role of the Mach disk of the rocket plume is exactly same as those of the subsonic and transonic flight speeds of Fig. 2.4.3.4. If M3a>1, the mixing will start from the station at which the static pressures along the jet boundary as p3a=p3r, then the Mach disk will disappear as shown in Fig. 2.4.4.2. If the static pressure of the down stream increases as p4 or p5> p3a or p3r, normal shocks will appear some locations in the station 3-5, which goes back if the boundary layers in the stations could not resist the going-back the shocks, i.e., no normal-shock-train, the Mach disk will again reappear as Fig. 2.4.3.4, while M3a>1. 

   The function of an inlet-throat of the Brayton cycle ramjet engine is performed by the size and the velocity of the rocket plume in the ARCC engine. The size of the rocket plume is fluid dynamically adjustable by means of rocket engine combustion pressure pr and the velocity of the rocket plume partly by the O/F ratio. If well matched operational conditions are selected for the rocket engine with respect to the air inlet area, an optimum inlet configuration is easily and fluid dynamically obtained for various vehicle ramjet modes depending on the flight conditions of the ARCC engine. Therefore, the ARCC engine also does not require any variable inlet configuration. Because V3r’>>V3a for the situation in Fig. 2.4.3.4 and V3r>>V3a in Fig. 2.4.4.2, the ejector effects of the rocket plume are still dominant in these flight speeds. The ejector effects assist not only for “normal shock swallowing”, then the starting flight Mach number of the ramjet mode in the ARCC engine is earlier, but also the swallowing the boundary layer in the fore flow field of the rocket plume. The same reason makes to be earlier the “starting” of scramjet mode than the conventional Brayton cycle scramjet engine, which will be discussed in the following Sub-Section.
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Fig. 2.4.4.2 Rocket plume without Mach disk

   The summarized specific features of the Brayton cycle ramjet engine, such as the requirement of variable geometry for inlet, the boundary-layer-blockage, and flight speed limit due to the air non-equilibrium problem, are easily solved by the rocket plume in the ARCC engine, fluid dynamically without variable geometry. 

2.4.5 Comparison with the Brayton Cycle Scramjet Engine

2.4.5 (a) Specific features of the Brayton cycle scramjet engine: The conventional scramjet engine is basically described the performance by the Brayton cycle analysis. When the flight Mach number exceeds about 6, the dissociation effects of the entering air flow in front of the burner does not give advantages to decelerate the flow to subsonic velocities as previously stated in Sub-sec. 2.4.4. (a). Depending upon flight conditions and details of the diffuser operation of the Brayton cycle ramjet engine, the adverse consequences can include pressures too high for practical burner structural design due to very high total pressure of the incoming air flow, excessive performance losses due to the normal shock wave system, excessive wall heat transfer rates, and combustion conditions that lose a large fraction of the available chemical energy due to dissociation. 

   In order to avoid this problem, the static pressure should be recovered to a reasonable value before the burner without the normal shock waves, because the combustion requires the reasonable static pressure levels. If the static pressure of the combustor is very low, a much longer chamber length is required for procuring enough combustion. By means of multiple ramps of the external fore-body together with internal ramps of the inlet in front of the burner for generating oblique shock waves, partial compression of the entering hypersonic air flow could be realized to decelerate the incoming air flow and to increase the static pressure, with the result that the flow entering the burner is supersonic, i.e. supersonic combustion ramjet or scramjet. Fig.2.4.5.1 shows a schematic of s planar geometry of the Brayton cycle scramjet engine. The supersonic diffuser is still required by reducing the cross sectional flow area three-dimensionally for some of the desired compression and deceleration.

   The flight Mach numbers range of the conventional scramjet engine is supposed to be 6-10. Assuming the flight dynamic pressure of 0.3 atm along the trajectory, such flight Mach numbers range corresponds to from ambient pressure of 0.01 atm at altitude of about 30 km to 0.004 atm at about 38 km. If a desirable static pressure is higher than 0.3 atm in the supersonic combustor, the compression ratios of the static pressures will be 30 to 75. In order to achieve this kind of variation for compression ratios, variable geometries for inlet ramp angles as well as cross sectional areas are required depending on the flight conditions. However, both of the internal engine exit nozzle and external flap are not required because the exit flow is already supersonic.

   The heat loads are highest in the burner, primarily because of the combination of the high energy of the oncoming flow and the local high gas density due to compression, rather than to the ongoing combustion. The limit of the flight velocity is determined by the maximum exit exhaust velocity. Eq. 2.4.5.1 shows an ideal exit velocity if ( )r and the specific heat ratio of Eq. 2.2.3 are replace by the stagnation condition of the exit exhaust gas as and that of the station 5, respectively, 
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[image: image67]
　　　Fig. 2.4.5.1 Schematic of a planar geometry of the Brayton cycle scramjet engine
The ideal stagnation temperature at the station 5 (T5s) is due to the summation of the entering air flow stagnated enthalpy and the released chemical energy by the combustion. If the flight speed of a hypersonic vehicle increases the speed along a constant flight dynamic pressure trajectory, the stagnation temperature of the incoming air-flow increases exponentially with the flight Mach number, however, the ratio of the released chemical energy by the combustion to that decreases rapidly. The reasons are because the amount of the released chemical energy is determined only by the mass flow rate of the oxygen of the air constituents, and the entering air mass flow rate decreases for the higher flight Mach number. Further, the pressure and energy losses become greater depending on the engine flow local Mach number. The energy loss decreases the stagnation temperature at the station 5 (T5s) as well as the momentum loss decreases the stagnation pressure at the station 5 (p5s) in Eq. (2.4.5.1) than the free stream stagnation state. Therefore, we can not expect a higher exit velocity of the exhaust nozzle, Ve, than the free stream speed. The thrust becomes lower, finally does not produce any effective thrust by the conventional Brayton cycle scram jet engine.
   If the total temperature at the station 5 is expressed according to the above stated as T5s = T∞s +ΔHcombustion/cp5s = T∞s + ΔTcombustion, then, Eq. 2.4.5.1 can be rewritten as
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       (2.4.5.2)
where T∞s and ΔTcombustion are the stagnation temperature of the free air stream and the temperature increase due to the combustion, respectively. BecauseΔTcombustion becomes to be much smaller than T∞s at the close of the flight speed limit of the Brayton cycle scram jet engine as ΔTcombustion << T∞s, Eq. 2.4.5.2 can be rewritten approximately as 
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    (2.4.5.3)

Because p∞/p5s are about the same orders of the corresponding atmospheric pressures 0.01 – 0.004 considering the combustion pressure for the flight envelope of the Brayton cycle scramjet engine, the term [2/(γ-1){1-(p∞/p5s)(γ-1)/γ}]1/2 of Eq. 2.4.5.3 does not change so much. The term of [γ5s ℛT∞s /m5s]1/2 is almost equal to that value of the entering air flow, because the specific heat ratio and the mean molecular weight of the entering air flow do not change so much compared with those of the exit gas flow at the combustor. Then, Eq. 2.4.5.3 can be also expressed as
Ve ≈ V∞ (1+1/2 ΔTcombustion/ T∞s)                     (2.4.5.4)
That is the ideal exit gas velocity approaches to the free flight speed in the very high flight speed region. If the momentum loss and the heat loss of the engine main stream overcome the combustion energy, then, the engine could not produce any of the effective thrust.
If a free flight Mach number exceeds about eight, the added energy by the combustion will be lost by heat transportation through the convection and radiation, and the momentum of the engine main stream will be also lost by the viscous effects through the boundary layer growth as well as the aerodynamic drags of the struts. Actually, an ideal exit velocity of the exhaust gas to the ambient pressure becomes to be lower than the free flight speed in this high flight speed. The stoichiometric mixture ratio of hydrogen fuel to air is about 0.00292, i.e. 0.3 percent of the air mass flow rate. This means that the change of molecular weight is 0.3 percent at the maximum during the processes from the entering air flow into the exhausting gas flow, and the increase of the first term of Eq. (2.4.5.1) is only 0.15 percent at the maximum. Even if the added mass flow rate of fuel injection (fuel rich) is taken into account, an ideal exhaust gas exit momentum becomes lower than that of the entering air flow because the excess fuel injection induces drags to the engine main flow while the reduction effect of the exit mean molecular weight is not so large. The maximum flight speed limit of the conventional Brayton cycle scramjet engine is supposed to be a flight Mach number of about ten.
2.4.5 (b) The corresponding features of ARCC engine: The conventional scramjet engine also needs a variable geometry for the supersonic inlet, and there exists a speed limit due to the exhaust gas expansion velocity to the ambient pressure. The scramjet mode of an ARCC engine is also described by the use of Fig. 2.4.4.2; however, there exists the oblique shock train instead of the normal shock train in the down stream at the station 4-5 for the ARCC engine scramjet mode.
Starting of Scramjet　It was discussed previously the stability of the Mach disk of the rocket plume in the lower flight Mach numbers as well as the role of the normal shock train in the station 4-5 in the ram mode. If the oblique shock train in the station 4-5 could support the pressure perturbation in the down stream by resisting against going-back with normal shock waves, then, the scram mode operation of the ARCC engine starts. If the flight speed of a vehicle becomes much higher, e.g., M∞>5, the ARCC engine shifts into the scram mode, and the scramjet starts at a little lower flight speed than the conventional Brayton cycle scramjet. This reason might be partly due to the ejector effects of the rocket plume and mainly due to the much higher additive high velocity momentum of the rocket plume to the engine main stream, which compensates the losses generated in the engine stream.

Supersonic Diffuser　The rocket exhaust gas plume plays fluid-dynamically a role of supersonic diffuser for the entering supersonic air flow into the mixing and combustion. In order to achieve this purpose, a sophisticated and optimal configuration of the ARCC engine geometry and the adaptive operation of the rocket engine are required. Those are specifically such that the width ratio of the strut to the unit air intake width, the width of the throat and the expansion ratio of the rocket nozzle, and the adaptive operation of the rocket engine such as the combustion pressure and the O/F, for every flight speed of the takeoff (static), subsonic, transonic (turbojet-mode), low supersonic (ramjet-mode), high supersonic and hypersonic (scramjet-mode). If the operational conditions of the rocket engine are well matched to this engine configuration, no variable geometry is required for the ARCC engine. 
Mixing and Combustion　When the flight speed is about fourteen, M∞ ≈ 14-15, the velocities of the air and rocket exhaust gas at the station 3 closes each other, i.e. V3a ≈ V3r, which tends to weaken the growing of the turbulent shear/mixing layer. The most probable velocity of the Maxwell distribution of the hydrogen molecules surrounding the rocket exhaust gas plume (i.e., diffusion velocities), however, closes to those velocities of the air and rocket exhaust gas at the station 3. The author supposes that if additional some methods are applied, this problem of the ARCC engine will be easily solved, and those should be for encouraging the mixing such as fuel high speed transversal injections into the main stream, in these flight speeds. Beyond these flight speeds, the velocity of the entering air flow becomes higher than that of the rocket exhaust gas before mixing. The turbulent feature of the shear/mixing layer will be different as shown in Fig. 2.4.5.2 from Fig. 2.4.4.2, however, this change does not affect the mixing because the mixing mechanism of the air with the rocket exhaust gas is due to the vortex train induced by the viscosity.
               
[image: image70]
Fig. 2.4.5.2 The velocity of the incoming air is higher than that of the rocket exhaust gas

2.4.6 Flight Speed Limits of the ARCC Engine

In the Brayton cycle conventional scramjet engine, the flight speed limit is theoretically determined by the cycle analysis. Because of the too high stagnation temperature of the incoming air flow (working fluid) compared with the combustion energy (which generates thrust), the exhaust velocity of the engine approaches to that of the flight speed (refer to Eq. 2.4.5.4) at the flight Mach number of 8 as previously stated. It was also stated that; if the fuel hydrogen is injected to the engine main stream by a higher level of the stoichiometric fuel/air ratio, the average molecular weight decreases and the mass flow rate increases (although the assumptions of the Brayton cycle are violated), the effects are expected to extend the flight speed limit of the Brayton cycle scramjet engine to about flight Mach number of 10.

The ARCC engine adds the reasonable mass flow rate, the very high momentum, and the thermal energy of the rocket engine to the incoming air flow, therefore, the above stated problems concerning with the Brayton cycle scramjet engine will be improved by the rocket plume. The added mass flow rate increases reasonably the momentum of the engine exhaust gas flow. The added very high momentum compensates the momentum loss due to the viscous effects of the boundary layers as well as the drags of the struts. The added energy of the rocket engine decreases the stagnation temperature of the combustion flow because that the rocket engine combustion temperature is lower than the stagnation temperature of the incoming air flow for the flight Mach numbers of higher than about 8. This effect tends to compensate the energy losses due to the heat transfer of the convection and the radiation. Therefore, the generated thrust does not decrease drastically as the conventional Brayton cycle scramjet engine in the high flight Mach number region beyond 10. 
Many theoretical and experimental studies have been carried out for the shear stress of the turbulent boundary layer, which report that the skin-friction can be expressed by a function of the local Reynolds number, Mach number, and the ratio of the stagnation temperature of the free stream to the local wall temperature, and the experimental results are well arranged by those parameters. The results show us that the skin-friction coefficient decreases for the increase of the Reynolds number as well as the free flow Mach number for the very broad ranges of the flight speeds2.4.11 including the flight speed limits of the conventional Brayton cycle scramjet engine and those of the much higher limits of the ARCC engine. The drag of the strut will be described by the experimental and analytical data of the aerodynamics which will be stated in the next chapter, Sec. 3.3 and Sec. 3.7, however; the drag also decreases in the higher flow Mach number beyond the transonic and the low supersonic flow. The results suggest that the momentum losses due to the turbulent boundary layer as well as due to the drags of struts in the ARCC engine main stream tends to decrease in the higher flight Mach numbers region beyond the conventional Brayton cycle scramjet engine.
The flight speed limits of the ARCC engine might be due to the mixing, combustion, and expansion. The limit due to the turbulent shear/mixing layer at flight Mach numbers M∞ ≈ 14-15, and the counter measure of this problem are stated above. If the flight Mach numbers are about M∞ ≈ 20-21, the static pressures at the station 4 and 5, p4 and p5, becomes minimum values. These pressures are determined by the flight dynamic pressure and by the rocket engine combustion pressure. The flight dynamic pressure is calculated from the altitude and the speed of the vehicle in the flight trajectory. Therefore, the static pressures at the station 4 and 5 will be determined by the ascent trajectory guidance of the vehicle and by the control of the rocket engine. These static pressures are also deeply related with the combustor length. If the length is well admittable to the induction time (which will be described later in Sec. 2.7.4) required for the ignition and combustion of the air/fuel combustion, the ARCC engine will be operable beyond the flight Mach numbers of bout M∞ ≈ 20-21. If the combustion length is not enough for the induction time, another flight speed limit of the ARCC engine will be under bout M∞ ≈ 20-21. Beyond this critical flight speed region, the ARCC engine powered SSTO vehicle flies in to the final phase of the air-breathing engine powered flight, there, the static pressure problem will be improved because of the final high dynamic pressure ascent and accelerating trajectory. 

The mixing of the ARCC engine corresponds to the compression process of the Brayton cycle. The flight speed limit of the Brayton cycle ramjet engine is due to the dissociation of the entering air flow, specifically dissociation of the oxygen molecules, at the subsonic diffuser and at the entrance of the air/fuel combustion as stated in 2.4.5 (a) Specific features of the Brayton cycle scramjet engine. This problem will exactly determine the final flight speed limit of the ARCC engine scramjet mode. The partial dissociation of the oxygen molecules of the air begins in such a condition that the static temperature of the entering air flow becomes higher than 1600 Kelvin at the mixing (T3a > 1600 K), though it depends on the static pressure. The result decreases the efficiencies of the air/fuel combustion as well as of the exhaust engine nozzle. The final flight speed limit of the ARCC engine might be located to be in about the flight Mach number beyond twenty. 
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2.5 Integration of Engine and Vehicle

   Several flight experiments of the conventional ramjet and scramjet engines have been carried out mainly by means of rocket since 1960’. Proper aerodynamic integration of the ramjet or the scramjet into a vehicle was, however, crucial to success. It was found, for example, that making hypersonic engines axisymmetric and attaching them to the vehicle by means of pyrons or struts can produce enough external drag on the pyron and the cowl to virtually cancel the internal thrust, and creates internal passages so narrow that the flow is dominated by wall effects and difficult to manage. Furthermore, this configuration cannot easily capitalize on the vehicle surfaces for compression and expansion. Some flight experiments have been recently carried out by means of rocket flights by separating the test part after accelerating the vehicle to the mission speed; however, the integration of the engine has technical problems. If the starting of the engine is planned before the separation, the treatment of the exhaust gas becomes a troublesome problem. If the starting is planned after the separation, the attitude control of the test part during the un-powered flight. The recent scramjet experiment of the U. S. X43A was reported to be successfully flown at the Mach number 7 in March 2004, however the details of it is not opened. These problems are due to the previously discussed engine proper problem as well as the integration design of the engine into the vehicle. The ARCC engine should be for the SSTO mission, then, it has exactly the same problem for the whole flight envelope of the takeoff, subsonic, transonic, supersonic, hypersonic flights, and the final airbreathing operating phase of the ARCC engine.

   Because the airbreathing engine for the SSTO vehicle is required the acceleration capability, the effective thrust (the generated thrust – the aerodynamic drag of the engine axial direction) is a concerned measure. The effective exhaust velocity is determined such as the effective thrust divided by the required mass flow rate of the propellants; if the effective exhaust velocity is further divided by the earth gravity, which is the effective specific impulse of the airbreathing engine. Those measures are easily used for evaluating the mission capability of the SSTO vehicle comparing with the pure rocket powered vehicle. The aerodynamic drag of the engine axial direction is the summation of the engine axial components of the aerodynamic forces on the vehicle surface as well as the aerodynamic forces on the free jet-boundary as shown in Fig. 2.4.5.1. The summation of the perpendicular components is directly related with the aerodynamic lift force applying to the vehicle. The other forces are also applying to the vehicle such as the earth gravity and the centrifugal forces, the latter can not be neglected specifically in the hypersonic flight. Therefore, the ARCC engine performance should be evaluated in the form of the engine integration into the vehicle with flight performance. Such an evaluation will be discussed in the Chap. 5 FLIGHT PERFORMANCE OF AN ARCC ENGINE POWERED SSTO VEHICLE.

[image: image71]
Fig. 2.4.5.1 Forces acting to the ARCC powered vehicle
2.6 Mixing of Rocket Exhaust Gas with Incoming Air Flow

   The multiple roles of the rocket exhaust gas plume have been discussed in the previous sections. In this section, the analytical method to describe the mixing of the rocket exhaust gas with the incoming air flow is stated. In low flight speeds corresponding to the turbojet engine powered flights, velocities of the entering air flow into the mixing zone (station 3) are lower than that of the aft-Mach-disk of the rocket exhaust gas plume (i.e. V3a<V3r’) because of the very high rocket plume temperature. The phenomenon was described in 2.4.3 Comparison with the Turbojet Engine by Fig. 2.4.3-4. When the flight speed becomes higher, the velocity of the aft-Mach-disk of the rocket plume becomes smaller than the velocity of the entering air flow into the mixing zone (i.e. V3a>V3r’). The velocity differences are such as V3r>V3a and V3r’<V3a in for and aft of a Mach disk. Then, the small vortices become to be reverse in for and aft of the Mach disk along the turbulent shear/mixing layers along rocket plume interfaces as schematically shown in Fig 2.6.1. The phenomena occur about M∞>3.2, which is located in the border between the maximum flight speed limit of the turbojet engine and the starting of the Brayton cycle ramjet engine in 2.4.4 Comparison with the Brayton Cycle Ramjet Engine, however, which deeply depends on the ARCC engine such as the inlet geometry and operation condition of rocket specifically rocket chamber pressure. 
   The normal shock relation gives the static pressure of pr’ as following. 
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          (2.6.1)
If the rocket plume flow after the Mach disk V3r’ is accelerated by the turbulent shear/mixing layers due to the higher oncoming air flow V3a, the static pressure p3r’ decreases a little, then M3r increases according to Eq. (2.6.1), which means that the first Mach disk moves a little toward to the down-stream. If V3a>>V3r’, the Mach disk will disappear and such situation occurs at about M∞ ≈ 3.4 which exactly corresponds to the maximum flight speed limit of the current turbojet engine. It must be noted, however, that the Mach disk will reappear even for M∞>3.4, if the normal shocks are induced at a station between 4 and 5 because of mixing, combustion, and of boundary layers growth on the walls, and then the normal shock train can not resist in the station between 4 and 5, by means of changing the normal shock train pattern in the duct, against the increase of the static pressure in the downstream. These conditions correspond to the conventional Brayton cycle ramjet engine modes. If the Mach disk fully disappear in hypersonic flight speeds (refer to Fig. 2.4.4-2 and 2.4.5-2), and the mixing situations are discussed in sub Sec. 2.4.5 (b).


[image: image73]
Fig. 2.6.1 Small vortices along rocket plume interfaces

In this section, a mathematical model is described to estimate mixing for the prescribed mixing conditions with a Mach disk in the rocket plume (Fig. 2.4.3.4 and 2.6.1). Assuming a two-dimensional configuration of the ARCC engine, the width of the Mach disk is easily given by the normal shock relations of the rocket exhaust gas flow and the oncoming air flow for satisfying p3a=p3r, where b and bs are the pitch length of the strut and the width of the Mach disk which is assumed to be located at the beginning of the mixing in Fig. 2.6.2. The actual estimation method is such that supposing a location of the Mach disk, then, repeating the location to approach the assumed condition of the mixing such as the location of the station number 3 will be obtained by the iteration. This is schematically shown in Fig. 2.6.3. 

[image: image74]
Fig. 2.6.2 Mixing condition of air flow with rocket plume flow with one Mach disk


[image: image75]
Fig. 2.6.3 Iteration Method to determine the size of Mach disk at the mixing
In this process of estimation, the mass flow rate of the oncoming air is measured at the station 3 as,

 ma=ρ3aV3a(b-bs)eh                   (2.6.2)   
[image: image76.wmf]
and the mass flow rate of the rocket exhaust gas is
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   The complete mixing of this book is defined such that the summation of the oncoming impulse functions gives the final impulse function of the mixed flow. Therefore, the mixing coefficient is introduced to express the loss due to the turbulent shear/mixing layers. The station number 4 is defined such that the incoming air flow and the rocket exhaust gas flow are completely mixed until that station between station numbers 3 and 4. If the active cooling is applied to the inlet and strut walls by fuel hydrogen for the high flight speed region such that the adiabatic wall temperature becomes to be over the heat-resisting temperature of the structure and the materials, the incoming air flow must be modified by taking into account the mass flow rate of the coolants. If the flight Mach number will be over the Mach number 3.5, the current high speed turbojet engine requires the active cooling because the structure and the materials of the inlet are of the titanium and aluminum. The transpiration active cooling will be discussed later in Sec. 2.8.2. However, it is simplified in this section by neglecting the fuel coolants. 
Letting                     χ≡ma/mr                       (2.6.4)

The gas constants are given by

                   Cp4=(cpr+χcpa)/(1+χ)                     (2.6.5)

                   R4=(Rr+χcpa)/ (1+χ)                     (2.6.6)
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and                
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where 
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 are mean molecular weights of the air, rocket exhaust gas, and mixed gas, respectively.

   Energy equation gives 

                   m4cp4T40=macpaT0a+mrcprTr             (2.6.9a)

Using Eq. (2.6.4), Eq. (2.6.9a) can be expressed as

                   T04=(cpr+χcpaT0a)/(1+χ)/cp4              (2.6.9b)

here,               m4=ma+mr                           (2.6.9c)

   The impulse function can be expressed as (see Eq. 2.4.14)

I≡pA+ρAV2=pA+mV=m(RT/V+V)            (2.6.10a)
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where     ω≡V/
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and      ω
[image: image85.wmf]*

≡ 
[image: image86.wmf]1

1

+

g

-

g

                                   (2.6.12)

   At the station 4, the following equations are given,

For the lower flight speed region in which the Mach disk stands in the rocket exhaust plume,

                I4=ηMix(Ia+I3r’)                          (2.6.13a)

and for the high flight speed region in which the rocket exhaust plume has not any Mach disks,

                 I4=ηMix(Ia+I3r)                          (2.6.13b)

Equations (2.6.13a) and (2.6.13b) are quadric of the unknown parameter ω4, therefore, ω4 is easily solved. Here, ηMix is the coefficient of mixing.

   Ifω4D and ω4D‘ are defined as 

             2ω4D’ = ηMix 
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             2ω4D = ηMix 
[image: image88.wmf])

1

(

2

)

1

(

T

R

m

I

I

4

4

2

4

04

4

4

r

3

a

3

-

g

g

+

g

+

·

        (2.6.14b)

Then, Eqs. (2.6.13a) and (2.6.13b) are expressed as, respectively,

              ω42 - 2ω4D’ω4 + ω4*2 = 0                      (2.6.15a)

and

              ω42 - 2ω4Dω4 + ω4*2 = 0                       (2.6.15b)

When M4=1, the internal mass flow of the ARCC engine has a maximum after mixing, which is called choking. The impulse function I3rc’ expresses a situation of a with-Mach- disk mixing as seen in Figs. 2.4.3.4, 2.6.1, 2.6.2, and 2.6.3, while the impulse function I3rc expresses a situation of Mach-disk-less mixing as seen in Figs. 2.4.4.2 and 2.4.5.2. The choking condition occurs generally at about limit speed of the supersonic turbojet engine and the ramjet engine mode of the Brayton cycle, and (m4)* of Eqs. (2.6.15a) and (2.6.15b) becomes a maximum value. That is, m4 of the after mixing is smaller than (m4)* for a subsonic or a supersonic mixing flow. Because V3rc>>V3rc’, and I3rc>>I3rc’, therefore, ω4D >> ω4D’. It must be noted that (ω4)* gives a minimum value.

   The solutions of Eqs.(2.6.15a) and (2.6.15b) are given by
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As above discussed, both of 
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, i.e. the quadric equations of Eqs. (2.6.15a) and (2.6.15b) have real two solutions. 

   Because 
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For a condition of M4=1, 
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For a subsonic condition of M4<1,         
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For a supersonic condition of M4>1,        
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Then, the state variables are by the following equations.
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From the continuity equation, 
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   Mathematical equations have been derived for describing the mixing of the rocket exhaust flow with the oncoming air flow. Those are for the preparation of the following air/fuel combustion analyses. The assumed mixing of the above derived equations are based mainly on the convection mechanism due to the turbulent shear/mixing layers. The rocket exhaust gas of the ARCC engine is surrounded by the hydrogen-rich gas as the conventional LO2/LH2 rocket engine. The diffusion of the hydrogen plays an important role for the mixing under the prescribed condition such that the flight Mach number is about 3.2. Where the small vortices become to be reverse in for and aft of the Mach disk along the turbulent shear/mixing layers along rocket plume interfaces as schematically shown in Fig 2.6.1. The diffusion of molecules is derived from the classical kinetic theory of an ideal gas. Molecular velocities are given typically by the Maxwell-Boltzmann distribution function. The most probable velocity (Ve), the average velocity (
[image: image105.wmf]V

) and the root mean square velocity (Vrms) of the Maxwell-Boltzmann distribution are given as the following equations.   
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Where, T is the absolute gas temperature, m is the mass weight of a molecule, k is the Boltzmann constant, and k=1.380658x10-23 J/K.
2.7 LO2/LH2 Rocket Engine and Air/Hydrogen Combustion

   It was discussed in the previous section that the physical properties of the rocket exhaust gas are essential for calculation of those of the mixed stream. The physical properties of the rocket exhaust gas are estimated not only by the rocket chamber pressure, pr, temperature, Tr, and the specific heat ration, γr, but by the rocket configuration such as the throat area , bt, and rocket nozzle expansion ratio, be. If pr, γr, and Tr are given, the physical properties of the rocket exhaust gas of the ARCC engine are easily estimated by a given rocket configuration as a conventional rocket. The chemical constituents of the rocket exhaust gas play an important role in the following air/fuel combustion after mixing of the entering air with the excess hydrogen fuel or the excess oxygen in the rocket exhaust gas as well as with the coolant hydrogen or with the injected hydrogen fuel in the air/fuel combustor. Therefore, chemical reactions in the rocket chamber are firstly stated before discussing the combustion in the air/fuel combustor of the ARCC engine. Before we discuss the thermodynamic equilibrium of chemically reacting gases, the thermodynamic equilibrium of ideal gas mixtures and the final temperature of the equilibrium products are briefly stated. The most part of the 2.7.1 and the 2.7.2 of this section is the summary of the reference 2.7.1.

2.7.1 Thermodynamic Equilibrium of Ideal Gas Mixtures

The Gibbs function is defined by

                       G(T,p,{Ni,i=1, NS})≡E-TS+pV=H-TS    (2.7.1.1)

Where E is the internal energy, S is the entropy, V is the volume, the enthalpy H=E+pV has been introduced for convenience, and Ni is the number of molecules (or moles) of each of the NS gases present. The equilibrium is stated as that2.7.2 “For a collection of identical thermodynamic systems having the same static temperature and the static pressure but different values of Gibbs function, the system in thermodynamic equilibrium is that system having the least value of the Gibbs function”. 
   For a multi component mixture of ideal gases, the mixture Gibbs function per unit mass is obtained by summing over the partial molal Gibbs function of each of the gases in the mixture,
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where nk are mass-specific mole numbers of the k-th gas present (units: kg-moles k/kg mixture); and where
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is the partial molal Gibbs function of the k-th species.

   In Eq. (2.7.1.3), 
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 is the sum of the mole numbers, p and T are the pressure and temperature of the mixture, and the subscripts and superscripts 0 (zero) denote values at 1 atmosphere pressure. The one-atmosphere enthalpy and entropy for ideal gases are given by
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and            
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where 
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 is the enthalpy of formation of the k-th gas, which is the sum of the molecular bond energy and the sensible thermal energy at 298 K, and where 
[image: image115.wmf]298

0

k

)

s

(

 is the absolute entropy of the k-th gas at the standard reference states of atmosphere and 298 K (25℃). The enthalpy of formation 
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 for some reactant and product species of interest in rocket or airbreathing propulsion combustion is listed in the reference 2.7.3.

   The equilibrium composition at given p and T, {
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subject to the atom-number constraint
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where 
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i
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 is the number of kg-atoms of element i present per unit mass (kg) of mixture, and 
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 is the number of i-th atoms in a molecule of the k-th gas, and NLM is the number of distinct chemical elements present in the mixture.

2.7.2 Adiabatic Flame Temperature

   In this section, it is assumed first that combustions of rocket as well as of fuel/air in the state number 4-5 of the ARCC engine occur without either heat or work interaction with the surroundings. During the design phase of the ARCC engine, the combustion efficiencies of the rocket engine ηrocket and the air/fuel combustion ηair/fuel are concerned issues how to introduce them into the combustion calculations. If the efficiency is applied to the mole number of the reaction relevant molecule of the unit mass mixture, the practical calculation of the combustion has no problems. That is, for the hydrogen-rich mixture the reaction relevant molecule is the mole number of the oxygen, and for the oxygen-rich mixture the reaction relevant molecule is the mole number of the hydrogen. For simplification of the following analyses, those efficiencies are also neglected. The enthalpy of the (final) products will be the same as the (initial) reactants, and that value is known. In this case, it is necessary to specify the final enthalpy, rather than the unknown final temperature, of the equilibrium products. The final temperature of the combustion reaction will be obtained numerically by the integral equations of the each product from the reference temperature (298 K) to the final temperature (adiabatic flame temperature) equating to the final enthalpy. 
   When chemical reactions occur in the mixture, each kind species of the molecule changes the number. Exothermic reactions result in the release of chemical bonding energy, which appears as thermal energy. These two kinds of energy associated with each molecule appear in Eq. (2.7.1.4a) and Eq. (2.7.1.4b).

   The mass-specific enthalpy of a mixture of gases is given by
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and for the particular mixtures representing the reactants (fuel plus oxidizer) and products, 
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   If the reactants are ignited and allowed to burn to the final equilibrium state without heat being added or removed during the process, the final equilibrium temperature is the adiabatic flame temperature. That is, the adiabatic flame temperature is found by solving the algebraically implicit equation

                                hP=hR                              (2.7.2.3)
2.7.3 Combustion of the LO2/LH2 Rocket Engine
   The stoichiometric mixture ratio of oxygen to fuel hydrogen (O/F) is 8. The mixture ratio of a liquid oxygen/hydrogen rocket engine is generally designed as that of fuel-rich as (O/F)<8 because of the wall cooling. However, the mixture ratio of the rocket engine in an ARCC engine is not necessarily fuel-rich, because active coolants for the internal wall surfaces of the ARCC engine make fuel-rich in the following air/fuel combustion. A fuel-lean combustion might be required in a high flight speed. Therefore, two cases of (O/F)<8 and (O/F)>8 are discussed in this section. The mass specific mole numbers of the gases present in the rocket combustion chamber are determined by (O/F). If the combustion efficiency of the rocket engine is given by ηr, then we have the following mole number of the each constituent in the rocket exhaust gas.
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   For fuel-rich of O/F<8, the mole numbers after combustion are
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The conservation of the energy gives
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   For oxygen-rich of O/F>8, the mole numbers after combustion are
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The conservation of the energy is given by the same equation of Eq. (2.7.3.7).

   Specific heat at constant pressure such as
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is generally given by a polynomial of temperature2.7.4. Then, the temperature of the rocket engine Tr is solved by Eq. (2.7.3.7). 

   The average specific heat at constant pressure of the rocket exhaust gas, cpr, is easily given by 
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   The average molecular weight, the gas constant, the average heat at constant volume, and the specific heats ratio of the rocket exhaust gas are given as followings,
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   If the configuration of the rocket engine specifically nozzle throat At* and the rocket propellants mass flow rate mr are optimally given, the rocket combustion chamber pressure pr is given by

                   pr = 
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Eq. (2.7.3.16) means in another word that the mass flow rate of a rocket exhaust gas can be controlled by the rocket combustion chamber pressure together by O/F.
2.7.4 Fuel/Air Combustion

   The air/fuel combustion of the ARCC engine will start before the station number 3 because of the rocket exhaust gas as stated in the previous Sections 2.4.3 (b), 2.4.4 (b), 2.4.5 (b) and 2.6. In this section, however, the air/fuel combustion is assumed to start from the station number 4, where the mixing of the rocket exhaust gas with the incoming air flow is mixed with a mixing coefficient of ηmix as stated in Sec. 2.6. The chemical constituents of the stream are the wall active coolant of hydrogen in the fore flow, the rocket exhaust gas, the incoming air, and hydrogen fuel if required, at the station number 3. The constituents of the rocket exhaust gas are water vapor, unburned hydrogen, and unburned oxygen as discussed in the above section. The following equation expresses the chemical reactions at the station 4-5. It must be noted, here, that hydrogen of the active cooling at the station 4-5 is the most required in the ARCC engine cooling. The treatment of this hydrogen will be discussed in the last part of this section.
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where the subscripts RX, Air, Cool, and In are rocket exhaust gas, entering air at the station 3, coolant in the fore section of the station number 4, and injected fuel or oxygen at the station 4-5. 

   If the reactants are ignited and allowed to burn to the final equilibrium state without heat being added or removed during the process, the final equilibrium temperature is the adiabatic frame temperature as stated in Eq. (2.7.2.2) and Eq. (2.7.2.3). By introducing combustion efficiency such as ηa/f, fo4=(nH2)4/(nO2)4, and dividing fuel-lean and fuel-rich conditions for the chemical equations of the air/fuel combustion, the following equations are given.

   For fuel-lean combustion, fo4<2,

       
[image: image151.wmf](

)

(

)

(

)

(

)

2

4

2

2

4

2

2

4

2

2

4

2

N

nN

O

H

O

nH

O

nO

H

nH

+

+

+

→
                
[image: image152.wmf](

)

(

)

(

)

[

]

2

4

2

f

/

a

4

2

2

4

2

f

/

a

O

2

/

nH

nO

O

H

nH

h

-

+

h


              +
[image: image153.wmf](

)

(

)

(

)

(

)

2

4

2

2

4

2

2

4

2

f

/

a

N

nN

O

H

O

nH

H

nH

1

+

+

h

-

      (2.7.4.2)

where ( )4 shows the summation of the mass-specific mole number at the station number 4 as defined by Eq. (2.7.4.1). The mass specific mole number of each species at the station 4 is calculated by Sec. 2.7.2 for the rocket exhaust gas, by the entering air flow at the station 3 and by the entrainment cooling hydrogen in the fore flow section, the last quantity is discussed in the later section.

   The conservation of energy gives the following equation just after completion of the air/fuel combustion with ηa/f, and T5 can be solved. 
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   For fuel-rich combustion, fo4>2,
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   The conservation of energy gives the following equations and T5 is solved.
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The mean values of the molecular weight, specific heat at constant pressure, gas constant, and specific heats ratio are given as followings.

     
[image: image163.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

5

2

5

2

5

2

5

2

5

2

5

2

5

2

5

2

5

nN

nO

nH

O

nH

nN

28

nO

32

nH

2

O

nH

18

m

+

+

+

+

+

+

=

           (2.7.4.6)

   
[image: image164.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

÷

ø

ö

ç

è

æ

+

+

+

+

+

+

+

=

·

·

·

·

·

Ox

f

cool

a

3

rc

T

pN

5

2

T

pO

5

2

T

pH

5

2

T

O

pH

5

2

5

p

m

m

m

m

m

5

2

5

2

5

2

5

2

c

nN

c

nO

c

nH

c

O

nH

c


                                                                  (2.7.4.7)

R5=
[image: image165.wmf]5

m

Â

                                   (2.7.4.8)


[image: image166.wmf]5

5

p

5

p

5

R

c

c

-

=

g

                               (2.7.4.9)

   Assuming V4=V5 during combustion without any of other mass, momentum, and heat being added or removed during the process, and without of sectional area change, the stagnation temperature of the main stream at the station number 5 as

                     T05=T5+V42/(2cp5)                             (2.7.4.10) 
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   The conservation of momentum gives
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                      V5=V4                                     (2.7.4.15)

Because M5<M4 due to a higher T5 than T4, the static pressure of p5 becomes larger than that of p4 for a duct of constant area. If one wants to keep constant static pressure during combustion as the Brayton cycle, an area change is required between the station numbers 4 and 5 such as A5/A4=(1+γ4M42)/(1+γ5M52). That is, keeping p4=p5 requires a variable area ratio of A5/A4 for the given M4 and M5. If a constant area ratio of A5/A4 is adopted for the combustor, the static pressure ratio of p5/p4 varies with the related Mach numbers. If p5>p4 happens, the static pressure increase of Δp5 propagates toward the fore side until the Mach disk for a subsonic flow or the oblique-shock-train in the fore side will change the pattern due to propagation of the increased pressure through the subsonic sub-laminar-layer of the boundary-layer. As long as the Mach disk or the oblique-shock-train can resist the increase of the back pressure by adjusting the location of the Mach disk or the oblique-shock-train pattern, the essential part of the treatment of the combustion is not required to be modified but by only a little modification of the Mach disk adjustment, which is a technique of computer programming. 

In this section, velocity constant combustion is supposed, which induces pressure increase. As long as the above stated fluid-dynamic mechanism is kept, the ARCC engine works. If pressure constant combustion is supposed as in the Brayton cycle engine, geometry variable combustor is required for each flight condition of the ARCC engine. 

The air/fuel combustor is required active cooling to the internal walls because of the very high enthalpy flow present. The hydrogen fuel for the active cooling is also participated in the air/fuel combustion. If the transpiration cooling is applied to these surfaces, the used hydrogen coolant is determined by the growth of the boundary layer, which is controlled by the mainstream temperature T5. The temperature of the main stream T5 is determined by the air/fuel combustion as discussed in the previous paragraphs. Therefore, some iterative calculations will be needed to obtain a stable solution of T5. 

In order to reach an equilibrium state for the exothermic combustion reactions, time is necessary so that the equilibrium gases expand through external nozzle to the ambient pressure. This becomes more severe for the higher hypersonic flight. The time is usually divided by three periods such as the induction, heat release, and equilibrium regions. 

The induction period is the time interval immediately following some form of homogeneous bulk ignition. In the homogeneous (completely micro-mixed) case under consideration, ignition occurs after hydrogen and oxygen are micro-mixed to flammable properties (0.2<φ<2, where φ is the equivalent ratio, as the ratio of the actual H2/O2 ratio to the stoichiometric). During the induction period, the mole numbers of intermediates or chain carries, such as O, H, OH, and H2O2, increase by many orders of magnitude from near-zero-values in the uncompressed mixture, or in the unmixed streams. During this period, the gross rates of species production are very large compared to the destruction rates, so that the isobaric “batch reaction” time rates of change of the species are large and positive. Also, the coupling reactions with the exothermic are very weak, so that the induction process is essentially isothermal as well as adiabatic; no sensible energy is released. When the intermediate species have been reached some critical value of concentration sufficient to begin to react with hydrogen and oxygen molecules, the process of releasing sensible thermal energy can begin.

Therefore, the induction period ends when the mixture temperature begins to rapidly increase. Many researchers have proposed empirical equations for induction time for stoichiometric mixtures of hydrogen and air (ignition delay time), such as
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where tind is in second, p is in the same units as p0, the pressure of a standard atmosphere, and T is in Kelvin. 

   During the heat release period, very rapid changes in temperature and species mole numbers occur. During this period, the species equations and the energy conservation equations are all very strongly coupled. The heat release period ends when the reaction intermediates have all passed their peak values, at about tind/20 seconds. 

   The equilibrium period begins when all species mole numbers begin a decaying-exponential approach toward their respective equilibrium values. The equilibrium process does not have a clearly defined termination, due to the asymptotic nature of the approach to the chemical equilibrium state. However, some equilibrium values of Temperature and species concentration can be determined in advance by a Gibbs function minimization scheme, the end of the equilibrium period can be defined as the time at which all of the mole numbers and the temperature are within 1 percent of their chemical equilibrium values, at about the induction period. Therefore, the required total time for the combustion and equilibrium is about
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which means the required combustion length is about
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2.8 Boundary Layer and Transpiration Cooling

   The growth of the boundary layer influences the performance of a vehicle by increasing the aerodynamic drag, and it deteriorates the performance of an ARCC engine powered space transportation vehicle specifically for the engine flow. It induces mass and momentum reduction for the entering air flow, which deteriorate the air capture area ratio as well as the ram pressure recovery for the engine inlet. In the engine internal flow, it accelerates the choking of the flow for both of the transonic and supersonic flow. The choking of the main flow determines the maximum mass flow rate condition, which is an important design criterion for determination of an ARCC engine configuration. The momentum loss due to the boundary layer was discussed to be critical to the limit of the Brayton cycle scramjet engine in Sec. 2.4.5. The balance between the momentum loss due to the growth of boundary layer and the added momentum by the rocket exhaust gas in an ARCC engine is most important to extend the flight speed limit of the conventional scramjet engine.

   The wall of combustor is necessary to be cooled by some methods. Those of the LO2/ LH2 engine are generally cooled by the fuel hydrogen by enveloping the combustion flames by hydrogen gas together with active cooling by the use of the channel flows of the hydrogen. Those of the turbojet engine are by means of the entering air flow. For the ram and scramjet engine, the cooling is indispensable from the inlet to the internal nozzle specifically because of the very high enthalpy air flow. The ARCC engine is expected to flight beyond the speed limit of the scramjet engine as discussed in Sec. 2.4.6. Therefore, a much sophisticated active cooling method is required for full flight speed range of the ARCC engine. The transpiration cooling through porous wall will be discussed in this section. The transpiration cooling through porous wall is actually through the boundary layer and the growth of the boundary layer is simultaneously influenced by the added mass flow due to the transpiration cooling. In this section, the growth of the boundary layer is discussed first, and later the transpiration cooling will be discussed.       
2.8.1 Turbulent Boundary Layer

   Most of the analytical discussions in the previous sections have been based on the hypothesis of a perfect gas without heat conduction as well as viscosity. In the technical back ground of Sec. 2.4.1, the shearing work exerted on the stream by the walls was discussed in the generalized one-dimensional continuous flow, specifically, momentum and energy equations (Eqs. 2.4.1.1, 2.4.1.2, 2.4.1.3, 2.4.1.16, 2.4.1.17, 2.4.1.21, 2.4.1.23, 2.4.1.24, 2.4.1.25, 2.4.1.28, and  2.4.1.32). The usefulness of this hypothesis proceeds from the premise implied in the term boundary layer, namely, that the viscous terms in the momentum and energy equations and the heat conduction terms in the energy equation are, respectively, negligible compared with the remaining terms in those equations, except for the narrow regions near solid boundaries where the velocity and temperature gradients are of necessity so large as not to be negligible. In brief, for practical purposes, and assuming that the Reynolds number of the flow is large compared with unity, viscous and heat conduction effects may be thought of as being confined to the boundary layers near solid surfaces (or at the interface between streams of different speeds), and may be ignored elsewhere.

   This point of view has been of the greatest practical utility, for it permits the field of flow for a given problem to be treated in two-parts: (ⅰ) the potential flow outside the boundary layer, where viscous stress are negligible compared with inertia stresses; (ⅱ) the thin boundary layer, where viscous stresses are of the same order of magnitude as inertia stresses, but the flow geometry is comparatively simple. For purely subsonic flows, the presence of a boundary layer on a solid surface influences the potential flow only in a secondary way (unless reverse flow and separation occur) through an alternation in the effective boundaries of the potential flow by the amount of the boundary-layer displacement thickness. The potential flow, on the other hand, establishes the longitudinal pressure distribution for the boundary layer, and thereby plays a controlling role in the behavior and formation of the boundary layer.

   When shocks appear in the field of flow, they may produce such large changes in boundary-layer flow as to have a first-order effect on the potential flow. This effect in turn influences the boundary layer, and thus there may be a considerable interaction between the potential flow, the shock wave, and the boundary layer.

   In the ARCC engine, the turbulent boundary layers are predominating for almost all surfaces except that very low flight speeds such as run-way-running and the head parts of the ramp and struts. The laminar boundary layer in those parts will soon change into turbulent boundary layer for almost flight speeds, therefore; only turbulent boundary layer is discussed in this section. However, the subsonic laminar sub-layer of the turbulent boundary layer influences much on the supersonic main stream of the ARCC engine. Pressure disturbances in the down stream will propagate to the fore stream through the subsonic laminar sub-layer, which changes the oblique-shock-train of the main stream by changing the growth of the turbulent boundary layer even if normal shocks are not induced because of the disturbance, which was stated as a descriptive model in Sec. 2.4.3 (b) and 2.4.5 (b). The phenomena can not be discussed analytically, rather experiments will be needed. The most parts of this section are summarized reviews of the reference2.8.1, specifically, those of the ARCC engine flow relevant.
   The essential difference between laminar and turbulent flows lies in the relative steadiness of the two types of flows. In a steady laminar flow, the macroscopic fluid properties and velocity at each and every point are truly constant with respect to time. Therefore, the streamlines have constant shapes, and the fluid flows in “lamina,” or in sheets which do not intermingle. Strictly, it is a contradiction in terms to speak of a “steady, turbulent flow,” but the phrase is not used to denote a turbulent flow which is steady in the mean. That is, at each point of such a flow the fluid properties and velocity may fluctuate wildly, but, when averaged over time periods comprising many cycle fluctuations, the time-mean properties and velocity are constant with respect to time. In a steady laminar flow only the convective acceleration of the fluid (e.g. u, ∂u/∂x) is significant, whereas in a steady turbulent flow the time-varying acceleration ∂u/∂t may be much larger than the convective acceleration.

   As a result of the rapid fluctuations in velocity at each point in a turbulent flow, the instantaneous streamlines have a highly irregular and jagged appearance. Moreover, the instantaneous streamlines change in from form instant to instant. This leads to a macroscopic intermingling, or transport, of fluid between different time-mean streamlines. Blobs of fluid when transported in this way tend to retain for a short period the time-mean velocity and temperature corresponding to the location from which they migrated. In the location to which they are transported by turbulent fluctuations, there may be a very different time-mean velocity and temperature. Physically, then, turbulence acts to magnify enormously the local, instantaneous gradients of velocity and temperature, and thus it greatly augments the viscous stresses and rate of heat conduction acting in the fluid. The most important practical consequence of this is that the skin-friction and heat transfer coefficients for a turbulent boundary layer are several orders of magnitude larger than the corresponding values for a laminar boundary layer at the same Reynolds number. Because the exact analysis of turbulent flows is so difficult, the integral methods of calculation are very powerful for solving practical boundary-layer problems. With integral methods, however, it is not attempted to satisfy the physical laws in the small, but only in the large. That is, it is required only that the physical laws be satisfied for the boundary-layer as a whole. Such an approach, of course, cannot be expected to give exact information concerning local temperatures, velocities, etc. Indeed, to apply the method it is necessary to make “plausible” assumptions, guided by the exact differential equations and boundary conditions, as to the shapes of the velocity and temperature profiles. On the other hand, the integral method does furnish fairly accurate information concerning such gross quantities as the skin-friction coefficient, heat transfer coefficient, and boundary-layer thickness. In what follows we shall consider only flows which are steady in the mean.

   Employing this assumption, the time-mean momentum equation in integral form may be written
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   Since the flow outside the boundary layer is without friction, Euler’s equation expresses the pressure gradient as
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where ρ∞ and U∞ are the local free-stream properties at the edge of the boundary layer. Substituting Eq. 2.8.1.2 into Eq. 2.8.1.1 and perform the algebraic rearrangements to obtain a convenient form for practical computations.
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　　　　　　　　　　　　　Fig. 2.8.1.1 Displacement thickness
   We now introduce the definition of the displacement thickness δ* and the momentum thickness θ as 
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where δ represents the thickness of the velocity boundary layer, defined as the distance from the solid boundary to the point where u=U∞.

   Physically, the displacement thickness is a measure of the deficiency in mass flow through the boundary layer as a result of the stream having been slowed down by friction. Since Eq. (2.8.1.4) may be put in the form,
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It is evident from Fig. 2.8.1.1 that δ* represents the outward displacement of a streamline outside the boundary layer to make space for the relatively low-speed boundary-layer flow. From another point of view, the displacement thickness in the amount by which the walls should be displace so that, by leaving sufficient room for the boundary-layer flow, the inviscid flow may not be affected by the thickening of the boundary layer.

   The momentum thickness has an analogous significance. It represents the thickness of the free-stream flow necessary to make up the deficiency in momentum flux within the boundary layer. 

   With these definitions of δ* and θ, the momentum equation Eq. (2.8.1.3) may be written as
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which may be rearranged 
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By means of the isentropic relations,
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Eq. (2.8.1.6) may be put in the form
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   Fig. 2.8.1.2 shows the rate of heat transfer and fluxes of stagnation enthalpy crossing the control surface under consideration, the rate of shearing work being zero. Equating the net rate of heat transfer to the net outgoing flux of stagnation enthalpy, we get
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This equation may be rearranged under the assumption that cp and T∞0 are independent of x, respectively,
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[image: image193]
Fig. 2.8.1.2 Energy flows through a control volume across boundary layer
   Introducing the stagnation-temperature thickness, Γ defined, analogously to the moment thickness, by
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Eq. (2.8.1.9) becomes
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The thickness Γ is a measure of the amount of free-stream flow required to account for the deficiency (or excess) of stagnation-temperature flux in the boundary layer. The δ referred to Eqs. (2.8.1.1, 2.8.1.8, 2.8.1.9, and 2.8.1.14) is the thickness of thermal boundary layer, representing the distance from the surface beyond which there are no further changes in both velocity and temperature. The thickness of the thermal boundary layer will usually be different from that of the velocity boundary layer.
   The differential equations for two-dimensional, steady in the mean, turbulent flow are,

   Continuity equation gives
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   Momentum equation gives
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where ( )’ signifies instantaneous deviation from time-mean.

   We now simplify this greatly by assuming that:

   (ⅰ) The boundary layer is very thin, and hence
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   (ⅱ) The time-mean viscous stress, which is shown by experience to be small compared with
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With these assumptions, Eq. 2.8.1.17 reduces to
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  (2.8.1.18)

The last term containing 
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arises from the unsteadiness of the flow, and which has the same effect in the momentum equation as the mean viscous stress
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   The term 
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 is the generalization for compressible flow of the well-known Reynolds stress, or turbulent stress. It should be recognized that the Reynolds stress is not a stress at all, but is rather the time-mean of the x-momentum flux crossing a surface aligned normal to the y-direction. It is called an apparent shear stress only by analogy between Eq. (2.8.1.18) and the corresponding laminar boundary layer momentum equation. More precisely, however, it represents a momentum-exchange term which must be introduced to take account of the unsteadiness of the flow when the momentum equation is written in terms of the time-mean flow properties.

   For thin, steady, turbulent boundary layers, the momentum equation in the y-direction reduces, as in laminar motion, to
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   Supposing that the enthalpy is a function only of temperature, together with the perfect gas law, leads to thermodynamic relation

                     
[image: image206.wmf]T

d

c

h

d

p

=

; 
[image: image207.wmf](

)

x

T

c

x

h

p

¶

¶

=

¶

¶

; etc.

   Using the foregoing assumptions analogous to Eq. 2.8.1.18, the energy equation may be written as 
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Both of the last two terms are in fact much larger than the two terms preceding them. By comparison of terms, it is evident that the term 
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 is in the nature of an apparent heat flux in the time-mean motion, and
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, as in Eq. 2.8.1.18, is an apparent shear stress in the time-mean motion.

   For convenience in practical computations, a turbulent exchange coefficient for momentum, or eddy viscosity, ε, is often defined by
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Although ε is formally analogous to the coefficient of viscosity μ, the two are essentially different in that the latter is a fluid property whereas the former depends on the dynamics of the flow. In a turbulent flow ε/μ is very large compared with unity, and therefore the viscous term is usually omitted from Eq. 2.8.1.18 and Eq. 2.8.1.20.

   Similarly, we define a turbulent exchange coefficient for temperature, or eddy heat conductivity, κ, (or eddy diffusion of heat ≡ κ/ε=εH ) by formal analogy with the Fourier’s law of heat conduction,  
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Here again, 
[image: image213.wmf]l

 is λ, which is a fluid property connected only with the thermodynamic state of the fluid, whereas the eddy conductivity ε is controlled primarily by the nature of the fluid motion. The ratio κ/λ is of the same order of magnitude as the ratio ε/μ, i.e. both are very much larger than unity, and therefore the heat conduction and viscous terms are usually dropped from Eq. 2.8.1.20.

   If we introduce the concept of the Prandtl mixing length, the following relation is given. 

                           cpε/κ = 1                               (2.8.1.23) 

By analogy with the Prandtl number, Pr≡cpμ/λ, the ratio cpε/κ is called the turbulent Prandtl number. We see from Eq. (2.8.6.20) that the mixing-length theory of Prandtl predicts a turbulent Prandtl number of unity.

   An analysis of the results of many different types of experiments with turbulent flows has led to the remarkable conclusion that the turbulent Prandtl number is substantially independent of the value of the laminar Prandtl number and is also substantially independent of the type of experiment. These various experiments indicate that, within a margin of ±10 percent, 

                      (Pr)turb
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0.70                            (2.8.1.24)

For most practical purpose, however, the laminar and turbulent Prandtl numbers for air may be assumed identical.

   When the definition of ε and κ, as given by Eqs. 2.8.1.21, and 2.8.1.22, is substituted into Eqs. 2.8.1.18, and 2.8.1.20, the time-mean equations of continuity, momentum, and energy for a thin, steady, turbulent boundary layer may be summarized as follows: 
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Since 
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 and 
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 are respectively so small compared with ε and κ for turbulent flows, they are usually omitted from the equations.

   In order to have another form of energy, using the approximation that v/u<<1, we set

                                
[image: image221.wmf]
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and from this we obtain
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Multiplying Eq. (2.8.1.26) by 
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 and adding Eq. (2.8.1.27) to eliminate the pressure gradient term, substituting the fore going relations, and neglecting the term of
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where κ>>
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, ε>>
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, and from the definition of the Prandtl number as (Pr)turb≡
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ε/κ, finally we have
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         (2.8.1.28)

   In gases both the laminar and turbulent Prandtl numbers are in the vicinities of 0.7. This is sufficiently close to unity to make it of practical interest to investigate the special but simple case where both the turbulent boundary layer and laminar sub-layer are assumed to have Prandtl numbers of unity.  The results of such an analysis are presumably good approximations except when there are large temperature differentials in the boundary layer.

   Equations of (2.8.1.25), (2.8.1.26), and (2.8.1.27), or (2.8.1.28) are completely similar to the corresponding equations for steady laminar flow. Moreover, the boundary conditions at the wall and at the edge of the boundary layer are the same as for laminar flow. 
2.8.1(a) Flow with Zero Pressure Gradients and Constant Wall Temperature: If the wall is not insulated, but is instead at constant temperature, and if there are no longitudinal pressure and (Pr)turb=1, a comparison between Eq. (2.8.1.26) and Eq. (2.8.1.28) now shows that they can be reduced to the same equation if
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Where a and b are constants to be found the boundary conditions. By using this special relation between temperature and velocity, the energy equation is automatically satisfied when momentum equation is satisfied. The relation requires that the wall temperature be constant, inasmuch as u=0 at the wall.

   The resulting physical situation is entirely plausible, since if we have uniform flow along a plate of constant temperature, there is no length dimension to the problem and one should expect similarity in the flow patters at all values of x. One aspect of this anticipated similarity is that points in the boundary layer having the same velocity should also have the same temperature. This results, incidentally, in the viscous boundary layer and the thermal boundary layer having equal thickness. 

   These considerations indicate that we are considering a particular solution to the governing equations, a solution which corresponds to the flow past a flat plate (which may be either heated or cooled) having constant wall temperature.

   The constants a and b are evaluated by noting from the boundary conditions that
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Thus we get, for the distribution of stagnation temperature,
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Introducing the definition 
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 into Eq. (2.8.1.29), the distribution of enthalpy and temperature may be found as

            
[image: image238.wmf](

)

2

2

w

0

w

U

u

h

M

2

1

U

u

h

h

h

h

÷

÷

ø

ö

ç

ç

è

æ

-

g

-

-

=

-

¥

¥

¥

¥

¥

       (2.8.1.30)

         
[image: image239.wmf](

)

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

g

-

-

+

=

¥

¥

¥

¥

¥

2

2

w

0

w

p

U

u

h

M

2

1

U

u

h

h

h

c

1

T

    (2.8.1.31)

and               
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   If the turbulent and laminar Prandtl number are assumed to be unity, and if it is also assumed that with small pressure gradients the connection between velocity and temperature distribution given by Eq. 2.8.1.31 remains valid, then the thickness of the velocity and thermal boundary layers will be alike. In that case there is no need for Eq. 2.8.1.14, inasmuch as a solution for the velocity boundary layer immediately yields (through Eq. 2.8.1.31) a solution for the thermal boundary layer. Although the procedure is often used for the sake of simplicity in calculation, it should be recognized that it is likely to be of only mediocre accuracy for the pressure gradients which are present in practical problem.

   To apply the momentum integral analysis, it is necessary to choose a shape for the velocity profile. It is possible to represent it by the empirical equation
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where N is a constant whose value depends primarily on the Reynolds number of the flow. The value of the exponent N varies from N=5 (Rey≅4×103) to about N=10 (Rey≅109). Often a mean value of 7 is chosen for N.

   The equation for the velocity distribution Eq. 2.8.1.33 is related to Blasius’s law of friction concerning with the resistance coefficient of smooth pipe flow, which gives the shearing stress at the wall2.8.2. Using Eq. 2.8.1.7 together with Equations 2.8.1.5 and 2.8.1.33, and the shearing stress at the wall, the boundary layer growth is simply given under conditions of a favorable pressure gradient. Experiments on the boundary-layer growth in a supersonic wind-tunnel nozzle show this method to be sufficiently accurate for most purpose.
2.8.2 Transpiration Cooling

   For the internal wall of the ARCC engine, active cooling is necessary not only to the whole exposed surfaces in very high flight speed region but also to those of the rocket plume, mixing and air/fuel combustion in the low flight speed region. The cooling of the rocket engine internal walls is usually performed by decreasing thermal load by making film of fuel on the walls, simultaneously recycling the heat by fuel with pipe or double wall structure. The cooling of the internal walls of the rocket engine for the ARCC engine will be the same as those of the conventional LO2/ LH2 rocket engines. 

Cooling for the forward ramp is also required as well as for those parts of the nose head and wing heads of the vehicle; however, the author thinks that the cooling for those parts should be considered as the material and the structural problems which should be discussed in the other materials. In this book, 3.6 Mass Distribution Properties of Chapter 3 discusses some of the problem. The cooling for the engine external nozzle should be also discussed in the other materials because the material and the structure of the external nozzle and the heating mechanism to them are different from the concerned engine internal problems. The cooling methods to the ARCC engine internal walls influence greatly to the ARCC engine performance, therefore, the transpiration cooling through porous walls is discussed in this section. 
2.8.2 (a) Diffusion 

Fook’s Law and Diffusion in a Gas:   Diffusion mechanism is considered for two constituent gas systems. Supposing different gas 1 and 2 are in contact with each other, each gas begins to diffuse to the other side. Each mole number rate per specific time crossing a specific area is proportional to the gradient of the mole concentration as
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The relation is called Fick’s Law, and defines D as the diffusion coefficient; here D has the same dimension as those of coefficient of dynamic viscosity as well as coefficient of thermal conductivity. 

   In a process of mutual diffusion (equi-mole opposite diffusion between two gases), the diffusion coefficient D of each constituent has the same value from the Avogadoro’s law. The diffusion coefficient D is proportional to Tm and is in verse proportional to the total pressure P, however, the dependency to the concentration is negligible.

   Eq. (2.8.2.1) can be rewritten as
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where n=n1+n2, i.e. the whole mole numbers of a unit volume is kept to be a constant (The Avogadoro’s law).

   In a field with temperature gradient, the temperature of each molecule is different so that there appears thermal diffusion. However, the thermal diffusion is very small compared to that of concentration, Eq. (2.8.2.2) can be applied to the diffusion in a temperature and pressure gradients.  

Relative Transportation Velocity of the Diffusing Molecules:   Letting
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are the average transporting velocities of the diffusion mole species, respectively, 
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From Eq. (2.8.2.2) and considering the relation of n=n1+n2,
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where 
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 is the relative velocity of the molecules diffusing with each other. 

   Eq. (2.8.2.3) can be expressed by the mass concentration of each gas. The mass concentration of constituent 1 (mass of constituent 1 to the whole mass) ω1 is expressed by the molecular weight 
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The averaged molecular weight 
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Eq. (2.8.2.4) and Eq. (2.8.2.5) give
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Substituting Eq. (2.8.2.6) into Eq. (2.8.2.3) gives
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   Hydrogen Molecules Diffusion in to the Main Stream through Porous Wall: Supposing the hydrogen transpiration cooling of the exposed surfaces in the ARCC engine, the hydrogen is generally in a state of super-saturation because of the higher pressure to inject into the mainstream static pressure. If we imagine only normal components of the hydrogen and of the mainstream to the surface, hydrogen molecules may move to the upper side due to diffusion whereas constituent of the mainstream does not move into the hole because of the super-saturated hydrogen. Accordingly, the relative velocity of Eq. (2.8.2.7),
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 expresses the moving velocity of only constituent 1, and the mass flow velocity (mass flow rate per unit area) 
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is expressed by ρ of the local density of the mixture as
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[image: image261]
Fig. 2.8.2.1 Diffusing Hydrogen from Porous Wall
2.8.2 (b) Diffusion and Convection

Diffusion of the Hydrogen and Convection: Molecule replaces the position of the other molecule with different molecular weight in the diffusion. If the mixture is focused in diffusing, the center of the mass is moving in every where. The movement of the mass center means there exits a flow in fluid dynamics. Therefore, the gas diffusion can be divided into two parts, i.e. convection of the mixture (movement of the mass center) and the corresponding relative diffusion as schematically shown in Fig. 2.8.2.2.

[image: image262]
Fig. 2.8.2.2 Convection of mixture and the related relative diffusion

      Letting the convection velocity of the mixture
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, in Fig. 2.8.2.1, and the corresponding diffusing mass velocities are 
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 (constituent 2), respectively, the mass transfers are given by
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where 
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=0 of the second equation of Eq. (2.8.2.9), because the constituents of the mainstream are static to the transpiring wall, i.e. the convection 
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 are cancel each other to be zero. The third equation is easily understood from the definition of diffusion mass velocity. Eq. (2.8.2.8) and Eq. (2.8.2.9) give the following equation as
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where 
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 is the mass flow rate of the transpired hydrogen, and 
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is the diffusion mass velocity of the hydrogen relative to the convective velocity of the mixture.  

   Diffusion of Mixing Gas in the Boundary Layer:   The boundary layer is developed on the surface of the porous wall, and the above stated diffusion is easily extended through the porous wall into the boundary layer. That is, when the mixture of the transpired hydrogen molecule (constituent 1) and constituent of the mainstream (2; the average value of the flow is applicable) have the convection velocity component v in the y direction,
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where 
[image: image278.wmf]·

m

 is the mass flow rate of the transpired hydrogen in the y direction, and 
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 is the diffusion mass velocity of the hydrogen relative to the convective velocity of the mixture in the boundary layer.

2.8.2 (c) Analogy of Heat Transfer with Mass Transfer 
When the laminar boundary layer is supposed, into which the above stated transpired hydrogen is transferred; the boundary layer is described by the following four equations.
Continuity equation gives
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Momentum equation gives
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Energy equation gives
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where, if only the movement of the hydrogen is considered, referring the second equation of Eq. (2.8.2.11), the left hand side of Eq. (2.8.2.14) is the energy transfer being consequent upon convection of the mixture, the first term of the right hand side is work by the pressure gradient, the second term is energy transfer by the conduction and the third is work due to the viscous shear stress. 
2.8.2 (d) Mass Transfer Equation
Conservation of transpired hydrogen mass gives
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That is, the left hand side of Eq. (2.8.2.15) is the mass transfer of the hydrogen gas being consequent upon convection of the mixture, and the right hand side is the mass transfer of hydrogen gas due to the relative diffusion being consequent upon convection of the mixture.

   In the next step, the mass flow rate per unit area of the transferred hydrogen from super-saturated hydrogen is expressed by Eq. (2.8.2.8) as,
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where the subscript w means the corresponding value of the hydrogen gas at the wall surface.

   The mass transfer coefficient of the transpiration, hD, is also defined by an analogy of the heat transfer coefficient, h, as  
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Here, if the transpiration mass transfer equation of Eq. (2.8.2.15) is compared with the energy equation of Eq. (2.8.2.14) specifically focusing the heat transfer terms, Table 2.8.2.1 shows them.

When the hydrogen mass concentration at the wall surface
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, the transpired mass transfer has the similar equation of the heat transfer, then, the following transformation gives the similar solution between them.
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       Table 2.8.2.1 Comparison of the transpiration mass transfer with heat transfer

	       
	Mass transfer                             
	Heat transfer

	Equation
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   For the turbulent boundary layer, if the energy and mass transfer equations are considered, then,

   Energy equation gives
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   Mass transfer equation gives
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Defining the diffusion term 
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Here, 
[image: image301.wmf]D

e

 is defined as the eddy diffusivity of mass, and letting
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is the eddy diffusivity of heat.

   As the energy transfer of the boundary layer, 
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. Then, the similar analogy of the laminar boundary layer can be applied to the turbulent boundary layer between the relation of energy equation (2.8.19) and mass transfer equation (2.8.20). That is, in the solution of energy equation of the turbulent boundary layer, letting the following transformation,
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We have the similar solution as
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here, by defining the porosity, por, at the wall surface as the effective porous area ratio, and assuming that the mole concentration (number of molecules) is proportional to the effective porous area ratio in a constant pressure and temperature (only the diffusion is considered by neglecting the convection because of u=0 at the wall surface),

from 
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Consequently, from the definition of Eq. (2.8.2.4)
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   According to the heat transfer experiments of duct flows accompanying mass transfer, an experimental equation explains fairly well them if the equation is rearranged by the non-dimensional numbers of the Sherwood number, Sh, the Schmidt number, Sc, and the Reynolds number2.8.3. The Sherwood number and Schmidt number are defined, respectively, as 
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The ratio of the Schmidt number, Sc to the Prandtl number, Pr, is called the Lewis number or the Lewis-Semenov number as

                           
[image: image314.wmf]D

c

P

S

L

p

r

c

e

÷

÷

ø

ö

ç

ç

è

æ

r

l

=

º

                (2.8.2.27)

   Because 
[image: image315.wmf]1

L

e

@

 for most of the gas, using the relations of Eq. (2.8.2.18), the following relation is given as
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Eq. (2.8.2.28) is called the Lewis relation, which easily exchanges the heat transfer and the mass transfer approximately, and is applicable to both of the forced and natural convection. 
2.8.2 (e) Transpired Mass Flow Rate and Transpiring Boundary Layer
Supposing that a porous flat plate is exposed to a mainstream with high temperature of T∞ and coolant hydrogen gas is transpiring from the plate keeping the surface temperature being constant of Tw (because that the contact area of the coolant hydrogen passing through the holes of the porous plate is very large and the heat conduction rate of the hydrogen gas is the highest in the various gases) as shown in Fig. 2.8.2.3, the heat transfer rate and transpired mass transfer rate are discussed in this section.
Letting hx the local heat transfer rate, the area-specific heat flux per unit time is expressed by hx(T∞-Tw). The coolant gas, on the other hand, have absorbed the heat during passing through porous plate (the heat transfer between the coolant and the porous plate is very high because the contact surfaces are very large), then the temperature of the coolant becomes Tw at the interface. 

   In a steady state, the above stated both quantities become to be balanced, then, letting the specific heat of the coolant hydrogen gas as
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Where 
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is the area-specific mass flow rate of the transpiration and T0 is the temperature before the coolant gas enters into the porous wall, Eq. (2.8.2.29) determines the wall temperature.

[image: image321]
                     Fig. 2.8.2.3 Transpiration cooling

   The cooling mechanism by means of transpiration, generally, is composed of not only the heat absorption during passing the porous wall, but of the decrease of heat transfer rate hx due to the transpiration itself. However, in a condition of 
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, the decrease of hx is negligibly small. If a non-dimensional Hx is defined as  
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If Hx is the smaller, the wall temperature Tw approaches to T0.

   For the gas of Pr=1, the temperature profile is similar to the velocity profile every where in the boundary layer, then the Reynolds analogy gives
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   Extending the Blasius’ experimental equation for the smooth and circular duct flow of the turbulent boundary layer to a flat plate, the following equation is given
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If the velocity, temperature, and mass concentration profiles are given, δ is given by Eqs. (2.8.1.4), (2.8.1.5), (2.8.1.7), and (2.8.2.32) as a function of mainstream flow path length x, and δ increases gradually for a steady flow. Therefore, hx is also given by a function of x; however, hx decreases as the δ grows. 

   If the area-specific mass flow rate of the transpiration is given, the mass concentration of the coolant hydrogen gas is given by Eq. (2.8.2.19). The distribution of the mean specific heat at constant pressure in the boundary layer is expressed as
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The distribution of the mean molecular weight in the boundary layer is from Eq. (2.8.2.5)
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The density profile is given under the assumption of constant pressure and the perfect gas,
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The temperature profile is given by Eq. (2.8.1.30) as
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 (2.8.2.36)
2.8.3 Averaging of the Boundary Layer Effect
   The analyses of the engine stream are those for the one-dimensional flow as discussed in the Sections 2.2, 2.4.1, and 2.6 of this chapter. The analyses for the boundary layer and the transpiring flow are, however, those for the two-dimensional flow as described in the Sections 2.8.1 and 2.8.2 as well as the ARCC engine geometry stated in the Section 2.3. Therefore, some approximate methods are required to take account of the effects of the boundary layer into the engine stream analyses, because the one-dimensional analysis is essential specifically for the conceptual design phase of the engine. The approximate methods are proposed in this section for describing the average state quantities of the flow.

　The average flow velocity is given by
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   The average static temperature is given by

[image: image331.wmf]           (2.8.3.2)
where δx is the local thickness of the boundary layer, and the average constant pressure specific heat 
[image: image332.wmf] is given by the following equation by the use of the constant pressure specific heat of the main stream as cp∞.
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The average molecular weight 
[image: image334.wmf] is given by the following equation by the use of the average molecular weight 
[image: image335.wmf] in the boundary layer and the average molecular weight 
[image: image336.wmf] of the free stream.
 
[image: image337.wmf]            (2.8.3.4)
The average specific heat ratio 
[image: image338.wmf] is given by the following equation by the use of the average specific heat ratio 
[image: image339.wmf] in the boundary layer and the average specific heat ratioγ∞ of the free stream.
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   The average relevant values are defined by the following equations.
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2.9 Performance of ARCC Engine by Numerical Calculations

In order to express performance of the ARCC engine based on the concept and the related theories described in the preceding sections of this chapter, two kinds of computer calculation programs are applied to an ARCC engine configuration, which are modified ones of the preliminary computation programs developed by the athor2.9.1-2.9.3. One is for low flight speeds from takeoff/liftoff to a lower supersonic speed. If the flight speed becomes higher, the cooling of the engine components such as engine inlet, struts, and panels becomes important because of the high wall temperature due to the high stagnation temperature of the incoming air flow. In this section, the transpiration cooling methods (Sec. 2.8.2) are fully applied under the assumption of by means of the copper based porous composite walls. The cooling is applied to, in the low flight speed computation program, only the panels aft the exit faces of the strut-rockets, those of the mixing of the rocket plume and the incoming air flow and those of the air/fuel combustion process. For the higher flight speeds beyond the limit of heat resistance temperature of the un-cooled wall, the whole components of the internal panels are transpiration cooled if those are exposed to the engine internal flows. The latter is the other computation program; however, the cooling for the forward ramp and the external nozzle is excluded for simplicity in this section.

The reference 2.9.1 was the first paper of the ARCC engine by the author, there were several problems skipped for the simplification of the computing programs. The first problem was the computing coding techniques for dealing with the position of the normal shock in the ARCC engine relevant to the stability with respect to the position movement of the rocket plume Mach disk. Because the reference 2.9.1 was the first paper to try the viability of the ARCC engine concept, that problem was neglected. The thrust of the ARCC engine is closely related with the geometry of the external nozzle which should be dealt with one of the vehicle designs. That will be discussed in Chapter 5. The second problem was the cooling for the internal walls. The high flight speed computation program was taken into account the boundary layer development as well as the cooling by means of the transpiration, without which the engine is not viable. 
   The boundary layer and the related transpiration cooling were fully taken into account for the low flight speed computation program specifically to the internal panels after the end part of the rocket engine through the mixing and the air/fuel hydrogen combustion because of the high temperature main stream in the reference 2. The concept and the related theory of the ARCC engine was stated in the reference 2.9.3, in which the roles of the rocket plume were specifically discussed including the stability of the Mach disk as stated in the 2.4 Comparison with the Conventional Airbreathing Engines. In the references 2.9.1-2.9.3, the constant pressure was assumed for the air/fuel combustion process (p4=p5) according to the Brayton cycle. This assumption, however, the mainstream flow area of the air/fuel combustion should be varied depending on the flight condition of the vehicle such as the altitude (ambient atmospheric pressure), flight speed, and the attitude of the vehicle (specifically the angle of the attack).

   The author has repeatedly stated in this book that the variable geometry of the engine configuration should not be applied for the SSTO vehicle because the related thermal protection technologies are not feasible for the very high temperature. The Performance of ARCC Engine by Numerical Calculations of this section assumes the constant speed for the mixed and the air/fuel hydrogen combustion streams such as V4=V5 rather than that of the Brayton cycle. The author supposes that this assumption of the equal velocities is reasonable because the combustion velocity of the hydrogen is very high, therefore, the ARCC engine could be operable with a fixed geometry configuration through the whole flight speed region until the mission flight speed of the ARCC engine. In the following ARCC engine example, the engine thrust and the related specific impulse are calculated under an assumption such that the exhaust gas of the mainstream is expanded to the ambient atmospheric pressure through a supposed external nozzle with an efficiency of  the expansion because that the design of the external nozzle is mainly a problem of the vehicle design and the expansion flow of the exhaust gas induces interaction with the free air flow which will be discussed in the next chapter in 3.8 Interfering Aerodynamics with Nozzle Exhaust Gas Flow.
2.9.1 Numerical Engine and Computation Results

   The numerical computations were carried out by the two kinds of programs as previously stated for the given engine configuration with numerical dimensions and with the assumed engine related efficiencies. Table 2.9.1 shows them, which is better understood by referring Fig. 2.3.2-2.3.5 and Table 2.3.1 in the Section 2.3 of this chapter. The performance of the ARCC engine should be evaluated by only the flight simulation of the vehicle, powered by the engine system, in the conceptual design phase. The final chapter of this book, Chapter 5 Examples of ARCC Engine Powered SSTO Vehicle, will discuss that for summarizing the whole engine and vehicle concepts and the related knowledge. In this section, however, a hypothetical unit engine which supposes infinite numbers of the rocket engine contained struts and a unit flow channel between two adjacent struts. Actually, the ARCC engine powered SSTO vehicle will require multiple strut-rockets, therefore, the preliminary studies2.9.4-2.4.5 of the ARCC engine powered vehicle were performed supposing 6-7 struts. The operational conditions are selected specifically estimating takeoff performance for the low speed flight computation program, as shown in Fig. 2.9.1. Thrust levels are specifically considered because of the requirements of the vehicle side2.9.4-5. The results of the following high speeds are shown in Fig. 2.9.2 by using both of the low and high speeds flight computation programs for flight speeds of from takeoff to very high flight speeds. The thrust level is expressed by the engine inlet area specific thrust Tinlet-area of Eq. (2.4.2.9).

   The takeoff performance of the ARCC engine powered vehicle is closely related with the vehicle configuration as well as the engine performance. The specific impulse of the ARCC engine becomes to be larger than those of the LO2/LH2 pure rocket engine soon after the beginning of the running on the sea level ground (an increase of the speed increases the dynamic pressure q) for the operational condition of the rocket combustion chamber pressure pc=20 atm with O/F=5 and it approaches to the maximum value at the running speed of about 140 m/sec. It must be remembered that the previous examples2.9.1-2.9.3 of the ARCC engine assumed the constant pressure during the air/fuel combustion from the end of the mixing according to the Brayton cycle. The results showed that the stagnation pressure at the ARCC engine internal stream exit (p5s) does not approach to be over the critical value for supersonic expansion through the external nozzle, which induces some problems concerning with the attitude control of the vehicle. Fig. 2.9.1 shows however that the stagnation pressure (p5s) shows to be over the critical value for the same operational condition so that if a variable geometry internal nozzle or an engine exit flap were used the supersonic expansion of the exhaust gas to the ambient atmospheric pressure would be obtained. The author has stated repeatedly that the variable geometry configuration should not be adopted for the propulsion system for a SSTO vehicle. The exhaust gas flow problem of the ARCC engine without the variable geometry internal nozzle or an engine exit flap will be discussed in detail in the examples of the numerical calculations performed in the next Chapter 3.8 Interfering Aerodynamics with Nozzle Exhaust Gas Flow and in the last chapter 5. Examples of ARCC Engine Powered SSTO Vehicle. The new result is due to the previously stated assumption of the equal velocities for V4=V5. This will be easily explained from the following isentropic expression of the stagnation pressure.
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2.9.2 Discussions

   The above equation shows that the first term of the right hand becomes to be zero under the assumption of the Brayton cycle. However, the second term of the right hand becomes to be positive for either assumption of the equal pressure of the Brayton cycle or the equal velocities of this section, for the subsonic engine mainstream. This induces the larger (p5s) of Fig. 2.9.1 than those of the references 2.9.1-2.9.3 for the ground running condition. If the operational conditions of the engine are controlled such that q=0.1 atm and pc=60 and pc=120 for O/F=5, both engine operational conditions can takeoff the vehicle along the q=0.1 ascending flight path, however, the pc=120 condition can not make the vehicle’s ascending flight path along the q=0.2 atm flight path and the generated specific impulses are lower than those of the pc=60 condition. 
The larger thrust will be required specifically for maneuvering the liftoff of the vehicle from the ground running. The higher pc gives the larger thrust of the ARCC engine; however, the specific impulse becomes lower. The author supposes that the higher rocket combustion pressure increases the size of the rocket plume as well as the mass flow rate of rocket exhaust gas, which induces the smaller mass flow rate of the incoming air flow. The smaller mass flow rate of the incoming air flow decreases the specific impulse of the ARCC engine. Fig. 2.9.1 shows also various takeoff ascending flight paths with the engine performance of the specific impulses which suggests guidance for the ARCC engine powered vehicle design.

   Fig. 2.9.2 shows the specific impulse and the specific inlet area thrust of the ARCC engine for the whole mission velocities envelope mainly by the high flight speed computation program and partly by the low flight speed computation program. The part of the low flight speed computation shown in Fig. 2.9.2 is the case of the ARCC engine operational condition such as the flight dynamic pressure of q= 0.3 atm and the rocket engine combustion pressure of pc=45 atm with O/F=5 because of a typical example of the successive flight from the takeoff maneuver to a high flight speed region. In the low flight Mach numbers regions, the example of the pc=260 atm with the O/F=5, and the example of the pc=160 atm with the O/F=6 are shown for the a little higher flight Mach numbers regions, from about M∞≈1 to about M∞≈4 of the q=0.3 atm and from about M∞≈3 to about M∞≈4.8 of the same flight dynamic pressure, respectively. In the hypersonic flight regions, the examples of the different flight dynamic pressure are shown for the same rocket engine operational condition of the pc=20 atm with the O/F=6 for the flight Mach numbers of M∞>4, and for q=0.2 of M∞>7, respectively.

Table 2.9.1 Engine geometry and assumed efficiencies

	Vehicle length:                       L=60 m 
Engine height:                       eh=1.5 m 
Forward ramp angle:                  δb= 8 degrees

Location of head of strut:              ξei= 0.61874

Location of end of rocket:              ξree=0.64374

Location of engine exit:                ξee=0.71874

Pitch length of struts:                  b=3 m

Width of 2-dimensional rocket:          br=100 mm 

Throat width of rocket engine :          bt=10 mm

Expansion ratio of rocket engine:           3

Rocket engine combustion efficiency:    ηrocket=0.98

Air/Fuel combustion efficiency:         ηair/fuel=0.90

Air capture efficiency:                ηinlet=0.80
Expansion efficiency:                 ηnozzlet=0.80




   The preliminary flight calculations for the ARCC powered SSTO2.9.4-2.9.5 vehicle showed that the thrust of the ARCC engine should increase to get over the dramatic increase of the aerodynamic drags during the transonic flight to the low supersonic flight. Therefore, the supersonic flight of the ARCC engine requires the increase of the rocket engine combustion chamber pressure to very high levels even though the specific impulses becomes to be lower, for the low supersonic flight under the flight Mach number about 4.8. The high pressure operation of the rocket engine induces a large scale of the rocket plume expansion to the incoming air flow in the ARCC engine, which tends to induce the so called “pop out” due to the strong diffuser effects and also a very large loss of the stagnation pressure of the incoming air flow due to the normal shock for the low supersonic flow, therefore; the design of the ARCC engine configuration and the operation of the rocket engine should be carefully selected. The maximum admittable pressure of the rocket engine will be determined from the requirement of the vehicle design side as well as the current rocket engine technology.

   The smaller size of the rocket plume is desirable in the hypersonic flight for decreasing the supersonic diffuser effects of the engine mainstream to keep the scram-mode operation of the ARCC engine. However, an optimum condition of the mixing should be controlled for keeping the required air/fuel combustion pressure for every hypersonic flight condition, by means of the stagnation pressure of the rocket plume (pressure of the rocket engine combustion chamber, pc). It must be noted that the ARCC powered vehicle will decrease the mass due to the consumed propellants for arriving the very high flight speed, and the centrifugal force acting to the vehicle (Sanger’s force) will not be negligible in the final mission flight speed of the ARCC engine operation. The required thrust level becomes to be lower to the vehicle with the smaller mass. Therefore, the lower thrust levels are selected for the hypersonic flights of Fig. 2.9.2.  

　　　In order to expand the flight speed limit into the higher flight speed, much more sophisticated design of the ARCC engine and the operation will be required in the hypersonic flight, specifically, to the supersonic diffuser effects of the incoming air flow and to the mixing with the rocket plume. The flight speed limit of the ARCC engine was previously discussed of the generic features in the 2.4.6. This problem will be again discussed in detail by the example of flight computer simulation of an ARCC engine powered SSTO vehicle, later, in the Chapter 5 of this book. 
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             Fig. 2.9.1 Takeoff performance by the low flight speed program
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Fig. 2.9.2 Isp and thrust levels from transonic to hypersonic speeds
Chapter 3
  ARCC Engine Powered Single Stage to Orbit Space Transportation Vehicle

3.1 Introduction to Single Stage to Orbit Space Transportation VehicleDesign

Aircraft design is the name given to the activities that span the creation on paper of a new vehicle. Modern aircrafts are, however, under the governmental system specifications, standards, and regulations for manufacturing as well as for operation. Therefore, it is well matured process even for military missions. Design of expendable-rocket is far from aircraft’s in a viewpoint of governmental standards and regulations. This process is rather close to that of missiles. Design of manned space transportation systems are still in much immature. This chapter is aimed to describe design process of an ARCC engine powered vehicle. For simplicity, the required capability of the vehicle is assumed to be equivalent to that of the U.S. Space Shuttle. The author intends to follow the conventional aircraft design process as far as possible. However, most parts of the aircraft design are beyond those of the ARCC engine powered vehicle design. The substance of this chapter will be such that applying the methodologies of the conventional aircraft design to the ARCC engine powered vehicle with making efficient uses of the specific features of the ARCC engine and the difference from the conventional aircraft and rocket design are intensively discussed.
The aircraft design process is usually divided into three phases or levels of design. These three phases are: Conceptual Design, Preliminary Design, and Detailed Design. The rocket design is also similar to the above. However, in Japan, the design technology is not matured in the aircraft as well as in the rocket. Therefore, the Conceptual Design phases are usually divided into two such as Concept Exploration and Concept Definition phases. During the Concept Definition phase, new technologies for Japan are experimentally estimated for worthiness. The design of the ARCC engine powered vehicle has not been tried in any place of the world; therefore, this chapter is specifically described for the Concept Exploration phase.

Mission requirements must be established before the design can proceed. The mission requirements for the space transportation are as followings:

   Purpose - mission orbit.

   Payload - passenger, cargo, etc.

   Field Length - takeoff length, landing length, etc.

   Endurance – reusability, etc.

   Cost – development, operation, life cycle.

   Maintainability – maintenance man-hours per flight, spare equipment and parts, and

   the turn-around-time.

In this chapter, the last three issues are not discussed because these issues should be discussed in other books. The requirements of reliability for the aircraft are defined by the government regulations, for examples, the U. S. FAR (Federal Regulation) for civil aircrafts and MIL-STD-785 for the U.S. military aircrafts. In other hand, those for rockets are based on the safety criteria of the launch site and the trade-off between the payload weight and the expected reliability for the mission success. This is because the rocket is still in immature due to too large value of the propellant weight faction at the gross lift-off. Therefore, the ratio of residual weight to the gross takeoff weight (after the mission is over) will be a measure of the reliability for the ARCC engine powered spaceplane. The following subjects concerning with the concept development phase of the conceptual design are stated in this chapter, such that planform and selection of airfoil section in the Section 3.2, the relevant wings with aerodynamics in the Section 3.3, takeoff measures of the vehicle in the Section 3.4, numerical vehicle for easily calculate the mass properties and the aerodynamics in the Section 3.5, mass properties of the given configuration of the ARCC engine powered SSTO vehicle in the Section 3.6, the relevant aerodynamics of the vehicle for subsonic, transonic, supersonic, and hypersonic flight in the Section 3.7, and external nozzle expansion gas-dynamics and interaction with free air-stream in the Section 3.8.
3.2 Planform and Airfoil Section
This section describes selection of planform, and aerodynamic section in connection with vehicle’s volume for the propellants, the body slenderness (inverse fineness) as well as static stability of the lifting body. The selection of the planform is especially important because it significantly influences the vehicle aerodynamics as well as the mission performance of the SSTO vehicle due to the characteristic shape. In general, supersonic or hypersonic cruising vehicles need slender shape, i.e. high fineness ratios (fuselage length/fuselage diameter), low wing loadings, and high lift to drag (L/D) ratios. Aerodynamic shapes for them are usually traded among wing-bodies, blended wing-bodies, and lifting-bodies. However, the ARCC engine powered vehicle, discussed in this section, is an accelerator rather than a cruiser, and the vehicle requires much volume for propellants than the cruiser. That is, lifting bodies are much more suitable for the ARCC engine powered vehicle, even though the L/D is lower. 
The most bothersome problem of the ARCC engine powered SSTO vehicle is design of the planform. In order to achieve the mission requirements, the vehicle has to have enough volume for the propellants. The vehicle flies from the takeoff speed to very high hypersonic speeds, therefore, the vehicle has to have good aerodynamic configuration through subsonic, transonic, supersonic, and hypersonic flights. The vehicle configuration for low flight speeds are quite different from for very high flight speeds including wing shape. Therefore, variable geometry is usually supposed for the vehicle. Most of the supersonic cruising vehicle is firstly discussed which of the configuration should be selected “fixed wing” or “variable geometry”. The wing panels of the supersonic variable geometry would be pivoted at the root so that each wing could swing from a low speed to a high sweep condition. The main disadvantage is one of weight. The variable sweep wing, because of the wing pivot structure and associated machinery, is much heavier than a fixed geometry. Estimates are that the variable geometry wing weighs about 20 percent more than a compatible fixed wing. This 20 percent is significant. For the SSTO vehicle, variable configuration is additionally required for hypersonic flight. Further, in very high flight speeds, aerodynamic heat loads are so hard that any viable moving structure for the pivots may hardly developed. This is the same reason that fixed geometry is mainly discussed in the ARCC engine system for a SSTO vehicle, as stated in the Chapter 2.
Forward Ramps For a supersonic airbreathing engine for cruising, the inlet is designed to provide the best performance at a specified Mach number while minimizing drag. This is usually done by making the shocks that are formed from the forward ramps, to touch on the lower lip of the inlet cowl (called shock on lip). Because the ARCC engine is supposed to be operated beyond flight Mach number about 20 as stated in Chap. 2 and for an accelerating vehicle, “shock on lip” design requires a smaller angle of the forward ramp angle for a lower flight Mach number and a larger angle for a higher flight Mach number. A lower flight Mach number induces a larger oblique shock angle, while a higher flight Mach number induces a smaller oblique shock angle. Generally speaking, a lower angle of the forward ramp induces a smaller oblique shock angle. However, the induced oblique shock angle is very large in a lower flight Mach number; therefore, “shock on lip” design requires a larger height of the engine inlet in a lower flight Mach number, for a constant length of the forward ramp. For a much higher flight Mach number, the induced oblique shock angle becomes much smaller even for a larger angle of the forward ramp angle; therefore, the engine inlet height should be reduced for adjusting a “shock on lip” design. This is exactly the requirement of the variable geometry configuration to the engine. The ARCC engine geometry should be operated as in off-design for the almost whole flight region because the geometrical configuration of the ARCC engine should be fixed as stated in the Chapter 2. 

The compressible isentropic relation gives that the specific inlet area incoming air mass flow rate decreases inversely with respect to the flight velocity for a constant flight dynamic pressure condition, however; the ARCC engine does not follow exactly to this relation because of the ejector effects of the rocket plume as stated in the Chapter 2. Understanding the above stated relation and any configuration of the airbreathing engine is in the off-design for almost the whole flight region of the SSTO vehicle, a fixed geometry is hereafter considered for an ARCC engine. A larger angle of the forward ramp angle induces not only a larger drag due to the ramp but also a smaller thrust level due to the smaller incoming airflow. While, a smaller angle of the forward ramp angle induces inadequate pre-compression for very high flight Mach number engine operation, this induces a lower static pressure to the air/fuel hydrogen combustion. As stated of the ARCC engine in Sub-sec. 2.4.5 (b), when the flight speed is about fourteen, M∞≈14-15, the velocities of the incoming air and rocket exhaust gas at the mixing station of the engine becomes almost equal, i.e. V3a≈V3r, which induces mixing problem because of not to grow the turbulent shear/mixing layer. That is one of the critical phases of the ARCC engine. Further, beyond this flight Mach numbers to about Mach number 20, the combustion pressure approaches minimum values. Therefore, a forward ramp angle will be best to select as “shock on lip” for the flight Mach numbers approaching to the flight speed limit of the ARCC engine under taking into account the volume for the required propellants, the fineness ratio for the low supersonic flights, as well as considering the required thrust levels. 
Engine Length The length of an ARCC engine is determined by the lengths of the rocket, the air/rocket exhaust gas mixing, and the air/fuel hydrogen combustion. The length of the rocket will be determined according to the conventional LO2/LH2 rocket engine design such that the following subsystems, such as distributor, injector, igniter, combustion chamber length, and rocket nozzle, are integrated in to the strut, however; the specific feature is that the cooling system for the outer wall of the rocket engine as well as for strut surfaces are required for the very high flight speed. The most concerned length is for the air/rocket exhaust gas mixing and combustion length. The latter length should be designed by the adequate ignition delay time (refer to from Eq. 2.7.4.16 to Eq. 2.7.4 18). The required length of the air/rocket exhaust gas mixing is determined by the rocket engine design and the operation condition, and by the ARCC engine design such as the pitch length between the adjacent struts.
External nozzle The external nozzle, like forward ramp, has a tendency to increase in length for a higher flight speed mission. The increase of length is to improve nozzle efficiency for very high flight speeds, however, a long nozzle length decrease the efficiency for low flight speeds. This problem will be discussed in the later Section of 3.8. Ideal efficiency is achieved by designing the nozzle to have a sufficient area ratio (exit area to throat area) such that the exit pressure of the expanding exhaust gas is equal to ambient atmospheric pressure at the nozzle exit. To achieve this at high flight Mach numbers requires a very high area ratio (or expansion ratio). The longer nozzle with higher expansion ratio increases the nozzle weight, which deteriorates not only the vehicle payload capability but also the vehicle’s static stability margin. Therefore, a special nozzle is usually selected which is called as single-sided, free-expansion, unconfined, or half-nozzle, or expansion-ramp. The nozzle performance of the single-sided nozzle is closely related with formation of the free jet-boundary of the exhaust gas, which will be discussed in Sec. 3.8 External Nozzle Expansion Gas-dynamics and Interaction with Free-stream. 
As previously stated, when the flight speed is about M∞≈14-15, the velocities of the incoming air and rocket exhaust gas at the mixing station of the engine becomes almost equal, i.e. V3a≈V3r, which may be one of the speed limit of the ARCC engine. The ambient pressure for an airbreathing engine beyond Mach number 15 will be about 2.5/1000 atm (250 Pa). It was also stated that if the flight speed of the ARCC engine approaches to about Mach number 20, the combustion pressure approaches minimum values. This is another flight speed limit of the ARCC engine. That is, the pressure ratios of a single-sided nozzle from the stagnation pressure at the exit of the internal nozzle to the ambient atmospheric pressure will vary from about 2 on the sea-level ground running through 400 at M∞≈14-15 to 1000 at M∞≈20 for an ARCC engine external nozzle. The matured design methodology has not been well developed for such operational conditions of a single-sided nozzle. If the nozzle is designed for very high flight speeds, the nozzle will induce over-expansion problems in low flight speeds. If the nozzle is designed for low flight speeds, the nozzle efficiency will be deteriorated in very high flight speeds. The author believes that the suggested flight Mach numbers for the forward ramps may also give a measure for compromise even if with assist of aft-cowl-flap operation. The detailed discussion of this problem will be described by results of the numerical simulation in Section 3.8 and Chap. 5 Examples of ARCC Engine Powered SSTO Vehicle. 
Airfoil Section of the Lifting Body The main body of the ARCC engine powered vehicle should be a propulsive lifting body. The propulsive lifting body means that shape of the body has a function of generating aerodynamic forces associated with the engine exhaust gas stream. The aerodynamics of the free jet-boundary of the exhaust gas stream will be discussed in Sec. 3.8 External Nozzle Expansion Gas-dynamics and Interaction with Free Air-stream. In this section, only lifting body is described. It must be noted here that the lifting body must be sized to meet the volume requirements of crew, payload, engine configuration, and propellants such as liquid oxygen and liquid hydrogen. Among the requirements, volume for low density propellant of liquid hydrogen is most important. Most of the air-breathing engine powered hypersonic vehicles are for lower fuel density such as methane or hydrogen. The ARCC engine uses liquid oxygen as well as liquid hydrogen. Table 3.2.1 shows typical specific weights per volume of the various fuel and propellants. The average values of the ARCC engine are those of the references of SSTO vehicles of the references 3.2.1 and 3.2.2 and en example of the Chapter 5 Examples of ARCC Engine Powered SSTO Vehicle.

   Table 3.2.1 shows that the right hand side requires a larger volume for the propellants. The average specific weight per volume of the ARCC engine is a little lower than those of LO2/LH2 rocket engines of which O/Fs are 5-6. That is, the lifting body of ARCC engine powered vehicle requires a larger specific volume per propellants weight than the conventional LO2/LH2 rocket powered vehicles. It must be noted, however, that the ARCC engine powered vehicle requires a much smaller value of the specific volume for the propellants tanks than those of the hypersonic liquid hydrogen fueled vehicles. This means also that the ARCC engine powered vehicle can be designed to be much slenderer than the liquid hydrogen fuelled hypersonic vehicle, which gives an advantage to the aerodynamic shape of the ARCC engine powered vehicle, specifically for supersonic and hypersonic flights. 

      Table 3.2.1 Specific weights per volume of aerospace propulsion fuel and propellants 
	Fuel and

propellants
	Kerosene

(JP- )
	Liquid

methane
	LO2/LH2
 rocket
	ARCC

 engine
	Liquid

hydrogen



	Specific

weight

(kg/m3)
	  807
	  415
	327*-360*
	  223*
	  71


        *: designate average value.

   Considering the previously discussed forward ramp, engine length and nozzle length, three kinds of lifting body longitudinal sections are schematically shown in Fig. 3.2.1. Fig. 3.2.1 a shows a lifting body section based by a typical subsonic airfoil section of NACA-series. At subsonic flight speed the maximum thickness ratio (the ratio of the maximum thickness to the chord length of the wing: (t/c)max; the maximum thickness/the vehicle length of the lifting body) influences the maximum lift coefficient with increase of the (Cl)max as the (t/c)max increases. The maximum lift coefficient of the lifting body is specifically important during the takeoff maneuver. The critical Mach number, MCR, usually represents the maximum speed attainable for high subsonic cruising aircraft due to the increase in drag for flight past MCR. The critical Mach number is closely related with generation of the shock waves. Fig. 3.2.1 c shows another one based by typical supersonic airfoil section, and Fig. 3.2.1 b is a moderate profile for both of the subsonic and the supersonic. Supersonic aircrafts also like to have the wing MCR larger than the fuselage MCR. The critical Mach number of the supersonic flight is due to the great increase of the drag directly related with the shock wave generation, so called the wave drag. As the maximum thickness ratio increases, the MCR decreases for the supersonic flight. In supersonic flight the wave drag increases approximately proportional to the square of the t/c (see the following Sub-sec.3.3). 
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Fig. 3.2.1 Aerodynamic sections of lifting bodies for an ARCC engine powered vehicle
   The leading edge shape (rLE) of wing can vary from the round to the sharp. Some popular sharp edge airfoils, designed primarily for supersonic flight as shown in Figs. 3.2.1 b and c. These airfoils have poor low speed characteristics. The sharp leading edge airfoils can usually have their low speed performance improved by the use of high lift devices such as the trailing edge or the leading edge flaps. However, these methodologies are not practical for either to the leading head or to the trailing edge of the lifting body, because that the leading head of the vehicle receives a very hard aerodynamic heating during the hypersonic flights, which violates the author’s consistent thinking of the design such that any movable system should not be applied to the very hard thermal environment parts of the ARCC engine powered vehicle. The high lift device of the trailing edge of the body such as flaps has a problem specifically for the concerned propulsive lifting body because the movements of the flaps themselves influence directly the expanding flow of the engine exhaust gas, even though the trailing parts receive a little harder aerodynamic and gas dynamic heating due to both of the external free air flow and the engine exhaust gas flow. The round nose airfoils exhibit much better low speed aerodynamic characteristics than the sharp nosed airfoils. The general trend is an increase in (Cl)max for the larger rLE. All of the airfoils of NACA-series are round nosed. All the airfoils of NACA-series have a higher (Cl)max than those of the double-wedge type supersonic airfoil.
   Any kind of airfoil section of NACA-series has almost the similar lift curve slope; however, the maximum lift coefficient and the angle of zero-lift are varied. The amount of camber determines the value of the angle for zero lift, α0L. The zero camber airfoil has α0L=0. The larger α0L tends to increase the maximum lift coefficient. However, it must be noted that the maximum lift coefficient and the angle for zero lift are closely and inconsistently related with the maximum camber. Aerodynamic centers of all of NACA-series are within 0.231-0.276; that is that the aerodynamic center of the NACA-series shaped lifting body tends to induce longitudinal static stability problems in subsonic flights. Therefore, supplemental wings are required for this problem by locating them in rear ward of the body. However, the functions of the supplemental wings of the ARCC engine powered vehicle are various for such as the takeoff and the attitude control in the supersonic and hypersonic flights; therefore, the trade off are necessary for the whole planform of the vehicle among the wing sizes and the configuration of the lifting body, which are discussed in the next section Trailing Edge Flaps and in the Chapter 5 FLIGHT PERFORMANCE OF AN ARCC ENGINE POWERED SSTO VEHICLE. It was stated that positive camber gives an increase in section (Cl)max. We must recall here that a small flap deflection is equivalent to a positive increase in camber. However, the camber increases the wave drag proportional to the square in supersonic flight.
   If we consider the mission capability of the ARCC engine powered SSTO vehicle, the volume of the body for propellants as well as for payloads becomes important. Introducing Kuchemann tau (τ=Vol/Se3/2)3.2.3, this non-dimensional parameter shows a capability of onboard propellants and payloads to the exposed vehicle planform area (Se). Table 3.2.2 shows the Kuchemann taus of various supersonic military aircrafts including the ARCC engine powered vehicle which are the average values of the references 3.2.1, 3.2.2 and an example of the Chapter 5 Examples of ARCC Engine Powered SSTO Vehicle. The table shows that the liquid hydrogen fueled hypersonic vehicle should have mach larger Kuchemann tau than those of the current supersonic military aircrafts of which fuel are those of higher densities and the payloads are weapons; however, the ARCC engine powered SSTO vehicle requires not so large volume, because it does not require so mach the very low density fuel of liquid hydrogen due to the high density liquid oxygen for the rocket propellants. 

               Table 3.2.2 Kuchemann taus
	Vehicle
	F-15
	SR-71
	Hypersonic

(LH2)
	ARCC engine

powered vehicle

	τ
	0.066
	0.042
	0.16-0.18
	0.043-0.07


   A following summarized review could be stated for the longitudinal shape of the ARCC engine powered SSTO vehicle, such that it might be close to the NACA-series airfoil as far as possible even if the engine thrust level should be over the induced drags during the supersonic and the hypersonic flights and the slenderness should be small. There have been many impertinent thinking as that the wings are only required for the horizontal takeoff of the SSTO vehicle and they are useless for the whole flight path until the mission will be achieved. It must be remembered that the wings are necessary not only for the takeoff but also for the attitude control maneuvers during subsonic, transonic, supersonic, and hypersonic flights of the airbreathing engine powered SSTO vehicle, which are discussed in the later parts of this book.

Cross Sectional Shape The volume of a lifting body is determined by the cross sectional shape and the planform. In order to obtain better aerodynamic characteristics with a reasonable volume, an oblate shape may be attractive. If the sectional oblateness is increased, the aerodynamic characteristics will be improved with increase of the volume for constant width and height of the cross section. Fig. 3.2.2 shows a typical cross sectional shape of a lifting body with a camber and with engine, where y or η is the span-wise direction and z or ς is the vertical direction at the longitudinal location of the vehicle axis. The x, y, z coordinates system and the ξ, η, ς coordinates system are sometime distinctively used in this book for the aerodynamic calculations and for the mass properties of the vehicle, respectively.
If ellipses are supposed for the section, the upper and the under surfaces are described, respectively, as
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where bupper and bunder designate the local minor radius of the upper and the lower bodies, respectively, a is the local half span (the major radius), and ccamber is the local camber. If a much oblate cross section is assumed for constant bupper, bunder, and ccamber is assumed such as by the 2n-th power equations, the sectional area increases with the larger number n, and a larger volume is obtained with better aerodynamic characteristics.
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[image: image353]
             　　Fig. 3.2.2 A typical cross section shape of a lifting body with a camber
Planform of a Lifting Body The shape and sizes of a lifting body is determined by trade-off of the various measures such as the mission capability, the required volume, aerodynamic characteristics, takeoff performance, thrust and drag relation during transonic and low supersonic speeds, and so on. Those will be determined by only flight simulation, which will be discussed later in Chapter 5. This is also closely related with selection of wing planform, which is described in the next section. The body length, span of the head, side angle, and span of the tail are closely related with the volume and aerodynamic characteristics of the lifting body. Fig. 3.2.3 shows a schematic. The body edge sweep corresponds to that of wing leading edge. It must be noted here that the aspect ratio is very small and the sweep angle is very large compared with the conventional wing planform.
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Fig. 3.2.3 Planform of lifting body
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3.3 Design of Wing and the Aerodynamics
   As stated in the previous section, horizontal wings play roles of supplemental lift force to the main body specifically important at takeoff flights and the main control device of the vehicle attitude during aerodynamic flights. The design methodology of wings is well matured for subsonic, transonic and supersonic speeds. We can have many references of them (refer to the reference 3.3.1). Because those for the hypersonic flight, however, are very few except for the blunt nosed vehicle, therefore; this problem will be later discussed in the Section 3.7.5 of this chapter. In this section, only basic methodologies are reviewed. 

   The aerodynamics of wing are discussed by coefficients as
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where q=1/2 ρV∞2, the dynamic pressure of the free stream, 
[image: image358.wmf]C

 is the mean aerodynamic chord of the wing and the moment M and moment coefficient CM are about some point A. Notice that the coefficients are referenced to a reference area, SRef, which is usually the wing total planform area. The aerodynamic coefficients for three dimensional bodies (wings, bodies, and combinations) are denoted by capital subscripts. The coefficients for two dimensional airfoil sections are denoted by lower case subscripts.

Incompressible Airfoil Section Theory Subsonic thin airfoil theory3.3.2 (incompressible and inviscid) predicts section lift and moment coefficients quite well for airfoil shapes up to moderate angles-of-attack α. 
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Aerodynamic center location = quarter chord = c/4           (3.3.5)
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where α0L is the angle of zero lift, dz/dx is the local slope of the camber line, θ is the change of variable x=c/2 (1-cosθ) and c is the chord of the airfoil section. The section lift data up through moderate angles of attack (i.e. the linear lift region) is expressed as

                                     Cl=m0(α-α0L)                 (3.3.8)

Notice that α0L is zero for symmetric or uncambered sections. 

   The drag coefficient for an airfoil section has a parabolic behavior with the lift coefficient, except at large α. This parabolic behavior is expressed as
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where 
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where 
[image: image368.wmf]0

d

C

 is called the zero lift drag coefficient and is due to separation and skin friction drag at Cl=0. Notice that 
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 for most cambered airfoils.

Subsonic Compressibility Corrections The subsonic compressibility correction factor is known as the Prandtl-Glauert rule. Essentially it transforms the compressible flow problem into an equivalent incompressible flow problem. The correction for lift curve slope is as follows:
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The effect of compressibility is to increase the section lift curve slope. Theoretical and experimental values usually agree very well for 0<M<0.8. Beyond M=0.8, the incompressible analysis can not applied; however, the Prandtl-Glauert rule could explain approximately the aerodynamics of transonic and supersonic flows.

When the wing has a finite span, the differential pressure on the top and bottom surface cases a circular motion of the air about the tips. This circular or vortex motion of the air trails behind the wing tips as trailing vortices. The trailing vortices induce a downwash at the wing aerodynamic center which gives a lower effective angle-of-attack and an induced drag. The finite wing correction depends solely on aspect ratio and taper ratio and is based upon the free stream velocity being perpendicular to the quarter chord line. If the wing is swept the component of velocity perpendicular to the quarter chord establishes the pressure distribution over the wing and the tangential component flows spanwise along the wing and does not influence the pressure distribution. The effects of sweep, finite span and compressibility may be combined into the following very useful expression for subsonic lift slope:
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where A=aspect ratio=(span)2/(wing area)

      β=(1-M2)1/2
      Δ=sweep of the max thickness line

Usually the wing CL is thought to be linear in α, however, this is an approximation and is only good for high aspect ratio wings. Actually the wing CL is more correctly written as
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where 
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 is the wing lift curve slope evaluated at α=0 using Eq. 3.3.12 and C1 is the non-linear lift factor. 

   Non-linear dependence of lift and pitching moment on the angle-of-attack is very significant for slender bodies and wings of small aspect ratio. This is due to the fact that the flow past a slender body or low aspect ratio wing is completely different from the flow past a classic unswept wing of large A. The characteristic feature of the flow past such a slender body or low aspect ratio wing is the strong cross flow which leads to separation of the flow at the sides of the body or wing edges and to the formation of free vortices on the upper surface. This formation of free vortices on the upper surface of the low A wing or slender body is the reason for non-linear relationship between lift and pitching moment and angle-of-attack. The non-linear behavior becomes more pronounced with decreasing A and A=1 the non-linear part is of the same order of magnitude as the linear part.

   The vortex flow pattern is initiated by the flow separation at the edge of the wing and is very dependent upon the shape of the wing edge. The sharp edge precipitates separation sooner and more cleanly than a round edge. Thus the non-linear lift and moment contribution from sharp edges are about twice those from round edges. For delta wings the planform tip edges and leading edge are the same, thus we would expect the non-linear behavior to be a function of planform as well as aspect ratio. The momentum coefficient about the wing apex is similarly given by 
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where the values for C1 and C2 for round leading edges are about half of those for sharp edges, respectively. Values of C1 and C2 for various planform shapes and aspect ratios for sharp edge wings are shown in the reference3.3.3.  

Drags of Subsonic Flows The total wing subsonic drag coefficient is a combination of section and finite wing effects. The wing CD can be expressed as

                   
[image: image375.wmf]i

L

V

L

0

D

D

D

D

C

C

C

C

+

+

=

                  (3.3.15)

where 
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 is the viscous drag-due-to-lift and 
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 is the induced (inviscid) drag-due-to-lift. For a cambered wing, Eq. 3.3.15 is written as
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where 
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   The wing 
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 is the same for the given section and finite wing and is expressed by

                 
[image: image383.wmf]F

min

P

0

D

D

D

C

C

C

+

=

                            (3.3.17)

where 
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 = pressure drag due to viscous separation, experimentally determined
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where Swet is the wetted area of the exposed surface.

   If the flow over the wing is laminar, i.e.; Re<5x105 use
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and if the flow over the wing is turbulent, i.e.; Re>5x105 use
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It should be noted that the boundary layer is almost always turbulent for aircraft at all speeds. For thin wings (i.e. thickness ratios of 20% and less) and streamlined bodies, about 70 to 80% of 
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is due to skin friction. Thus a good rule of thump for subsonic 
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Transonic Flow A body is considered to be in the transonic flow regime when locally sonic flow first occurs on the body surface. The lower limit of transonic flow is some M∞ less than unity and depends upon the thickness of the body. The upper limit is generally considered to be about M∞=1.3.

   Consider a conventional subsonic airfoil shape; if the airfoil is at a flight Mach number of 0.50 and a slight positive angle-of-attack, the maximum local velocity on the surface will be greater than the flight speed but most likely less than sonic speed. Assume that an increase in flight Mach number to 0.72 would produce the first evidence of local sonic flow. This condition of flight would be the highest flight speed possible without supersonic flow and is termed the “critical Mach number”. Thus critical Mach number is the boundary between subsonic and transonic flow and is an important point of reference for all compressible effects encountered in transonic flight.

   As critical Mach number is exceeded an area of supersonic flow is created on the wing surface. The acceleration of the airflow from subsonic to supersonic is smooth and unaccompanied by any shock waves. However, the transition from supersonic to subsonic occurs through a shock wave and since there is no change in direction of the flow the wave formed is a normal shock wave.

   One of the principal effects of the normal shock wave is to produce a large increase in the static pressure of the air-stream behind the wave. If the shock wave is strong, the boundary layer may not have sufficient kinetic energy to withstand the large adverse pressure gradient and separation will occur. At speeds only slightly beyond the critical Mach number the shock wave formed is not strong enough to cause separation or any noticeable change in the aerodynamic force coefficients. However, an increase in speed sufficiently above the critical Mach number to cause a strong shock wave will produce separation and yield a sudden change in the force coefficients. 

   As the flight speed approaches the speed of sound the areas of supersonic flow enlarge and the shock waves become stronger and move nearer the trailing edge. When the flight speed exceeds the speed of sound the “bow” wave forms at the leading edge. If the speed is increased to some higher supersonic value all oblique positions of the wave incline more greatly and the detached normal shock portion of the bow shock wave moves closer to the leading edge.

   The airflow separation induced by the shock wave formation can create significant variations in the aerodynamic force coefficients. Some typical effects are an increase in the section drag coefficient and a decrease in the section lift coefficient for a given angle-of-attack. Accompanying the variations in Cl and Cd is a change in the pitching moment coefficient. The Mach number which produces a large increase in the drag coefficient is termed the “force divergence Mach number” and for most airfoils exceeds the critical Mach number by five to ten percent. This condition is also referred to as the “drag divergence” or “drag rise”.

   Associated with the transonic drag rise are buffet, trim and stability changes, and a decrease in the effectiveness of control surfaces. Conventional aileron, rudder and elevator surfaces subjected to this high frequency buffet may “buzz” and changes in moments may produce undesirable control forces. Also, when airflow separation occurs on the wing due to shock wave formation, there will be a loss of lift and subsequent loss of downwash aft of the affected area. If the wing shocks induced separation occurs symmetrically near the wing root, the resulting decrease in downwash on the horizontal tail will create a diving moment and the aircraft will “tuck under”.

Wing Thickness Ratio A smaller thickness ratio will give an increase in MCR. Thus the supersonic aircraft will have small thickness ratios, usually 8% or less, whereas subsonic aircraft will have thicker wings of perhaps up to 18%. 

Wing Sweep One of the most effective means of delaying and reducing the effects of shock wave induced separation is the use of sweep. Generally the effect of wing sweep will apply either to sweep back or sweep forward. However, the sweep back has been found to be more practical for ordinary application, specifically for wings of the ARCC engine powered spaceplane. The sweepback will increase the critical Mach number, force divergence Mach number and the Mach number at which the drag rise will peak. In other words, sweep will delay the onset of compressibility effects. The critical Mach number MCR is increased by (MCR)Δ=0/cosΔ.

   In addition to the delay of the onset of compressibility effects, sweepback will reduce the magnitude of the changes in force coefficients due to compressibility. Since the component of velocity perpendicular to the leading edge is less than free stream velocity, the magnitude of all pressure forces on the wing will be reduced (approximately by the square of the sweep angle). Since compressibility force divergence occurs due to change in pressure distribution, the use of sweepback will “much more soften” the force divergence with increasing the sweep angles. 

   A disadvantage of wing sweep is the decrease in wing lift curve slope. This effect can be shown to be
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This means that a swept wing aircraft will have to land and takeoff at higher angles-of-attack than a straight wing aircraft.

   Other disadvantages to wing sweep are a reduction in 
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 and tip stall. The early flow separation at the tip is due to the spanwise flow causing a thickening of the boundary layer near the tips and hastening flow separation.

Supersonic Skin Friction The supersonic flow over a vehicle is very likely turbulent so that the skin friction is given by the turbulent skin friction expression (Eqs. 3.3.18 and 19) corrected for compressibility. The incompressible flat plate turbulent skin friction is given by (for one side of the flat plate):
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The compressibility correction of the above equation is
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Supersonic Lift and Wave Drag If the local flow inclination over a body in a supersonic stream is small, then the pressure coefficient at each point is given by the linear theory result:
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where θ is flow turning angle in radians and is positive for compression regions and negative for expansion regions.

   The supersonic section lift and wave drag coefficient are given by supersonic linear theory:
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where α is the angle-of-attack (radians), 
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and 
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 is the mean square of the thickness distribution
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We observe that the supersonic 
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 is made up of a drag due to lift, drag due to camber and a drag due to thickness.

   Eq. 3.3.26 is usually rewritten as
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where
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where
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 = base drag due to flow separation over a blunt base

               SB = base area

Hypersonic Lift and Drag For the hypersonic flows, the aerodynamic coefficients are described by the Newtonian flow, which is stated later in Sub-sec. 3.7.5.

Trailing Edge Flaps The primary functions of wings for an ARCC engine powered spaceplane are generation of aerodynamic lift force assisting the lifting body specifically for takeoff and landing and attitude control of the vehicle by means of trailing edge flaps of the wing. The flap maneuver is specifically important because the body flaps are not applicable during ascent powered flights due to thermal protection problem to the very high temperature exhaust gas. Trailing edge flaps of wing operate by changing the camber of the airfoil section. The camber is made more positive in the region of the trailing edge which has a powerful influence on making αOL more negative. The section lift coefficient is expressed as   
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where α is the angle between the unflapped section chord line and the free stream velocity. Various trailing edge flaps have been developed as high lift devices for conventional aircrafts, however, the plain flap (aileron) may best for the purpose of this book because of thermal protection problem (see Fig. 3.3.1). Trailing edge flaps do not prevent flow separation; in fact, they aggravate flow separation slightly (decrease αstall ) due to the increase in upwash at the leading edge due to increased circulation. Wing sweep promotes stall. Thus, trailing edge flaps become less effective as the wing sweep (with respect to mean aerodynamic chord) is increased. 
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Fig. 3.3.1 Plain flap or aileron

For the plain tail flap, empirical data gives the following equation as
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where 
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 = section lift curve slope (per radian),

      δf = angle of flap deflection,

       K’ = correction for non-linear effects,

K’ is given by experimental curves versus δf with parameter of cf/c, where cf is the flap chord length3.3.4. 
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is given by experimental curves3.3.5 versus cf/c with parameters t/c. 

   At subsonic speeds a distinction is made between low and high aspect ratio wings. This is because two different sets of parameters are required to describe the wing characteristics in the two aspect ratio regimes. The 
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 of a high aspect ratio wing is determined by the properties of the airfoil section, whereas, that of a low aspect ratio wing is primarily dependent upon the planform shape.

   We define the high aspect ratio wing by
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and the low aspect ratio wing by
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where C1 is a function of taper ratio3.3.6.
   For high aspect ratio wings the 
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 and αstall for the basic wing is determined from
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where 
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 given by the experimental charts3.3.7, and 
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 is the unflapped section maximum lift coefficient.

   For low aspect ratio wings the 
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where 
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 are experimental data which are shown in the reference3.3.8.

   The finite wing increase in 
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 due to a trailing edge flap is obtained from
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where 
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 is empirical sweep correction3.3.9, and SWF is the flapped wing area.

Subsonic Drag Due to Flap Deflection The increment in zero lift drag coefficient for flaps is given by
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where k1 is a function of the ratio cf/c, k2 is dependent upon δf and SWF/SW is the ratio of the flapped wing area to the total wing area (refer to the reference 3.3.10).
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3.4 Takeoff and Landing

Takeoff and Landing The design process of conventional aircrafts begins with the estimation of takeoff weight, WTO. The WTO is a very important design parameter as it sizes the whole vehicle. At the first time through design loop, the designer knows very little about his aircraft except what its mission requirements are. Then, some assumptions based upon very little information are required. The conceptual phase is actually a looping or iteration process where the assumptions are refined on subsequent phases through the design loop and the design converges to a feasible base point. Most aircraft companies usually have the material in the text computerized, so that the processes can loop through the conceptual phases in a matter of seconds and “home in” on a base point design quickly. The conceptual design process of an ARCC engine powered spaceplane of this book traces also this methodology. However, the relevant materials have not been available in any form of data. Therefore, the materials given by the following Sections of 3.5 Numerical Vehicle, 3.6 Mass Distribution Properties, and 3.7 Aerodynamics of the Propulsive Lifting Body are described in numerical forms for the computer, which gives the similar results. Those will be shown as an example in the last chapter of this book.
Takeoff Weight The takeoff wing loading (W/S)TO is also a very important design parameter as it sizes the wing and locks in the dominant performance features of the body-wing type aircraft. However, wings of the propulsive lifting body of this book plays supplemental functions as stated in the previous section because the wing loading of the concerned vehicle is closely related with the weight-to-planform of the lifting body. Referring the Kuchemann tau, τ, the wing loading of a complex vehicle is given by
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where (ρTO)≡WTO/Volume. If we consider the requirements such as the hydrogen propellant of very low density, the life support system of the crew compartment, and the maneuverability for the payloads at the mission orbit, the (ρTO) of the ARCC engine powered SSTO vehicle should be much smaller than those of the conventional supersonic aircrafts. Using the Kuchemann Taus of Table 3.2.2 gives the following approximate values as

(W/Spl)TO ≈ 4.10-6.0⋅Spl1/2 kg/m2                     (3.4.2)

Table 3.4.1 shows comparisons with conventional supersonic aircrafts’. 
Table 3.4.1 Comparison of (W/S)TO 

	Vehicle
	F-15
	B-1
	Concorde
	ARCC-engine-powered SSTO vehicle

	(W/S)TO
 kg/m2
	322
	1000
	  490
	170*-250*

  


                     Note: * designates (W/Spl)TO

Takeoff Wing Loading Generally, the wing-area-based (W/S)TO is the first measure of range requirement for conventional aircrafts. The planform-area-based (W/Spl)TO is a measure of required takeoff-length and of control for the vehicle acceleration during transonic flight. The wing loading of the cruising aircraft influences the takeoff and landing distances through the stall speed
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Takeoff is the distance required for an aircraft to accelerate from V=0 to VTO=1.2Vstall and climb over a 15 meters (50 foot) obstacle. Landing is the horizontal distance required for an aircraft to clear a 15 meters obstacle at an approach speed of 1.3Vstall, touchdown at VTD=1.15Vstall and brake to a complete stop.

   The takeoff distance is dependent upon the takeoff parameter of TOP
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where σ=ρ/ρSL, and ρSL is the sea level atmospheric density.. The takeoff distance can be estimated at this point in the design process by using the approximate expression (in meter)
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   The landing distance is dependent upon the landing parameter of LP
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The landing distance for conventional takeoff and landing (CTOL) aircraft can be estimated from the approximate expression3.4.1.

                                  SL=36LP+122               (3.4.7)

where SL is in meters and the glide slope over 15 meters obstacle approximately 3 degrees, and a braking deceleration of -2.2 m/sec2. 

   The approximate estimations of takeoff and landing distances for the propulsive lifting body are still in un-matured; therefore the flight simulation is at present the only methodology for calculations of these measures. The last chapter of this book describes an example of the flight simulation for the ARCC engine powered SSTO vehicle; though, which does not discuss the landing analysis because the primary object of the simulation is for the mission capability of the vehicle to the orbit. Therefore, an example concerning with the takeoff of the propulsive lifting body can be referred to that.
Takeoff Analysis The ground rules governing the takeoff and landing of military aircraft are reported in MIL-C-5011A and in FAR Parts 23 and 25 for civil and commercial aircraft. Takeoff is the distance required for an aircraft to accelerate from V=0 to takeoff speed, VTO, and climb over a 50 foot obstacle, VCL. Fig. 3.4.1 shows a schematic of the takeoff problem. The takeoff distance is the sum of the ground distance (SG), rotation distance (SR), transition distance (STR), and climb distance (SCL).


[image: image438]
Fig. 3.4.1 Schematic of an aircraft takeoff

   It is assumed that the aircraft accelerates to a takeoff velocity VTO=1.2 Vstall and at that speed the aircraft is rotated to an angle-of-attack such that the CL=0.8 (CL)max. The aircraft then leaves the ground and transitions from horizontal to climbing flight during the distance STR. The ground distance SG is given by the following integral as:
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where a is the acceleration during SG and
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and (CL)max is a particular flap setting. 

   The acceleration during SG is given by

                           a = (T-D-Ff)/m = [T-D-μ(mTO-L)]         (3.4.10)

where Ff is friction force to the gears and μ is the coefficient of friction for brakes off (Table 3.4.2).

   The lift and drag during the ground run is given by
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where 
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 is the lift coefficient during the ground run for a particular flap setting. 
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, where ALG=landing gear head-on area. The ΔfLG is given versus takeoff- weight in the reference3.4.2. 

                         Table 3.4.2 Coefficient of friction values

	Type of surface


	Brakes off,

Average ground 

Resistance coeff.


	Brakes fully

applied, average

Wheel braking coeff. 



	Concrete or macadam

Hard turf

Firm and dry dirt

Soft turf

Wet concrete

Wet grass

Snow or ice-covered field
	0.03 to 0.05

0.05

0.04

0.07

0.05

0.10

0.02
	0.4 to 0.6

0.4

0.30

-

0.3

0.2

0.07 to 0.10
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3.5 Numerical Vehicle

   The geometrical configuration of winged lifting body as well as that of ARCC engine system is given by numerical values. This is called here a numerical vehicle. The numerical vehicle is very convenient for convergence of the previously stated conceptual design phase, because various parameters of vehicle sizes and engine sizes are too many and too little to select available data of the conventional aircrafts. The numerical vehicle gives sizes, which generates aerodynamic surfaces and engine internal flow areas. Then, we can calculate aerodynamic forces and thrust as well as mass properties of the vehicle. The relevant mass distribution properties of the vehicle and the aerodynamics will be described in the following Sections of 3.6 and 3.7, respectively. The methodology for thrust calculation has been described in the Chapter 2. The mass distribution properties are easily estimated from the numerical vehicle, those are such that vehicle weight, weight distribution, moments of inertia of the vehicle about attitude control axes, center of gravity, weights of landing gears, the wheel diameter and the leg length, and weights of the required passive thermal protection and active cooling piping systems, which will be stated in the following section. The Section 3.7 describes specifically for calculations of the aerodynamic performance with respect to a propulsive lifting body.

   Fig. 3.5.1 shows a vertical section view of a numerical vehicle. Where each parameter is non-dimensional which divided by the body length, bl. The ξpay1 is a location of the partition between the crew and the payload1cargo bay; here the payload1 is defined for the lighter payloads to distinguish from the heavier payloads such that the heavier ones are housed in the following payload2 cargo bay. The distinction between the payload1 and the payload2 is for convenience of numerical calculation to obtain a desirable center of the gravity of the vehicle during the repetition of the conceptual design processes, and is actually practical for the space payload features. The ξLOX is a location of the partition between liquid oxygen tank and the cargo bay for heavier payload2, where liquid oxygen tank is supposed to be integrated to the inner walls of the vehicle for simplicity of the calculations. The ξLH2 is a location of the partition between the liquid oxygen tank and the liquid hydrogen tank; here also the liquid hydrogen tank is supposed to be integrated to the inner walls of the vehicle to the rear terminal parts of the vehicle. The ξwl and the ξvwl are locations of the roots of leading wing and leading vertical wing, respectively, ξwt and ξvwt are locations of the roots of wing tail and vertical wing tail, respectively. Positions of the wing and vertical wing tails (ξwt and ξvwt) are too close to the vehicle tail; therefore, they are not expressed in the figure. The cwf and cvwf are line chords of the wing and the vertical wing flaps, respectively. The settings up of the wings to the body are actually dependent on the given configuration of the vehicle; therefore, the other locations of the η-axis and the ς-axis are not shown in the figure. The ξng and the ξmg are locations of the nose-gear and the main-gear, respectively. Longitudinal sizes of the ARCC engine are expressed by locations such as ξei, ξre, and ξex, where those are the engine inlet, the exit of strut rocket, and the engine exit, respectively. 
Fig. 3.5.2 shows a horizontal section view of numerical vehicle, where bh is the width of head and be is the pitch length between struts, and bs is that of the side strut and the side wall, where the bs is defined as one half of the be because of the simplification of the ARCC engine performance calculations. Fig. 3.5.3 shows a numerical strut rocket engine, where bt is the throat width of the rocket engine and bex is the exit width of the rocket nozzle. It must be noted that the strut rocket here described is supposed to be two-dimensional because of the ARCC engine configuration.


[image: image445]
Fig. 3.5.1 Vertical section view of numerical vehicle


[image: image446]
Fig. 3.5.2 Horizontal section view of numerical vehicle

   As it was discussed in the Section 3.2 Planform and Airfoil Selection of this chapter, if the surfaces are given by the relevant ruled surfaces, specifically symmetrical ones about the z-axis (ς-axis) of the vehicle axis, it becomes very convenient for calculations of the mass distribution as well as aerodynamics of the propulsive lifting vehicle. For those purposes, referring to the Figures 3.3.2, 3.5.1, and 3.5.2 and using one couple of Eq. 3.2.1 and Eq.3.2.2 or Eq. 3.2.3 and Eq. 3.2.4 which describes the upper side and the under side surfaces of the vehicle, respectively, if the minor radius bupper and bunder , the camber ccamber, and the major radius a are given by the vehicle parameter of x or ς , this couple of two surfaces defines the upper surface as well as the under surface of the vehicle as ruled ones, respectively. The minor radius bupper together with the camber ccamber defines the longitudinal shape of the upper side of the vehicle, and the major radius defines the volume of the under body as well as the setting places of the ARCC engine to the under body. That is to define a numerical propulsive lifting body. The differential geometry gives a set of the three unit vectors such as the local tangent with respect to the vehicle axis, z or ς, the local principal normal and the local binormal at a point on the surface, which calculates easily the sectional area as well as the volume with integration, and which calculates also the mass distribution, the Kuchemann tau of the body, the moments of inertia around the three axes of the vehicle attitude control referring to the distribution of payloads given by Fig. 3.5.1. The set of three unit vectors are also necessary for the calculation of the aerodynamic forces acting to the propulsive lifting body.
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Fig. 3.5.3 Numerical strut rocket
   In Fig. 3.5.2, side lines connecting the forward head and the vehicle tail are drawn by strait lines. This is a simplified configuration specifically for conceptual phases, which will not influences so much upon the vehicle characteristics such as Kuchemann tau, aerodynamics, mass properties, and vehicle dynamics. Therefore, much more sophisticated curves will be selected in the advanced design phase. Widths of the forward head and vehicle tail will determined firstly from point view of the Kuchemann tau, then, it must be optimized from the aerodynamic performances after repeated flight simulations. The aerodynamic characteristics are closely related with selection of wing configuration. It must be noted that the specified functions of the wing are for assist of takeoff performance as well as for control of vehicle attitude during the ascent flight.
The final selection of the wing planform is also after repeated flight simulation; therefore, non-dimensional planform is very important as for the body configuration, based on the body length. If takeoff performance is primarily issue for the vehicle, the longitudinal vertical section shape should be those of the subsonic speed; then, the aerodynamic center of the body, ξlbac, would be in rather forward position such as 23-23% for the vehicle length. Therefore, rearward position of the wing leading edge at the root setting up to the body will be better for obtaining a reasonable static margin of the vehicle specifically during takeoff run. The selection of the vertical wing planform is based on the directional controllability of the vehicle, which purpose is to determine the final mission orbital plane with associated banking maneuver. Because the required energy for that maneuver is larger for the higher flight speed, that maneuver is recommended during subsonic flights.
The pitch length between struts, be, should be selected to optimize the unit ARCC engine performance which is described in the Chapter 2 and in the Section 2.7 Performance of an ARCC Engine by Numerical Calculations, and the required thrust level for the vehicle during the whole ascent flight by selecting the number of the strut rocket engine units. The length between the side strut rocket engine and the side wall, bs, should be determined from different point view of the unit ARCC engine, because growths of the boundary layer on the side walls and the active cooling for the side walls are different from those of the other unit flow. However, a simplified assumption such as bs=be/2 is well applicable for the conceptual phases by a little modification of the boundary layer and the active cooling on the side wall. Then, the multi-engine configuration of an ARCC engine can be calculated for the integrated performance. The engine height, he, is also another important parameter which determines performance of the ARCC engine. If it is higher, the aerodynamic drag increases and design of landing gears becomes more difficult. If it is lower, growths of the boundary layers on the internal panels become larger, and then internal losses of the engine become larger. By using the non-dimensional engine height such as he/vehicle-length, the optimized engine height can be also selected by repeated flight simulations.
The distributor is the connecting part of the oxygen line and the hydrogen fuel line to the injector of the propellants. The injector is composed of many injector-holes in two kinds of arrays parallel to the engine height, which inject the oxygen and the fuel to the rocket combustion chamber, respectively. Ignition sub-system should be provided in the distributor and injector part, however, it is included for estimation of the weights in the other subsystems such as pumps, valves, filters and piping for propellants and coolant, these sub-systems can be located rather freely in any places of the engine systems. Because the ARCC engine does not require very high combustion pressure for the air/rocket-exhaust-gas mixing, then, a gas-generator cycle is recommended. Therefore, pre-combustors are not required, for examples, LE-7A of H2A and the main engine of the Space Shuttle (SSME: Space Shuttle Main Engine). Thicknesses of strut wall and rocket combustor wall should be designed for the supposed active cooling. That of the strut wall should be transpiration cooling to the external airflow for the very high enthalpy condition, while this of the rocket combustion chamber wall may be grooved wall with thinly plated for heat regenerative fuel flow. Nozzle is also composed of essentially the same cooled wall; however, the mass is much heavier because of converged flow channel. The surface areas and required volume of a strut-rocket-engine can be first orderly calculated from the definition of Fig. 3.5.3. Estimation mass and mass distribution of the vehicle will be stated in the next section by using the prescribed surfaces and volumes.  
3.6 Mass Properties

   The structural design of an aircraft is usually performed primarily in the preliminary and detail design phases. Only gross structural aspects are considered in the conceptual design phase. During the conceptual design phase the vehicle size and configuration are changing, as the design converges on the goal. However, during the conceptual design phase, the designer must consider the structural concepts and material systems to be employed. A great deal of thought must be given to how the vehicle will be fabricated, assembled, and maintained once it’s in fleet operation. 

   The purpose of this section is primarily to start the designer thinking about structural concepts for effective in the flight simulation by giving appropriate weight distribution to a numerical vehicle. Secondarily, present an ARCC engine powered SSTO vehicle specific relevant issues concerning with materials and structures specialists to be studied for solving them, because those are far from any conventional rocket’s and aircraft’s. However, the basic design will not be different from those of fuselage frame with covered metal sheets, and wing design consisting of heavy cantilever beams called spars. The fuselage frame is made up of metal formers and bulkheads with stringers and longerons running lengthwise along the fuselage. The longerons are similar to stringers but are larger, serving a major structural purpose in that they are designed to take loads. The fuselage frame is usually covered with metal sheets riveted or spot welded to the metal frame. Wing design consists of heavy spars which take the spanwise bending and shear. Metal ribs are spaced along the span in chordwise direction to maintain the airfoil shape. Metal skins are attached to this framework to establish the structure in torsion and provide stiffness. Wing surfaces are usually the build up structures because their available volume can be used for housing fuel, landing gears, and equipment. The remainder of the aircraft structure is largely non-structural (secondary structure) is that it consists of fairings, cowlings, fillets, and flap surfaces. These items are made of shaped skin, stabilized by stringers and formers. The selection of materials and design of structures are based on loads to the vehicle. The limited and ultimate loads are regulated by the government regulations [Federal Aviation Regulations (1989) and MIL-A-87221, -008860A, -8860B, -008861A, -8861B, -008862A, -8863B, -00865A, -8865B, -008866B, -8866C, and MIL-E-18927E (1971-1983)]. The ARCC engine powered vehicle should be firstly designed under the categories T (Transport) or C (Cargo). Because the concerned vehicle is an accelerator, the limited axial acceleration should be considered, in this book, the maximum axial acceleration of the Space Shuttle is referred as a measure, which is 3g, where g is the earth gravity. 

The body of an ARCC engine powered vehicle as well as wings, however, must be further provided with thermal protection systems (TPS) to almost whole exposed surfaces and the load structures must be designed for stresses caused thermal extensions due to aerodynamic heating and shrinkages due to cryogenic propellants. Those systems and stresses are different in every parts of the vehicle surfaces. The leading head of the body and the leading edges of wings are most hardly suffered with aerodynamic heating specifically during hypersonic ascent and descent flights. We can select different trajectories for the ascent and descent. Along the ascent trajectory, the ARCC engine requires higher dynamic pressure than a minimum dynamic pressure for an effective thrust. In the returning trajectory after the mission is over, the vehicle takes a decelerating descent flight trajectory under the un-powered condition until to the very low flight speed for approaching to the landing site. The aerodynamic heating is most hard to the leading head of the body and the leading edges of wings. The heating rate in hypersonic flow is proportional to half power of the atmospheric density. The radiation equilibrium temperature on the surface is proportional to one eighths power of the atmospheric density as well as the ballistic coefficient3.6.1. The ballistic coefficient is defined by W/(CDA), where W is the vehicle weight, CD is the drag coefficient and A is the aerodynamic frontal area of the vehicle. The aerodynamic frontal area means here the perpendicularly projected area to the free air flow direction. Therefore, the lower flight dynamic pressure trajectory is recommended for the returning vehicle with higher angles of attack during the hypersonic flight because it gives the lower atmospheric density as well as the lower ballistic coefficient.
In the ascent trajectory, specifically during propulsive flights of the hypersonic, thermal protection systems are required for the whole surfaces of the body, wing and the ARCC engine, which are exposed to the hard aerodynamic heating of the free air flow. Those parts are such that the vehicle head, the leading edges of wings, and the leading heads of struts and under cowl. Those parts are probably required some active cooling systems due to the most hardly aerodynamically heated. The other parts of the body and wings may be provided with some passive thermal protection systems as those of the Space Shuttle. The forward ramp might be provided active cooling by transpiring either of helium, water or liquid oxygen, however, which is best for the purpose has not been studied yet. The whole surfaces of the engine internal flows are also assumed to be cooled by the transpiration of fuel hydrogen which is best because of the highest specific heat and heat conduction in the gases as well as assisting the air combustion. Porous cupper-based composite wall is supposed for them. In the conceptual phase, assumption of equivalent thickness of appropriate metal is enough for estimation of the first order mass distribution of the vehicle. The TPS of vehicle surfaces are also approximately taken account of the supposed materials into the thicknesses. 

Table 3.6.1 shows average specific weight of each compartment of Fig. 3.5.1. Values of compartments for liquid oxygen and liquid hydrogen are those of propellants for the ARCC engine. The cockpit, electronic instrument, auxiliary powers, air, water, food, crew, and crew’s luggage are supposed to be in the crew compartment. The value of crew compartment is assumed based on the required weight per person equal about 500 kg, which is much heavier than that of the civil aircraft This is because that the space transportation is required much more cost than that of the civil aircraft. The value of the Payload2 is much heavier than the crew, and that of the Payload1. This is because that the heavier payloads will be used for the ARCC engine powered SSTO vehicle and that such kind of heavy payload is very easy for handling the gravity center of the vehicle for obtaining the longitudinal static stability of the vehicle during the flight simulation calculations. The partition walls and the fuselage frame adjacent to the cryogenic propellants are supposed to be much heavier because of thermal protection system due to the cryogenics.
           Table 3.6.1 Specific weights of average for each compartment
	Compartment
	Crew
	LOX
	Payload1
	Payload2
	LH2

	Specific weight

(kg/m3)
	60
	 1,118.0
	  7.78
	83.2
	 71


References

3.6.1 Dean R. Chapman, “AN APPROXIMATE ANALYTICAL METHOD FOR STUDYING ENTRY INTO PLANETARY ATMOSPHERES”, NASA TR R-11, 1959
3.7 Aerodynamics of the Lifting Body
   Aerodynamics from subsonic to hypersonic flight is very important not only to evaluate propulsion system especially its effective performance by calculating the drag force and the vehicle performance by calculating the lift force for a propulsive lifting body, but also attitude control of the vehicle and design of thermal protection systems for aerodynamic heating. Lift and drag data for an aircraft throughout the Mach number range of its flight envelope are necessary ingredients for any performance analysis. Moment data, about all three axes, is necessary for stability and control analysis. The working equations, methodology, and a lot of data for estimating wing lift and drag have been published during the 20th century specifically for subsonic, transonic, and supersonic flights1-4 

   Aerodynamic data for a propulsive lifting body with single-sided nozzle have been studied only by the CFD for a specific supersonic or hypersonic flight condition of a specific vehicle configuration. The CFD, however, can not give a generic performance analysis for conceptual study of the concerned problem of ARCC powered space planes. There has been none of generic working equations, methodology, and data for estimating lift, drag, and moment. It is fairly clear by now what the properties should be of the combined flow-field generated volume, lift and propulsion: the nozzle expansion should be accomplished without introducing further shockwaves which cannot be utilized also for the provision of volume and lift; and all this should be achieved within a large number of constraints and extra conditions, such as lift, and thrust minus drag, i.e. effective thrust, but also details concerning their distribution over the body. However, useful such a fully-integrated propulsive lifting body may be, the close integration of so many design parameters makes it difficult to establish a general and comprehensive design theory. In this chapter, the basic equations of motion for aerodynamics are described, most of them are based on the references 3.7.2, 3.7.4, and 3.7.5, however; those are specified to the aerodynamic performance of the propulsive lifting body. 
   There are several ways in which equations of motion for aerodynamics can be written down. One description of the motion which suggests itself is to consider the motion of the air particles themselves and to associate it with a geometric transformation represented by a function x=x(a,t), y=y(a,t,), z=z(a,t), giving the position vectors x, y, z at various times t of the air particle identified by the label a. This is the Lagrangian description. As it turns out, an explicit consideration of the function x(a,t), etc. is rather inconvenient in practice, and there is usually no need for it. For virtually all practical purposes, a description by means of the velocity field, V, considered as a function of x and t is sufficient. This is Eulerrian description, and it is nearly always used.

   We may illustrate the Eulerian description by considering the simple idealized case of the flow of an incompressible air. To think of an air as being incompressible is itself a bold assumption, but it is often justified in practice. In that case, the function V(x,y,z,t) is all we want to know to describe the flow. The equations which govern it can be expected to contain terms which describe the internal forces between the elements within the air as well as external forces such as field forces and forces exerted by solid boundaries. There are pressure forces which act normal to the surface of an air particle and also normal to a solid surface. There also friction forces which act tangential to the surface of an air particle and also tangential to a solid surface. These latter forces are supposed to take account of the fact that the medium is viscous. We usually think that internal friction is the greater the greater the relative velocity between air-particles. The introduction of this concept is based on observations, and we treat like friction forces also those time-average values of exchanges of momentum, that are described as “Reynolds stresses”, and which occur when the internal motion of the air particles appears to be highly irregular to us in a way which we cannot yet comprehend, and which in our ignorance we cover up with the word turbulence, meaning tumultuous, disorderly unruly. 

   We must also find a consistent postulate for what happens at the interface between an air and a solid. There, we must go back to the kinetic theory of gases and think in terms of possible reflection processes of the air molecules. Real reflection is considered to be a mixture of at least two extreme processes: specular reflection where the molecules leaving the surface have the same mean tangential velocity as the incident molecules; and diffuse reflection where the molecules leaving the surface have zero mean tangential velocity. The specular reflection model will be used for hypersonic flows in Section 3.7.5. Most parts of Sections 3.7.1-3.7.4 are based on the Eulerian descriptions which are referred to the references3.7.2, 3.7.5. It can then be shown that we must adopt the postulate that the boundary condition at a solid surface is zero relative fluid velocity for the Eulerian. It may seem peculiar that this boundary condition holds with respect to both the tangential and the normal velocity components. This cannot always be fulfilled in approximate theories, when we do the next steps in introducing simplifying concepts.
3.7.1 Two-dimensional flows with small perturbations
One drastic but nevertheless often useful simplification is to ignore the viscosity of the air altogether and, moreover, to assume the flow to be irrotational. In these potential flows, only the condition of zero normal velocity can be fulfilled and tangential slip must be allowed to occur along a solid wall. A more useful simplification which can carry us much further is to assume that all the viscous effects that matter are confined to a thin layer along the surface of the body: Prandtl’s boundary layer. Outside the boundary layer, the flow is taken to be inviscid and irrotational, and the pressure is assumed to be the same throughout the layer as that at a point on the surface underneath. In that flow model, the condition of zero tangential velocity can be fulfilled and account must be taken of the fact that the slowed-down flow near the surface takes up more and displaces the stream-lines in the external flow outwards, compared with where they would have been had there been no boundary layer. The existence of such a displacement thickness means that the flow outside the boundary layer – and hence the pressure along the surface of a given body – is the same as the irrotational flow about a hypothetical body with zero normal velocity, which lies wholly outside the given body. Thus even the boundary conditions to be applied depend on the simplified model of the flow we choose to adopt. In this flow model of Prandtl, work must be done by the body on the boundary layer, as it moves through the air, and momentum is exchanged. Also, the boundary layer air is left behind the body in the form of a wake, and the reduced momentum in the wake corresponds to a drag force on the body. 
Methods to Describe Inviscid Flows for a Lifting Body In many common flow models used in aircraft design, the assumptions are made that the flow is inviscid and that the vorticity is zero everywhere outside the body and its boundary layer and wake. In such flows, the velocity vector V is the gradient of a scalar function Φ, the velocity potential, so that
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If we use a rectangular system of coordinates (x,y,z), where x-axis is suitably fixed in the body and inclined at an angle α to the direction of the mainstreams which has the velocity V∞, the equation of motion in the Eulerian description then takes the form
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where a is the velocity of sound given by the energy equation as
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a∞ is the velocity of sound in the undisturbed mainstream and thus a constant; γ is ratio of the specific heats. M∞=V∞/a∞ is the Mach number of the mainstream. This description of inviscid continuum flows also implies that energy and entropy are conserved, i.e. the flows are homenergic and isentropic. Thus the existence of shockwaves in the flow-field is excluded, among other things. These equations are the basis of many of the design methods we shall discuss. However, we should be clear from the outset that, together with the boundary conditions described above, they are so highly nonlinear that we have not yet succeeded except CFD in obtaining solutions for the three-dimensional flows we are really interested in. Therefore, we are forced to make further simplifying assumptions and approximations, on top of all those we have accepted.

Here, we want to explain procedures which convert the nonlinear equations of motion into linear equations, i.e. linear theory. The application of the linearized theory described below to three-dimensional winged-body type aircraft flows has been published in many references, which describes flows of swept-winged aircraft, fuselage, wing-fuselage interference, interfering wings and ground effects, separation flows, and propulsion problems. Interfering wings are those that various lifting surfaces may be placed in the flow-field of others and may this interfere with one another. Propulsion problems are air-intake, nozzle and jet flows, and after-body and base flows. The aerodynamics of wing is described in the Section 3.3 of this chapter. In this section, problems of interfering wings are excluded because there have been published little of experimental data. Ground effects are not so important for the conceptual study. The separation flows due to the shock are discussed in the Sub-Section 3.7.4 of this chapter. The air-intake has been described in the Chapter 2, and after-body and base flows are neglected for a propulsive lifting body in powered flights. Nozzle and jet flows are very important, then, a special section is written in the Section 3.8 of this chapter. 

Expression of a Lifting body by the Differential Geometry As stated previously, if a lifting body type with three-dimensional surface has a span-wise symmetric surface which is composed by generating lines, the relevant aerodynamics could be dealt with those of two-dimensional, which will be described in later. Actually, for this kind of geometry, a cylindrical coordinate system can be applied so that it may be able to be dealt with two-dimensional if the axis is taken to be parallel to the mainstream flow direction. Expression of the surface by the use of differential geometry is very convenient for discussing aerodynamics for subsonic, transonic, supersonic, and hypersonic flows.

If, geometrically, a vehicle dimensions in the flight direction are large compared with its normal to the flight direction; and if, aerodynamically, the leading edges lie well within the Mach cone from the apex, the slender theory can be applied to flow-field from subsonic to supersonic flights. It must be remembered that the local osculating plane at any point on the prescribed ruled surfaces is composed of aξ and aθ, where aξ is the tangent vector to the ξ-curve and aθ is the tangent vector to the θ-curve, i.e., the binormal, respectively. Therefore, the aξ vector and the aθ vector are perpendicular to each other. The normal vector n on the osculating plane is defined by the vector product of aξ and aθ. The prescribed boundary condition of the potential flow is such that the local normal vector n is normal to the local air flow with small perturbations and the air flow has no velocity components to this direction. If the angle of attack is zero, another boundary condition is assumed such that there no flows exist in the tangent to the θ-curve which is the binormal at the point. If the motion of the attitude is kept only in the longitudinal direction, which is enough for estimation of conceptual performance of an ascending spaceplane, the aerodynamics of the vehicle can be described by flow-field deflection on the local surface through any flight Mach number regions; under the conditions of streamlines on the local surface such as 
[image: image452.wmf] and 
[image: image453.wmf]. Here,
[image: image454.wmf] is the velocity vector on the vehicle surface. The local normal and binormal vectors are easily calculated by the differential geometry as well as the tangential vector. If the angle of attack is very small, this condition is reasonable for the concerned propulsive lifting body type vehicle specifically during the powered ascent flights, the effect of the angle of attack can be easily taken into account under the accuracies of the linear theory assumptions. 

   In order to describe aerodynamic characteristics of a lifting body, specifically for ruled surfaces as stated in the Section 3.2, the differential geometry gives a convenient methodology. In the differential geometry, a ruled surface such as stated above is given by the position vector Ζ, which is generally expressed by a function containing three parameters, ξ, η, and ς by

                             Ζ=Ζ(ξ,η,ς)                     (3.7.1.4)

          
[image: image455]
Fig. 3.7.1 Left hand coordinates for a lifting body surface

   Fig. 2.7.1 shows left hand coordinates system for describing surface of a lifting body. Where the parameters η and ς are expressed by the local polar coordinates parameters r, θ, and camber c1, which describe the surface of a lifting body, and the parameters r and c1 are expressed only by ξ, respectively as the followings;

                             η=r(ξ)cosθ                       (3.7.1.5a)

                             ς=r(ξ)sinθ+c1(ξ)                   (3.7.1.5b)

The cross sections of upper and under surfaces, excluding the forward ramp, engine, and external nozzle, are typically given by Eqs. 3.2.3-4, respectively, referring to Fig. 3.2.2 as

   For an upper body surface 
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   For an under body surface
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where bupper, bunder and a are given by functions of only one parameter of ξ. That is, the position vector of Eq. 3.7.1.4 is actually a position vector expressing surface with two parameters, ξ, and θ. In Eq. (3.7.1.4), if parameter ξ is varied for a constant θ, Ζ draws a curve on the surface; the curve is called ξ-curve. Similarly, if parameter θ is varied for a constant ξ, Ζ draws a curve of the cross section on the surface; this is called as θ-curve. The partial differentials, 
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, are tangent vector to the ξ-curve and tangent vector to the θ-curve (the binormal vector), respectively, which determine the local osculating plane as well as the local normal vector. It must be noted that the local osculating plane at any point on the prescribed ruled surfaces is parallel to the adjacent flows with small perturbations, i.e., no flow components to the normal vector direction. The aspect ratio of the concerned lifting body is very small and the sweep angle is very large (refer to Fig. 3.2.3 and Fig. 3.5.2). This means that the crossing flow (the binormal vector component) on the surface is negligibly small compared with the longitudinal direction flow (the tangent vector component to the ξ-curve) of the adjacent flow with perturbations So far, an assumption is plausible such that no flows exist in the binormal direction. 

  Defining the first fundamentals of Gauss for a curved surface as followings; 

                     E=ΖξΖξ=xξ2+yξ2+zξ2                         (3.7.1.7a)
                     F=ΖξΖθ=xξxθ+yξyθ+zξzθ                      (3.7.1.7b)
                     G=ΖθΖθ= xθ2+yθ2+zθ2                        (3.7.1.7c)

and                  g=EG-F2                                  (3.7.1.8)

The local unit vectors of the tangent and binormal are expressed by, respectively,
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and the local unit normal vector
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Two-Dimensional Flow If rectangular coordinates (x,z) are fixed along the two-dimensional body surface, with x=0 at the leading edge, the total velocity V has the components    

                   Vx=Vx∞+u=V∞cosα+u                       (3.7.1.10) 

and

                   Vz=Vz∞+v=V∞sinα+v                        (3.7.1.11) 

where Vx∞ and Vz∞ are the components of the mainstream and hence constants, and u and v are perturbation velocities. Introducing the free-stream Mach number, defined by M∞=V∞/a∞, and expanding a∞2/a2 by the use of Eq. 3.7.1.3, and assuming M∞2(u/V∞)2<<1, M∞2(v/V∞)2<<1, M∞2(uv/V∞2)<<1, the potential equation (3.7.1.2) can then be written as a relation for the perturbation velocities and takes the form
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Despite the assumptions already made, this equation is not linear, since there remain the quadratic terms 
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. We have to introduce the further assumptions that
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and thus we obtain the following linear differential equation:
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where                β2=1-M∞2                                    (3.7.1.15)

and φ is a perturbation potential associated with the perturbation velocities u and v as:
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Pressure Coefficient for Small Perturbations of a Two-Dimensional Flow From the perturbation velocities we want to derive the pressures acting on the surface. For an isentropic compressible flow, the energy equation is written as:
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Referring to the definitions of the sound velocity and Mach number as 
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, Eq. 3.7.1.17 can be expressed as
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The isentropic relation gives the pressure ratio by the temperature ratio as
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Then, we have after Taylor expansion of Eq. 3.7.1.19 as
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The ratio of the local pressure difference to the dynamic pressure of the free stream is called the pressure coefficient defined as the following expression, where the linearized theory assumes that u/V∞<<1 and v/V∞<<1:
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where 
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Flow Past a Wave-Shaped Wall A particular solution of the two-dimensional linearized equation of Eq. 3.7.1.14 gives streamlines and pressure distribution for a waved-shape wall. Introducing the following expression for the perturbation velocity potential:
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where h and l are length constants whose physical meanings will be evident later. Eq. 3.7.1.22 is a particular solution of the differential equation of Eq. 3.7.1.14.

Streamlines. To determine the form of the streamlines, we make use of the definition that the slope of the streamline is identical with the slope of the velocity vector, so that we write

                  
[image: image484.wmf]¥

¥

¥

+

=

+

=

÷

ø

ö

ç

è

æ

V

u

1

V

v

u

V

v

dx

dz

streamline

            (3.7.1.23a)

The values of v/V∞ and u/V∞ are known in terms of x and z through Eq. 3.7.1.22, but on substituting these values into Eq. 3.7.1.23a there seems to be no simple way of separating variables and thus integrating to find the equations of the streamlines. However, this difficulty may be avoided by introducing approximations in keeping with the assumptions of small perturbations. We write the identity
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Now, according to the assumption of Eq. 3.7.1.13a, the value of M∞2u/V∞ is negligible compared with unity, hence
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Now, differentiating Eq. 3.7.1.22 with respect to x and z, and substituting the results of u/V∞ and v/V∞ into Eq. 3.7.1.23b, and rearranging, we obtain
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This may now be integrated directly to give the equation of the streamline,
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where each streamline has associated with it a particular value of the constant of integration.

   Suppose that the streamline for which the constant of integration is zero is taken to be a body surface, where the streamline at the body wall defined by the coordinates ξ and ς, that is actually, the shape of the solid may be expressed by the relation with negligibly small term of (2πβς/l), i.e. slender body assumption, as 
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At very large distances from the wall (i.e., very large values of z), it is evident from Eq. 3.7.1.24 that the streamlines have constant values of z and therefore parallel to the x-axis.

   The physical nature of the flow pattern defined by Eq. 3.7.1.22 is now clear. We are dealing with the flow past a wave-shaped wall which has the shape of a cosine curve. Referring to Eq. 3.7.1.25, we see that l and h are the wave length and lateral amplitude, respectively, of the wave-shaped wall. 

Extension of the Flow Past a Wave-Shaped Wall to a Thin Two-Dimensional Airfoil Surface If we introduce the following expression for the perturbation velocity potential instead of Eq. 3.7.1.22 as:
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We obtain a similar relation, under the approximation of Eq. 3.7.1.23b, where k=2π/l, l is the chord length, and n is an integer number, for the shape of the solid wall as
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That is, Eq. 3.7.1.27 is the Fourier series expression of an airfoil surface. Then, the perturbation velocities at the surface and the pressure coefficient are easily obtained for the airfoil surface given by Eq. 3.7.1.27. Therefore, the boundary conditions for the two-dimensional flow past an airfoil-shaped surface are that the velocity tends to that of the mainstream at large distances from the body and that the velocity component normal to the surface of the body is zero, which gives a relation between the slope of the lifting body surface and the velocity components
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where the subscript w designates the local surface position. Therefore, rewriting the expression of Eq. 3.7.1.23a by the similar velocity components gives for α=0 (Vz∞=0)
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Three-Dimensional Flow The linearization of three-dimensional differential equation of the velocity potential of Eq. 3.7.1.2 for two-dimensional flow was undertaken very carefully, with special consideration of the significance of the various assumptions, and Eq. 3.7.1.14 for the perturbation velocities and potential were derived. Employing similar assumptions, Eq. 3.7.1.2 for three-dimensional flow may be linearized to give
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where u, vy, and vz are perturbation velocities components in the x-, y-, and z-directions, respectively. A review of the assumptions derived in Eqs. 3.7.1.13a-c shows that the most stringent assumptions underlying Eq. 3.7.1.29 are that  

             (M∞)2(u/V∞)<<1; (M∞)2(vy/V∞)<<1; (M∞)2(vz/V∞)<<1      (3.7.1.30a)

              β2(u/V∞)<<1; (M∞)2(u/V∞)/(1-M∞2)<<1                (3.7.1.30b)

   In the three-dimensional flow there is no simple rule such that the similar relation between the streamline and the curve of the wall in the two dimensional flow, which describes the small perturbation velocity components for estimating the pressure distribution around a given two-dimensional body. If we examine carefully the feature of airfoil surfaces, however, a similar method can be applicable for flow past a lifting body surface as another extension of the above stated two-dimensional flow. The following expression for the perturbation velocity potential is assumed:
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In Fig. 3.7.2, P(x,y,z) is an arbitrary point at out side of the body and R and Θ are cylindrical coordinates parameters as

                          y=RcosΘ                              (3.7.1.32a)

                          z=RsinΘ                              (3.7.1.32b)
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Fig. 3.7.2 Definition of R and Θ
Now, applying the approximate streamline slope of Eq. 3.7.1.23b to each direction of a three-dimensional flow as
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Substituting 
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 from Eq. 3.7.1.31 into Eqs. 3.7.1.33a and 3.7.1.33b, multiplying the two equations by cosΘ and sinΘ, respectively, and rearranging, we obtain
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That is, we can have an approximate way of separating variables for the three-dimensional perturbation velocity potential around the lifting body and thus integrating the equations of streamlines under the assumptions of Eq. 3.7.1.33a and Eq. 3.7.1.33b. We obtain a similar relation for the shape of the solid wall as
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        (3.7.1.35)      
In our attempts to find solutions, we want to convert the nonlinear equations of motion into linear equations. Both of Eq. 3.7.1.34 and Eq. 3.7.1.35 are functions of x (i.e., ξ), R and Θ, which are actually expressed by a cylindrical coordinates system of ξ, R, and Θ through R=ηcosΘ+ζsinΘ. The body geometry of an ARCC engine powered SSTO is a lifting body type of three-dimensional, however, because the vehicle surfaces should be a span-wise symmetric ones which are composed by generating lines in this book, the relevant aerodynamics could be dealt with those of two-dimensional. Actually, for this kind of geometry, a cylindrical coordinate system can be applied so that it may be able to be dealt with two-dimensional if the axis is taken to be parallel to the mainstream flow direction.
Vector Expression of Basic Equations It is convenient to express the above described governing equations by the differential operator, ∇, specifically to solve them in curvilinear coordinates. 

   Definition of velocity potential Φ,
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   Irrotationality,
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   Equation of continuity,
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   Euler equation
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   Sound velocity in isentropic process,
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   We have already mentioned the concept of the Prandtl’s boundary layer. If ideal flows are considered for a vehicle such that the thickness of the boundary layer is neglected and there exists no separation, these assumptions are applicable for a conceptual study. The boundary condition of zero normal velocity can be fulfilled and tangential slip must be allowed to occur along a solid wall as along a streamline. Thus, 
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   The First Fundamentals of Gauss for the body surface given by Eqs. 3.7.1.5a and 3.7.1.5b are as followings, referring to Eqs. 3.7.1.7a, c, b and Eq. 3.7.1.8;
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   The unit vectors of the tangent, binormal, and normal are given by
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where i, j, and k are the unit vectors of the left hand orthogonal coordinates system describing the vehicle coordinates taking the ξ-axis to the free flow direction, the η-axis to the horizontal right hand direction toward the tail of the vehicle and the ς–axis to the vertical upward direction, respectively. The unit normal vector n is the inward normal.  

3.7.2 Subsonic flow
Before we start to obtain approximate solutions for aerodynamic forces acting on a lifting body, it must be remembered that the local osculating plane at any point on the prescribed ruled surfaces is parallel to the flow with the small perturbations. The flow slips mainly in the osculating plane composed by aξ and n, to the free flow direction. The tangent to the θ-curve is the binormal at the point, i.e. aξ and aθ are in the local osculating plane and n is the normal to the osculating plane. Due to very large angle of the body edge sweep and very small aspect ratio of the body, an assumption is made specifically to the concerned lifting body such that there no flows exist in the binormal direction. Therefore, the following boundary conditions for the concerned flows are assumed as
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For simplicity, we assume that the vehicle has no angle of attack. The effect of the angle of attack will be discussed in the last part of this discussion for a very small value of α. 

   The flow velocity V around the lifting body is expressed in an orthogonal coordinates system as following: with small perturbation velocities v(u, v, w),

                     Vx=Vx∞+u                                 (3.7.2.3a)

                     Vy=Vy∞+v                                 (3.7.2.3b)

                     Vz=Vz∞+w                                 (3.7.2.3c)

Letting Vx∞=V∞, and considering Vy∞=0, and Vz∞=0 for zero angle of attack (α=0), and remembering the unit tangent vector to the ξ-curve, the unit binormal vector to the θ-curve and the unit normal vectors of Eq. 3.7.1.46, Eq. 3.7.1.47, and Eq. 3.7.1.48, the substitution of Eqs.3.7.2.3a-c into Eq. 3.7.2.1 and Eq.3.7.2.2 give the following equations, respectively.

 [rrξ+c1ξ(rsinθ-rθcosθ](V∞+u)–v(rcosθ+rθsinθ)-w(rsinθ-rθcosθ)=0          (3.7.2.4)

            -v(rsinθ-rθcosθ)+ w(rcosθ+rθsinθ)=0                     (3.7.2.5)

Combining Eq. 3.7.2.5 and Eq. 3.7.2.4 gives the following equations.

        v=[rrξ+c1ξ(rsinθ-rθcosθ)](rcosθ+rθsinθ)(V∞+u)/(r2+rθ2)           (3.7.2.6)

       w=[rrξ+c1ξ(rsinθ-rθcosθ)](rsinθ-rθcosθ)(V∞+u)/(r2+rθ2)            (3.7.2.7)

Streamlines The values of u/V∞, v/V∞, and w/V∞ are known of x, y, and z by Eq. 3.7.1.31, however, those are not useful for the integration of the three-dimensional linear differential equation of the small perturbation potential of Eq. 3.7.1.29, due to the difficulties of separating variables. To determine the form of streamlines, we make use of the definition that the slope of the streamline is identical with the slope of the velocity vector, so that, referring to the boundary conditions of Eq. 3.7.2.1 and Eq. 3.7.2.2, we obtain Eqs. 3.7.2.6 and 3.7.2.7. Dividing both equations of Eq. 3.7.2.6 and Eq. 3.7.2.7 by V∞, the perturbed components of v/V∞ and w/V∞ are rewritten by the use of u/V∞ so that the difficulties of separating variables and thus integrating the three-dimensional perturbation equation of Eq. 3.7.1.29 may be avoided by introducing the approximations of Eq. 3.7.1.33a and Eq. 3.7.1.33b. Following the same way, the flows along a stream line on the body surface are approximately given by

   
[image: image518.wmf](

)

¥

¥

q

q

q

x

x

b

+

@

÷

ø

ö

ç

è

æ

q

+

q

÷

ø

ö

ç

è

æ

+

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

q

-

q

+

V

u

1

V

v

sin

r

r

cos

r

r

1

cos

r

r

sin

c

r

2

2

1

          (3.7.2.8)

   
[image: image519.wmf](

)

¥

b

+

¥

@

÷

÷

ø

ö

ç

ç

è

æ

q

q

-

q

÷

÷

ø

ö

ç

ç

è

æ

q

+

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

q

q

-

q

x

+

x

V

u

2

1

V

w

cos

r

r

sin

2

r

r

1

cos

r

r

sin

1

c

r

        (3.7.2.9)

We differentiate Eq. 3.7.2.8 and Eq. 3.7.2.9 with respect to the y- and, the z-axis referring to the discussion stated for Eqs. 3.7.1.35 as that the y and z terms are negligibly small due to the exponential expression of the surface of the lifting body, and assuming that 
[image: image520.wmf](

)

x

q

¶

¶

r

r

 (i.e., 
[image: image521.wmf](

)

x

r

r

¶

¶

q

) is negligibly small compared with the remaining terms because of the lifting body geometry, and further using the irrotational condition of Eq. 3.7.1.37 give, respectively,
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where the term of β2(u/V∞) is neglected compared with unity (see Eq. 3.7.1.30b).

If we substitute the above equations into the three dimensional linear theory of Eq. 3.7.1.29, we have a differential equation as
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That is, considering the integral constant of Eq. 3.7.2.12 is unity from Eq. 3.7.2.3a, the local pressure difference between the pressure on the body and that of the free stream flowing toward the x-axis (the ξ-axis; zero angle of attack) is numerically obtained as:
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     (3.7.2.13)

   We have started from the three-dimensional flow analysis for the body of zero angle of attack, which has ruled surfaces symmetric in the spanwise and composed by generating lines. The above stated discussions show us that the three-dimensional problems can be solved as if they were two-dimensional for the concerned body flows. In the next section, we discuss the effect of an angle of attack.   

The Effect of an Angle of Attack If an angle of attack α (radian) of the body is taken in the coordinates system of Fig. 3.7.1, and we suppose that only free stream flow direction is rotated around the y-axis (η-axis) by an angle of α radians, Eqs. 3.7.2.3a, b, and c become as followings, respectively,

                     Vx=V∞cosα+u                                  (3.7.2.14a)

                     Vy=v                                         (3.7.2.14b)

                     Vz=V∞sinα+w                                  (3.7.2.14c)

If we apply the above equations to streamlines and boundary conditions of Eqs. 3.7.2.1 and 3.7.2.2, we have the following equations, respectively, 

[rrξ+c1ξ(rsinθ-rθcosθ)](V∞cosα+u)-v(rcosθ+rθsinθ)-(V∞sinα+w)(rsinθ-rθcosθ)=0   (3.7.2.15)

        - v(rsinθ-rθcosθ)+(V∞sinα+w)(rcosθ+rθsinθ) = 0          (3.7.2.16)

Substituting Eq. 3.7.2.16 into Eq. 3.7.2.15 gives the following equations.

     v=[rrξ+c1ξ(rsinθ-rθcosθ)](rcosθ+rθsinθ)(V∞cosα+u)/(r2+rθ2)              (3.7.2.17)

 w+V∞sinα=[rrξ+c1ξ(rsinθ-rθcosθ)](rsinθ-rθcosθ)(V∞cosα+u)/(r2+rθ2)           (3.7.2.18)

   As it was discussed in the zero angle of attack, we write the identity
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According to the assumption of Eq. 3.7.1.24, the value of M∞2(u/V∞)/cosα is negligible compared with unity with such a small α 
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We differentiate Eqs. 3.7.2.19 and 3.7.2.20 with respect to the y- and, the z-axis referring to the discussion stated for Eqs. 3.7.1.35 as that the y and z terms are negligibly small due to the exponential expression of the surface of the lifting body even for the case of an attack angle, and assuming that 
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) is negligibly small compared with the remaining terms because of the lifting body geometry, and further using the irrotational condition of Eq. 3.7.1.37 give, respectively,
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where the term ofβ2(u/V∞cosα) is neglected compared with unity (Eq. 3.7.1.30b).

If we substitute the above equations into the three dimensional linear theory of Eq. 3.7.1.23, we have a differential equation as
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  (3.7.2.23)
The Pressure Coefficient with an Angle of Attack The two-dimensional isentropic compressible energy equation of Eq. 3.7.1.17 is rewritten for a three-dimensional flow on the body surface expressed by Eqs. 3.7.2.14a-c as
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Substituting Eq. 3.7.2.24 into the isentropic equations of the two-dimensional pressure Eq. 3.7.1.19 and Eq. 3.7.1.20, we obtain
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That is, the local pressure difference between the pressure on the body and that of the free stream flowing toward the x-axis (the ξ-axis; zero angle of attack) with a small angle of attack α, (referring to the first term of Eq. 3.7.2.25), is numerically obtained as:
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For a small angle of attack, the second term of Eq. 3.7.2.26 is the effect of an angle of attack. The effect of an angle of sideslip (directional control of a vehicle) is also similarly obtained easily as the above stated. 

   We have described the approximate equation for estimating the pressure difference between on the body surface with an angle of attack in the subsonic free stream. The under body of the concerned vehicle has flat plates such as the forward ramp and the engine under plate. If we assume a single ramp for the forward ramp without an angle of attack, the streamlines condition Eq. 3.7.2.1 gives 

w/(V∞+u)=tan(δramp).                   (3.7.2.27)

The incompressible flow gives

                               (V∞+u)2+w2= V∞2                      (3.7.2.28)

Combining Eq. 3.7.2.28 with Eq. 3.7.2.27 gives

                               2u/ V∞ ≈-tan2(δramp)                    (3.7.2.29)

   On the forward ramp, we can approximately calculate as

                       (Δp)incompressible≈q∞ tan2(δramp)                    (3.7.2.30)

   We have previously described in 3.3 Design of Wing and the Aerodynamics the subsonic compressibility corrections by Eq. 3.3.11, which is for the incompressible pressure difference as, 
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Therefore, on the forward ramp with an angle of attack

                     (Δp)compressible≈q∞ tan2(δramp+α)/β                 (3.7.2.31)

   On the engine under plate,

                      (Δp)compressible≈q∞ tan2(α)/β                    (3.7.2.32)

3.7.3 Transonic flow
The term transonic implies flows with speeds near the local speed of sound. Such flows may be either subsonic or supersonic, or, more commonly, may contain both subsonic and supersonic regions. The theoretical treatment owes its difficulties to the different nature of the mathematical solutions for subsonic flows (elliptical solutions) and for supersonic flows (hyperbolic solutions). 

   If we suppose a two-dimensional flow with small perturbations of M∞=1 in Eq. 3.7.1.14, for example,
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 therefore, the perturbation velocity in the z-direction depends only x. In other words, the disturbance produced by the body is propagated transversely with undiminished strength. The linear theory produces implausible results such that (i) the drag in an inviscid fluid is zero for M∞ slightly less than unity, but infinite for M∞ slightly greater than unity and (ii) the lift coefficient is infinite at Mach number unity. The answer to these seeming paradoxes is that one of the assumptions of the theory of small perturbations underlying Eq. 3.7.1.14 is invalid for transonic flow; that assumption is that the local velocity is not close to the local speed of sound.

   Three-dimensional, steady, irrotational, isentropic motions may be described by the exact differential equations (Eqs. 3.7.1.2 and 3.7.1.3). 
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where a is the velocity of sound given by
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where the asterisk 
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 signifies state at which the Mach number is unity.

   We suppose that we are dealing with slender profile placed in another wise uniform stream at transonic speed. This leads us to assume (i) that there only small perturbations from the free-stream velocity V∞, and (ii) that the fluid velocity is near the local sound velocity, and therefore, near the critical sound velocity. Mathematically, these assumptions may be stated in the forms:

                       (a*-V∞)/a*<<1

                       (a*-Φx)/a*<<1

                           Φy/a*<<1

                           Φz/a*<<1

   These assumptions suggest that for transonic flow the appropriate perturbation velocity is (a*-Φx), i.e., the deviation from the critical speed. In subsonic and supersonic flow, it may be recalled parenthetically, the appropriate perturbation velocity was the deviation from V∞. We therefore develop the coefficients of Eq. 3.7.3.1 in terms of (a*-Φx), etc., employing Eq. 3.7.3.2 for a2. Dropping quadratic terms of quantities small compared with unity, according to the assumptions stated above, we obtain

                 a2-Φx2≈(γ+1)a*(a*-Φx)                   (3.7.3.3a)

                 a2-Φy2≈a*2+(γ-1)a*(a*-Φx)                (3.7.3.3b)

                 a2-Φz2≈a*2+(γ-1)a*(a*-Φx)                (3.7.3.3c)

                      ΦxΦy≈Φya*                       (3.7.3.3d)           

                      ΦzΦx≈Φza*                       (3.7.3.3e)   

                      ΦyΦz<<ΦxΦy or ΦzΦx               (3.7.3.3f)   

Substituting these into Eq. 3.7.3.1, we obtain the approximate equation

-(γ+1)(Φx-a*)Φxx+a*Φyy+a*Φzz-2ΦyΦxy-2ΦzΦzx≈0        (3.7.3.4)

where the terms (γ-1)a*( a*-Φx)Φyy and (γ-1)a*( a*-Φx)Φzz have been neglected in comparison with the remaining terms because, in transonic flow, the small lateral decay of disturbances causes Φyy and Φzz to be of smaller than Φxx.

   We now introduce the total velocity potential Φ as the sum of two parts; (i) a*x, representing a uniform parallel flow at the critical speed, and (ii) (1-M∞*)φ, representing the perturbation potential:

               Φ=a*x+(1-M∞*)φ; M∞*≡V∞/a*                 (3.7.3.5)

Then

               
[image: image557.wmf](

)

'

u

a

x

M

1

*

a

x

+

*

º

¶

f

¶

-

+

=

F

*

¥

            (3.7.3.6a)
               
[image: image558.wmf](

)

'

v

y

M

1

y

º

¶

f

¶

-

=

F

*

¥

                    (3.7.3.6b)        

               
[image: image559.wmf](

)

'

w

z

M

1

z

º

¶

f

¶

-

=

F

*

¥

                        (3.7.3.6c) 

Substituting these derivatives into Eq. 3.7.3.4, we obtain


[image: image560.wmf](

)

0

z

'

u

'

w

2

y

'

u

'

v

2

z

'

w

a

y

'

v

a

x

'

u

'

u

1

=

¶

¶

-

¶

¶

-

¶

¶

*

+

¶

¶

*

+

¶

¶

+

g

-

      (3.7.3.7)

   The conditions of streamlines along the body surface (Eqs. 3.7.2.1 and 3.7.2.2) give the following equations, respectively,
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Combining Eq. 3.7.3.8 with Eq. 3.7.3.9 gives, respectively,

        
[image: image563.wmf](

)

'

u

a

sin

r

r

cos

r

r

1

cos

r

r

sin

c

r

'

v

2

1

+

*

÷

ø

ö

ç

è

æ

q

+

q

÷

ø

ö

ç

è

æ

+

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

q

-

q

+

=

q

q

q

x

x

        (3.7.3.10)

        
[image: image564.wmf](

)

'

u

a

cos

r

r

sin

r

r

1

cos

r

r

sin

c

r

'

w

2

1

+

*

÷

ø

ö

ç

è

æ

q

-

q

÷

ø

ö

ç

è

æ

+

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

q

-

q

+

=

q

q

q

x

x

        (3.7.3.11)

We differentiate Eqs. 3.7.3.10 and 3.7.3.11 with respect to the y- and, the z-axis referring to the discussion stated for Eqs. 3.7.1.35 as that the y and z terms are negligibly small due to the exponential expression of the surface of the lifting body, and assuming that 
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) is negligibly small compared with the remaining terms because of the lifting body geometry, considering that u’/a*<<1, v’/a*<<1, and w’/a*<<1 from the previously stated assumptions and further using the irrotational condition of Eq. 3.7.1.37 give, respectively,
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 is neglected because of a*>>u’. 
Substituting these equations into Eq. 3.7.3.7, we obtain an approximation motion equation of the transonic speed along the streamlines on the body as
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From Eq. 3.7.3.10 and Eq. 3.7.3.11 we have the following relation as
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Because u’/a*, v’/a*, and w’/a* are of the same order of magnitude, then, we can assume as
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Therefore, we have the following approximate differential equation
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   (3.7.3.15)
That is, considering the integral constant of Eq. 3.7.3.15 is unity from Eq. 3.7.3.6a, the local pressure difference between the pressure on the body and that of the free stream flowing toward the x-axis (the ξ-axis; zero angle of attack) is numerically obtained as
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  (3.7.3.16)
Concerning with the plus and minus signs, we define the following discriminant
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   (3.7.3.17)
   For the flow condition M∞*<1, 

      If D>0, Eq. 3.7.3.16 has the plus sign, and if D<0, then, Eq. 3.7.3.16 has the minus sign.

On the other hand, for the flow condition M∞*>1, 

      If D>0, Eq. 3.7.3.16 has the minus sign, and if D<0, then, Eq. 3.7.3.16 has the plus sign.

These criteria are specific for transonic flows because two type’s solutions (elliptical and hyperbolic) coexist.  

The Effect of an Angle of Attack If an angle of attack α (radian) of the body is taken in the coordinates system of Fig. 3.7.1, and we suppose that only free stream flow direction is rotated around the y-axis (η-axis) by an angle of α radians, Eqs. 3.7.2.3a, b, and c become as followings, respectively,

                     Φx=V∞cosα+u                               (3.7.3.18a)

                     Φy=v                                      (3.7.3.18b)

                     Φz=V∞sinα+w                               (3.7.3.18c)

Referring to Eqs. 3.7.3.3a-c, if we assume a small value of α, we have

                      a2-Φx2
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(γ+1)a*(a*-Φx)                       (3.7.3.19a)

                      a2-Φy2
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a*2+(γ-1)a*(a*-Φx)                    (3.7.3.19b)

                      a2-Φz2
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a*2+(γ-1)a*(a*-Φx)                    (3.7.3.19c)

We obtain the approximate equation as
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      (3.7.3.20)  

where the terms (γ-1)a*(a*cosα-Φx)Φyy and (γ-1)a*(a*cosα-Φx)Φzz have been neglected in comparison with the remaining terms because, in transonic flow, the small lateral decay of disturbances causes Φyy and Φzz to be of smaller than Φxx.

   We now introduce the total velocity potential Φ as the sum of two parts; (i) a*(xcosα+zsinα), representing a uniform parallel flow at the critical speed, and (ii) (1-M∞*)φ, representing the perturbation potential:

               Φ=a*(xcosα+zsinα)+(1-M∞*)φ; M∞*≡V∞/a*               (3.7.3.21)

Then
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   Here, we have the same equations for velocity components as Eqs. 3.7.3.18a, b, c under the condition of V∞=a*, that is 
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    (3.7.3.23)

If we substitute Eq. 3.7.3.22a, Eq. 3.7.3.22b, and Eq. 3.7.3.22c to the streamlines and boundary conditions of Eqs. 3.7.2.1 and 3.7.2.2, we have the following equations, respectively,
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Combining Eq. 3.7.3.24 with Eq. 3.7.3.25 gives, respectively,
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We differentiate Eq. 3.7.3.26 and Eq. 3.7.3.27 with respect to the y- and, the z-axis referring to the discussion stated for Eq. 3.7.1.35 as that the y and z terms are negligibly small due to the exponential expression of the surface of the lifting body, and assuming that 
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where 
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 is neglected because of a*>>u’. 
Substituting these equations into Eq. 3.7.3.23, we obtain an approximation motion equation of the transonic speed along the streamlines on the body with an angle of attack α radians as 
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        (3.7.3.30) 
From Eq. 3.7.3.26 and Eq. 3.7.3.27 we have the following relation as
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Because u’/a*, v’/a*, and w’/a* are of the same order of magnitude, then, we can assume as
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Therefore, we have the following approximate differential equation
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That is, considering the integral constant of Eq. 3.7.3.31 is unity from Eq. 3.7.3.22a, the local pressure difference between the pressure on the body and that of the free stream flowing toward the x-axis (the ξ-axis; zero angle of attack) with an angle of attack can be numerically obtained.
The Pressure Coefficient with an Angle of Attack Letting V=a*, Eq. 3.7.2.25 gives
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That is, the local pressure difference between the pressure on the body and that of the free stream flowing toward the x-axis (the ξ-axis; zero angle of attack) with a small angle of attack α is numerically obtained by
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Concerning with the plus and minus signs, we define the following discriminant which is exactly the same as Eq. 3.7.3.17.
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For the flow condition M∞*<1, 

If D>0, the first term of Eq. 3.7.3.32 has the plus sign, and if D<0, then, that has the minus sign.

On the other hand, for the flow condition M∞*>1, 

If D>0, the first term of Eq. 3.7.3.32 has the minus sign, and if D<0, then, that has the plus sign.
The effect of an angle of sideslip (directional control of a vehicle) is also similarly obtained easily as the above stated.

   We have described the approximate equation for estimating the pressure difference between on the body surface with an angle of attack in the transonic free stream. As stated in the former subsonic flow of the Sub-Section 3.7.2, the transonic aerodynamics for the under body of the concerned vehicle are also required. Assuming two-dimensional configurations for each of them, 
   The two-dimensional perturbation velocity components for the transonic flow is given by Eq. 3.7.3.7 as
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From the streamline condition, we have
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   Substituting Eq. 3.7.3.36 into Eq. 3.7.3.35, we have the following differential equation.
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That is,
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Therefore,
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  Finally, with an angle of attack α

On the forward ramp, we can approximately calculate as
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  On the engine under plate,
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3.7.4 Supersonic Flow
In this section, we shall discuss an approximate analytical method, which provides the rapid means of calculation for making preliminary estimates of the supersonic aerodynamics on the lifting body. The concerned body has a larger leading edge radius compared with the conventional supersonic airfoil, i.e. a blunt body. In a supersonic flow, a detached shock always stands in front of a blunt body. When the shock is detached, it is invariably curved. The curved shock begins at a point in front of stagnation-region as a normal shock, and must gradually weaken until some down stream point. Therefore, the neighboring flows are divided by a sonic line as subsonic flows in the forward-region and supersonic flows in the downstream-region. The estimation of the sonic line and the subsonic flows in the forward-region are required a cumbersome method. Therefore, we start first the linear theory of the supersonic flow which is applicable to the downstream-region, and later describe subsonic flow problems in the forward-region. 
3.7.4.1 Linear Theory of the Supersonic Flow
The flow is assumed to be everywhere shock-free and irrotational and in which there are only small perturbations from a uniform, parallel flow. It is true that most supersonic flows involve shocks, but most parts of slender body surface are covered by weak oblique shocks in the downstream-region except those of the forward-region. The entropy changes across weak oblique shocks are, however, so small that they may often be disregarded. Accordingly, in most parts of the downstream-region, the magnitude of rotation is negligible. 

   Assuming that the flow is irrotational, isentropic, and that there are small perturbations from a uniform, parallel flow along the x-axis, we may follow exactly the procedure of Sec. 3.7.1. In this way we arrive at the linearized three-dimensional equation of motion (3.7.1.29). We write again as
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where φ is the perturbation velocity potential. The perturbation velocity components are given by
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                      (3.7.4.1.2)

   Restrictions on linear theory are the same as in the subsonic flow, and Eq. 3.7.4.1.1 loses validity in the transonic region. In supersonic flow still another restriction appears, namely, that the Mach number may not be too high. Although no definite upper limit can be given, since u/V∞, v/V∞, and w/V∞ are of the same order of magnitude as the thickness ratio of the slender bodies (thickness ratio δthickness=maximum-thickness/body-length), we may say that the linearized theory may be used when M∞2δthickness is small compared with unity. 

   The linearized pressure difference for the two-dimensional supersonic flow is the same as in subsonic flow, namely
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   It must be noted that the nature of the flow pattern proves to be entirely different depending on whether M∞ is greater or less than unity. For supersonic flow Eq. 3.7.4.1.1 is called to be hyperbolic in type, and may be reduced to the classical wave equation by a simple transformation. Hence, linearized supersonic flows have many properties akin to the properties of wave mechanics. 
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Fig. 3.7.4.1.1 Definition of λ for flow field
   We shall now show that for three-dimensional supersonic flow the general solution to Eq. 3.7.4.1.1 is given by
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where φ1 is an arbitrary function of the argument of 
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 and, φ2 is an arbitrary function of the argument of 
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. The x- and the λ- coordinates system is one of describing the outside space of the body surface, here λ is an extension of length from the surface and a function of θ as shown in Fig. 3.7.4.1.1, therefore, λ=0 at a point on the body surface. Then, x and λ are independent variables.
The arbitrary nature of the function φ1 andφ2 is a great simplification, for any number of solutions may now be found at will merely by specifying the forms of these functions. Even better, we may easily determine the flow pattern corresponding to special boundaries. Let us write Eq. 3.7.3.4.1.4 in the following equivalent form:
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Then

                           
[image: image654.wmf](

)

'

2

'

1

f

f

V

x

u

+

=

¶

f

¶

=

¥

                     
               
[image: image655.wmf](

)

'

2

'

1

2

f

f

1

M

V

sin

w

cos

v

-

-

=

l

¶

f

¶

=

q

+

q

¥

¥

          

where the symbol f1’ denotes differential of the function f1 with respect to the argument 
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and the symbol f2’ denotes differential of the function f2 with respect to the argument
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 and β2≡M∞2-1. It must be noted that for a supersonic flow the β is different from that of the subsonic flow because of M ∞2>1. 

   For the differential equation of the streamline we write as Eqs. 3.7.1.33a and 3.7.1.33b
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where (to facilitate the subsequent integration) we have inserted in the denominator the term M∞2u/V∞, which has been assumed small comparable with unity. Rearranging, we have
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Because dλ=dycosθ+dzsinθ, then, dλ=β[(f1’-f2’)dx+β(f1’+f2’)dλ], i.e. dλ=β(df1-df2), and integrating, we obtain the equation of streamline,

       ( ycosθ+zsinθ)streamline=λstreamline=constant+β(f1-f2)          (3.7.4.1.6)

in which the magnitude of the constant identifies a particular streamline.

   The pressure difference is now found to be
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   If the functions f1 and f2 are specified, the shapes of the streamlines and the pressure distribution may be found from Eqs. 3.7.4.1.6 and 3.7.4.1.7. Or, inversely, if the shape of a solid body immersed in the stream is known, and if the functions f1 and f2 are chosen to satisfying the body streamlines according to Eq. 3.7.4.1.6 and also to satisfying the remaining initial conditions necessary to determine the problem, then Eq. 3.7.4.1.4 through Eq. 3.7.4.1.7 gives the linearized solution for the flow past the concerned lifting body.

Flow with Waves of One Family The general nature of supersonic flow with small perturbations may best be brought out by considering the two simple cases where either the function f1 or the function f2 does not degenerate as for subsonic flow, i.e., the function is constant throughout the entire flow field. The particular solutions then obtained are referred to as simple wave solutions, or solutions with waves of one family only. For the two classes of simple-wave solutions, the foregoing results take the simple form shown in the following table:
	f1=constant
	             f2=constant

	λstreamline=constant-βf2
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	λstreamline=constant+βf1                      (3.7.4.1.8)
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    (3.7.4.1.10)


Flow with Left-Running Mach Waves Consider the simple-wave flow for which the function f1 is everywhere constant. We see from Eq. 3.7.4.1.9 that the slopes of the streamlines are then constant along lines on which f2’ is constant. However, f2’ is a function of only of the argument (x-βλ). Consequently the slopes of the streamlines are constant on lines for which 

                                x-βλ=constant

These form a family of parallel straight lines with slope dλ/dx=1/β. Referring to the velocity triangle of Fig. 3.7.4.1.2, we see from the definition of the Mach angle that
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Hence the lines of constant f2’ (and of constant f2) are inclined at the angle α∞ to the direction of flow. Thus the lines of constant f2 are identified with the left-running Mach lines of the flow. The left-running Mach lines are those which, for an observer looking downstream, appear to be going downstream in a generally direction; consequently the left-running Mach lines lie at the angle α∞ above the x-axis (ξ-axis), i.e., the first and the second coordinates system of Fig. 3.7.4.1.1 (the upper body), while right-running Mach lines lie at the angle α∞ below the x-axis (ξ-axis), i.e., the third and the fourth coordinates system of Fig. 3.7.4.1.1 (the under body).
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                   Fig. 3.7.4.1.2 Illustrates definition of Mach angle

   The general relation between the streamlines must be as shown in Fig. 3.7.4.1.3. All the streamlines are similar to each other and, moreover, have equal slopes along each left-running Mach line. According to Fig. 3.7.4.1.3 the pressure, velocity components, and all other fluid properties are also constant along the left-running Mach lines. Moreover, local pressure coefficient, according to Eq. 3.7.4.1.10, depends only on the local inclination of the streamline, that is, only on the local direction of the velocity vector. In the case considered here, the changes in fluid properties may be said to be propagated along the left-running Mach lines. A propagation of this type is usually called a wave. It is customary, therefore, to refer to the Mach lines as Mach waves. The latter also be thought of as pressure waves propagating along the Mach lines.
   Similar results are obtained if we consider the other class of simple flows, that is, with the functions f2 everywhere constant. In this case, however, the Mach lines are inclined at the angle -α∞ to the direction of flow. For a thin two-dimensional airfoil, the pressure distribution on the upper and under surfaces of the airfoil may be dealt with the left-running and the right-running Mach waves, respectively. For the concerned lifting body, we do not select the left- or the right- because λ is positive in the first and the second coordinates system of the y-axis and the z-axis, while it is negative in the third and the fourth coordinates system of the y-axis and the z-axis. That is, the function f1=constant (the left-running Mach waves) can describes the whole unbounded flow over the surface from θ=0 degree to θ=2π degrees.
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                Fig. 3.7.4.1.3 Flow with only left-running Mach waves present
Physical Description of Two-dimensional Supersonic Flow From the results of the preceding article, we see that the general mathematical solution to linearized supersonic flow may be interpreted physically by portraying the flow as being influenced by pressure waves which inclined at the Mach angle to the velocity vector. Having arrived at this concept, it is unnecessary to work with the potential functions directly. Instead, it is easier to proceed by constructing the wave pattern which produces a flow corresponding to specified boundary conditions. In order to do this, however, we must have a method for calculating the changes produced in a streamline as the streamline crosses waves of wave family. This relation between changes in pressure and changes in direction are given by Eqs. 3.7.4.1.6 and 3.7.4.1.7. Here we shall derive the same relations by a geometrical construction (Ackeret rule), which emphasizes the physical rather than the mathematical aspects of the problem. 

   Suppose that in a small region only the function φ2 undergoes any change in numerical values, for the two-dimensional supersonic flow with small perturbations, that is, the function φ1 is a constant, and we have pressure waves of only one family. Then, since the gradient of the perturbation potential is equal to the vector change in velocity, and since the gradient of the perturbation potential is normal to the lines of constant perturbation potential, it follows that as the streamline crosses the specified region the change in velocity vector must lie in the direction normal to the lines of the family II. The velocities before and after the change are, therefore, directly related to the physical geometry.
Pressure-Turning Angle Relation for Mach Waves To calculate the relation between the change in pressure and the change in direction as the streamline crosses a region where there pressure waves only of family (Ⅱ: the left-running pressure waves), we start with the linearized form of the Euler equation,

                     p-p∞=-ρ∞V∞u

But, from the geometry of Fig. 3.7.4.1.4a,

                        u=-vtanα∞  

Furthermore, if Δθ is the change in direction of the streamline, and if it is assumed positive when measured counter-clockwise, then Fig. 3.7.4.1.4b shows that, to the first-order terms,

                       -v=V∞(Δθ)

Hence, we find that

(Δp)Ⅰ=ρ∞V∞2Δθtanα∞=2(ρ∞V∞2/2)/(M∞2-1)1/2Δθ=2q∞/(M∞2-1)1/2(Δθ)       (3.7.4.1.11a)

Similarly, we have

                     (Δp)Ⅱ=-2q∞/(M∞2-1)1/2(Δθ)                      (3.7.4.1.11b)
   In constructing solutions by means of waves, we may synthesize a flow pattern corresponding to specified boundary conditions out of four fundamental types of changes, depending (i) on whether the wave is of family I or of family II, (ii) on whether the stream is accelerated or decelerated. These four types of changes are illustrated in Fig. 3.7.4.1.4. From these sketches and Eq. 3.7.4.10 and Eq. 3.7.4.1.11, we see that the pressure increase for a deceleration and decrease for an acceleration, as required by momentum considerations. Furthermore, during a compression the streamline bends toward the Mach line, whereas during the cross-sectional area of a stream tube formed by two neighboring streamlines, it will be seen that in a compression the area decreases while in an expansion the area increases, as might be expected from simple one-dimensional considerations for supersonic flow. 

   When a stream line is influenced by a wave, it may be seen that the velocity component parallel to the wave is unaltered. Only the velocity component normal to the wave is changed in magnitude. Or, stated differently, the vector change in velocity is in the direction for which the component of velocity is equal to the local sound velocity. 


[image: image669]
Fig. 3.7.4.1.4 Four basic types of Mach waves
Application of the Physical Description of Two-dimensional Supersonic Flow to the Three-Dimensional Lifting Body Shape In order to apply the simple results of the preceding results stated in the physical description of two-dimensional supersonic flow (Ackeret rule) to the three-dimensional supersonic flow of the lifting body; we need to refer to the introduction of λ in Eqs. 3.7.4.1.1. through 3.7.4.1.7. That is, it must be also remembered the conditions given to the streamlines for the subsonic flow such that the local osculating plane is composed of the unit vectors of aξ and aθ, where the tangent to the θ-curve is a binormal to the osculating plane. The local unit normal vector is the vector product of aξ and aθ. Due to very small angle of the body edge sweep, an assumption is made specifically to the concerned lifting body such that there no flows exist in the binormal direction. Therefore, the following conditions for the concerned flows are assumed as
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The flows along a stream line on the body surface are approximately given by
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         (3.7.4.1.14)
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        (3.7.4.1.15)
   Multiplying cosθ and sinθ, respectively, to Eq. 3.7.4.1.14 and Eq. 3.7.4.1.15, and referring to Eq. 3.7.4.1.6 such that f1=constant and that the function f1=constant (the right-running Mach waves) can describe for the whole unbounded flow above the surface from θ=0 radians to θ=2π radians, we obtain the following equation:
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           (3.7.4.1.16)
Rearranging Eq. 3.7.4.1.16 gives
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We find easily
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Then, 
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      (3.7.4.1.19)
If we compare Eq. 3.7.4.1.19 with Eq. 3.7.4.1.11b for the right-running Mach waves, we can easily find that
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The Effect of an Angle of Attack From Eq. 3.7.4.1.15, we have an approximate expression as
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If an angle of attack α (radian) of the body is taken in the coordinates system of Fig. 3.7.4.1.1, and we suppose that only free stream flow direction is rotated around the y-axis (η-axis) by an angle of α radians, Eq. 3.7.2.25 gives the following relation as
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Substituting Eq. 3.7.4.1.18 and Eq. 3.7.4.1.21 into Eq. 3.7.4.22, we obtain 
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The effect of an angle of sideslip (directional control of a vehicle) is also similarly obtained easily as the above stated.    We have described the approximate equation for estimating the pressure difference between on the body surface with an angle of attack and the supersonic free stream. The under body of the concerned vehicle has flat plates such as the forward ramp and the engine under plate. If we assume a single ramp for the forward ramp without an angle of attack, Eq. 3.7.4.1.11b gives the following equations for the forward ramp flow and for the engine under plate flow as

   For the forward ramp flow,
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   For the engine under plate,
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3.7.4.2 Oblique Shocks
Oblique shocks tend to occur in supersonic flow because continuous compression waves tend to merge until they form a discontinuity. Normal shocks are only special forms of discontinuities within the fluid. Sometimes the oblique shock is attached to the surface of a body, but this occurs only when the stream is forced to change direction suddenly, as in a sharp concave corner. Otherwise, the oblique shock is usually detached. When the velocity is everywhere continuous, regions having different types of flow may be “patched” together only on the characteristic curves. That is, along the characteristic there is no discontinuity in the velocity or any other fluid property, but there may be discontinuities in the derivatives of the velocity or of other fluid properties. When we deal with shocks, however, we are no longer bound by this rule, because we admit the possibility of discontinuities in all fluid properties across the shock line. Hence the shock is also a patching line which joins regions having different types of flow. But it is essential to keep in mind the distinction that the physical characteristics, or Mach lines, are patching lines for continuous flows, whereas shocks are patching lines for discontinuous flows.

   The relation of oblique shock to Mach lines is stated as that the oblique shock overtakes upstream Mach lines and, simultaneously, the oblique shock is over taken by downstream Mach lines. A logical means for introducing the oblique shock is by way of the normal shock. The oblique shock flow pattern is characterized by familiar normal shock relations across the shock simultaneously by equal tangential components of velocity on the two sides of the shock. The Rankine-Hugoniot equations and the Prandtl relation give the following working formulas as 
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where ( )1 and ( )2 signify conditions up-stream and down-stream, respectively, σ is the angle of shock to incoming flow, and δ is the turning angle across the shock.

The Prandtl relation is  
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where Vn and Vt are velocity components normal and tangential to the shock, respectively.


[image: image689]
                        Fig. 3.7.4.2.1 Hodograph shock polar

   Let the x- and z- components of velocity be denoted by u and w, respectively, and let the flow approaching the shock be in the x-direction, so that u1=V1, and w1=0. Then, the hodograph diagram of Fig. 3.7.4.2.1 shows the states before and after the shock. For a shock of given turning angle δ, all the information required to lay off the vector V2 as well as the shock angle σ may be found the following equations of shock polar. To obtain the equation of the shock polar in u-, w- coordinates, we find from Fig. 3.7.4.2.1 that
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Substituting these into the Prandtl relation, we obtain
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Then, eliminating σ with the additional relation from Fig. 3.7.4.2.1
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We finally obtain after considerable algebraic rearrangement,
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This formula allows us to plot w2/a* versus u2/a* for any specified value of the parameter u1/a*.
Strong versus Weak Shocks It is found by oblique shock relations or by Fig. 3.7.4.2.1 that, for a given Mach number M1 and a given turning angle δ, there are either two solutions to the oblique shock relations or none at all. From the shock polar, we see that if a solution exists there may be either (i) a strong shock (2s), with a relatively large shock angle, a relatively large pressure ratio, and with the downstream state usually subsonic, or (ii) a weak shock (2w), with a relatively small shock angle, a relatively small pressure ratio, and with the downstream state usually supersonic. Which of these two solutions will occur in practice? Unfortunately, there is no simple and clear-cut answer to this question, but certain general considerations serve as a guide.

Detached Shocks The hodograph shock polar shows that for a specified initial Mach number, M1, there is a maximum value of the turning angle, δmax, for which there exists an oblique shock solution. Or, conversely, for a specified turning angle, δ, there is a minimum initial Mach number, M1min, for which there is an oblique shock solution. It is evident from hodograph shock polar that at this limiting condition the weak and strong oblique shocks become identical.

   Consider the case of uniform, parallel flow at Mach number M1 past a wedge of half-angle δ. If δ is less than δmax, the shock is attached to the wedge (Fig. 3.7.4.2.2a). However, if δ is greater than δmax, the shock cannot be attached to the wedge, for this would require the streamline approaching the point of the wedge to turn through an angle greater than δmax. Under these circumstances, we observe in practice that the shock is detached from the wedge (Fig. 3.7.4.2.2b). Similarly, a detached shock always stands in front of a blunt body (Fig. 3.7.4.2.2c).
   When the shock is detached, it is invariably curved. If the body of Fig. 3.7.4.2.2c represents the leading edge of the wing of a supersonic aircraft, we can see intuitively that the curved shock which begins at A as a normal shock must gradually weaken until at B, which is a great distance from the body, it is of vanishing strength, i. e., it is a Mach wave. The curved shock is sometime called as bow shock wave. With a curved detached shock as in Fig. 3.7.4.2.2c, therefore, there is a segment of the shock to correspond to every point on the shock polar curve pertaining to the given M1. Behind the detached shock the flow is in part supersonic and in part subsonic, leading to great difficulties in analysis because of the radically different properties of the different equations for subsonic and supersonic flow.

[image: image695]
Fig. 3.7.4.2.2 Attached and detached shock
Sonic Flow after Shock As seen in Fig. 3.7.4.2.3, for each value of M1 there is a certain turning angle, δ*, for which the flow downstream of the shock is exactly supersonic. The relation between δ* and δmax is as illustrated in Fig. 3.7.4.2.3, that is, δ* is always less than δmax. However, for γ=1.4, δ* does not differ from δmax by as much as 0.5 degrees over the entire range of Mach numbers from unity to infinity. This means that, except in a very narrow range, the flow behind a weak shock is supersonic and the flow behind a strong shock is subsonic. 


[image: image696]
Fig. 3.7.4.2.3 Relation between δ* and δmax
   From the geometry of the hodograph shock polar Fig. 3.7.4.2.1, and with Eqs. 3.7.4.1.19 and 3.7.4.1.20, we obtain the turning angle δ across shock, by angle of shock to incoming flow, σ, and by up-stream Mach number, M1, as 
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Similarly, we obtain the down-stream Mach number, M2, as
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From Eq. 3.7.4.2 8, we cam easily obtain the maximum δ condition as
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Letting M2=1 at Eq. 3.7.4.2.9
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Therefore, Eq. 3.7.4.2.8 gives δmax and δ*, respectively, by the uses of Eq. 3.7.4.2.10 and Eq. 3.7.4.2.11.

   A strong shock of small turning angle will have a shock angle of nearly 90 degrees. From the oblique shock relations, it may be seen furthermore that the pressure rise across such a shock is substantially the same as that across a normal shock. Thus we have the approximate rule that strong shocks of small turning angle are nearly equivalent to normal shocks. It must be noted that the subsonic flows of Figs. 3.7.4.2.2 b and c are not irrotational. However, if we assume a normal shock instead of a strong oblique shock, the subsonic flow may be dealt with as irrotational, which gives a larger drag force to the body and a smaller lift force. 


[image: image701]
           Fig. 3.7.4.2.4 Three-dimensional bow shock and detached oblique shock 
   We have stated oblique shock wave; however, it is for the two-dimensional flow. If we suppose that the bow shock wave generated by a three-dimensional blunt body is an enveloped surface generated by the local oblique shock wave which is generated by the deflection angle of a body surface and, simultaneously, shifted to the upstream due to the detached strong normal shock. When we remind that the concerned body surface is one of the ruled surface, we can assume that the local deflection angle at the point of the osculating plane on the surface defines the local oblique shock wave of which composes an envelope line for the bow shock wave by shifting to the upstream (see Fig. 3.7.4.2.4). The detached bow shock wave ahead of the nose is as a normal shock and gradually weakens in the downstream. The sonic line also forms a sonic surface in the bow shock. Here, we assume as that the shape of the bow shock wave is approximately similar to the enveloped oblique shock surface shifted to the upstream, which is generated due to the deflection of the shape of the body. That is, the supersonic flow can be approximately determined by the deflection angle on the surface by the oblique shock relations.
Three-Dimensional Oblique Shock Generated by the Body with an Angle of Attack The three-dimensional velocity vectors V1 and V2 are given as

                     V1(V∞cosα, 0, V∞sinα)                            (3.7.4.2.12)

                      V2(u2, v2, w2)                                   (3.7.4.2.13)

where u2, v2, and w2 are velocity components of the velocity vector V2, respectively. In order to apply the simple results of the preceding results stated of the two-dimensional oblique shock relations (the Rankine-Hugoniot equations and the Prandtl relation) to the three-dimensional supersonic flow of the lifting body; we remember the conditions given to the streamlines for the subsonic flow such that the local osculating plane at any point on the prescribed ruled surfaces is normal to the free flow direction of x- or ξ-axis, and the tangent to the θ-curve is also a binormal at the point, i.e. aξ and aθ are in the local osculating plane and n is normal to the plane. For the lifting body with a very small aspect ratio and with a very large sweep angle, the following conditions for the velocity vectorV2 are given as
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Then we have
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Substituting Eq. 3.7.4.2.17 into Eq. 3.7.4.2.16, we obtain
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   Fig. 3.7.4.2.5 shows the relations between the velocity vectors V1 and V2. The vector analysis gives the following relations to the deflection angle δdeflection (radians).

                          V1 ●V2. = V1V2 cosδdeflection 
                         ∣V1 xV2 ∣= V1V2 sinδdeflection
That is,
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[image: image709]
                      Fig. 3.7.4.2.5 Local deflection angle

We can obtain the deflection angle assuming as

[image: image710.wmf](

)

2

2

2

2

2

2

2

deflection

sin

u

cos

w

v

sin

w

cos

u

cot

a

-

a

+

a

+

a

=

d

       (3.7.4.2.21)

   If a large angle of attack is not permitted for a spaceplane during supersonic flight, this assumption is reasonable because that the mission is transportation to space orbits. Therefore, we can assume that cosα≈1. Then, we have the following equation,
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where
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It must be noted that the numerator of Eq. 3.7.4.2.22 must have the plus sign always because that oblique rarefaction discontinuity would violate the Second Law of Thermodynamics. That is that a rarefaction shock violates the Second Law of Thermodynamics. The impossibility of a rarefaction shock is of course also connected with the fact that rarefaction waves tend to become less steep. Thus, in the expansive flow around a corner, there is a rarefaction discontinuity confined to the singular point of the sharp corner, but this discontinuity rapidly decays to a continuous Prandtl-Meyer expansion which fills the entire expansion region.
3.7.4.3 Prandtl-Meyer Flow
Rarefaction discontinuity at rapidly attenuates to a continuous Prandtl-Meyer rarefaction wave. If a continuous wall is replaced by a series of straight-line chords with multiple corners, from each corner a pressure wave is propagated of such strength as to preserve continuity at the wall. Using the iteration process, the conditions in region 2 and the direction of the Mach line II2 is found from the mean flow conditions between zones 1 and 2. This type of flow is known as Prandtl-Meyer flow. It is distinguished by the features that (i) all flow properties are uniform along each Mach line and the Mach lines are straight, and that (ii) for given initial conditions, the magnitude of the velocity at any point depends only on the flow direction at that point. The method of solution indicated above for the concave wall becomes more and more exact as we increase the number of chords by which the wall is replaced. We obtain an exact solution in the limit by carrying out the process with infinitesimal steps.

   Let us imagine that a Mach wave of family II turns the flow through the negative angle –dθ (refer to Fig. 3.7.4.3.2 a), with corresponding infinitesimal changes in all stream properties. The hodograph diagram of Fig. 3.7.4.3.2b is constructed with the rule that the vector change in velocity produced by the wave is normal to the wave direction. From the geometry of the figure, noting that du is in the limit of the algebraic increment in velocity, dV, we get 

                          dv=-Vdθ
                          du=dV

                        du/dv=1/(M2-1)1/2 

Elimination of du and dv from this set of equations yields
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[image: image715]
Fig. 3.7.4.3.1 Prandtl-Meyer rarefaction wave


[image: image716]
Fig 3.7.4.3.2 Infinitesimal Mach wave

From the adiabatic relation between dV and dM, we have
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hence Eq. 3.7.4.3.1 may be written
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Integration of this equation yields
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It is often more convenient to work with the dimensionless velocity M*=V/c* rather than the Mach number M. Using the adiabatic relation that
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Eq. 3.7.4.3.4 may be put into the form

                  θⅠ=-ω(M*)+const.                                    (3.7.4.3.5)

where the function ω(M*) is given by 
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            (3.7.4.3.6)

The constant of integration is determined from the initial values of θ and M* for any particular problem. Then, if deflection angle is given for a concave wall, the relation between for and after flows are given by 

                 -δdeflection = ω(M*1)-ω(M*2)                              (3.7.4.3.7)
3.7.5 Hypersonic flow
The various approximate and exact theories for supersonic flow which have been discussed in the in the previous section are applicable at large Mach numbers as well as small specifically for the supersonic flows with shocks. It must be noted however, that the linear theory is not valid for a very large Mach number due to the assumption of the linearization as stated in 3.7.4.1 Linear Theory of the Supersonic Flow. When the Mach number is very large, the flow exhibits a special behavior. The flow is called hypersonic flow. Because of the airbreathing engine, the flight dynamic pressure should be moderate even for the hypersonic flight, then; we can confine our attention to a study of hypersonic flows from the continuum viewpoint.
   Some of the general features of hypersonic flow may be grasped from a qualitative examination of the exact relations for isentropic flow, Prandtl-Meyer flow, and oblique shock waves. When the Mach number is very large, the speed is very near the maximum speed correspondingly to the stagnation temperature. If the flow is disturbed by a body, the speed of the fluid remains almost unchanged, but the local speed of sound undergoes large changes. The Mach angle is extremely small, and hence the Mach waves tend to follow the surface of the body. Likewise, oblique shock waves make a very small angle with the flow and thus tend also to follow the surface of the body. Referring a flat plate at incident theses considerations give rise to the concept of a hypersonic boundary layer near the surface (see Fig. 3.7.5.1); within this layer there is confined at the fluid which has been affected by the presence of the body.
   Since the pressure rise across the shock at high M∞ is very much larger than the pressure decrease across the Prandtl-Meyer expansion, as an approximation it may be assumed that there is a vacuum on the upper side of the plate. On the lower side the oblique shock nearly coincide with the plate surface. That is Newton’s corpuscular theory of fluid dynamics. From momentum considerations alone, and assuming that the magnitude of the fluid velocity is substantially unchanged, Newton’s theory for a flat plate with incident angle of αi yields 
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[image: image724]
Fig. 3.7.5.1 Hypersonic boundary layer

   If a lifting body has an angle of attack α, the local incident angle αi of the Newtonian flow to the surface is expressed by the normal vector of Eq. 3.7.1.48 as
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                             V=V∞cosαi + V∞sinαk      (3.7.5.3)

Modified Newtonian Flow Many experiments have been done for the design of the atmospheric entry vehicle specifically for blunt nosed bodies. The measured values for the stagnation-point pressure coefficient have shown to be lower by about 3.4-0.81 % of the value for the Newtonian flow model. Therefore, the pressure coefficient of the Newtonian flow is sometimes modified by the use of those experimental data, which is called the modified Newtonian flow3.7.7.
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3.8 External Nozzle Expansion Gas-dynamics and Interaction with Free Air-stream

   The function of the external nozzle is to make the engine performance maximum by accelerating the engine exhaust gas flow from the internal nozzle exit (here, it is from the burner-exit of station 5) pressure to the atmospheric pressure over the entire flight range of an airbreathing powered vehicle. The method of characteristics design techniques has been highly successful for performance analysis of wind-tunnels, rocket nozzles, and single-sided external nozzles of the ram (Fig. 2.4.4.1), the scramjet (Fig. 2.4.5.1), and the ARCC engine (Figs. 2.3.2 and 2.3.5). Because of the appearance, those are also variously called as single-sided, free-expansion, unconfined, or half-nozzle, and expansion-ramp. The method of characteristics design techniques is based, however, essentially on the two-dimensional analysis and the other side of the single-sided external nozzle is not the solid wall as those of the wind tunnel and the rocket engine. The engine exhaust gas flow near the unconfined side is determined by the free jet-boundary, which can be only formed analytically by the iterated calculations to stabilize the balance of the exhaust gas stream and the external free air flow. This kind of calculation may be applicable to the engine static condition as on the ground running, however; the method of characteristics is not appropriate for the flight simulation in the conceptual design phase because of the too much intricacy. In this chapter, an approximate analysis is presented for describing the free jet-boundary and the interaction with the free air flow. The approximate method is based on a rather simplified concept such that the engine exhaust gas flow is one-dimensional while the interaction with the free air flow is dealt with as two-dimensional, which is an extension of the author’s study3.8.1 of the secondary gas injection into the supersonic flow. This approximate method is much easily applicable to the flight simulation of the conceptual design phase and can still bear fruit despite the fact that the exhaust system is seldom, if ever, operated precisely at its design point.  

   In order to realize the ideal nozzle condition such that the static pressure of the engine exhaust gas flow becomes equal to the atmospheric pressure after expansion, the variable geometry is required for the single-sided external nozzle as well as for the internal nozzle during the almost whole flight speed conditions of an airbreathing engine powered STS mission flight. The engine concept should be a fixed geometry for the airbreathing engine powered SSTO vehicle, which is the author’s consistent design philosophy as previously stated in each part of this book, therefore; both of the single-sided external nozzle and the internal nozzle should be fixed configurations. The nozzle flows with a fixed configuration are those of off-design conditions for almost whole airbreathing engine powered flight conditions. Off-design conditions are generally said to be either over-expanded (i.e., p5<p* for low flight speed and pe<p∞ for high flight speed) or under-expanded (i.e., p5>p* for low flight speed and pe>p∞ for high flight speed). Here, the low flight speed designates the condition of M5<1, which is for the subsonic, transonic, and lower supersonic flights and the high flight speed is M5>1. If the following stagnation condition is satisfied at the station 5 as Eq. 3.8.1, the exit Mach number at the internal nozzle can be more than unit (M5>1) even for a low flight speed, with assist of the cowl flap maneuvers.
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   A fixed configuration nozzle of the ARCC engine does not produce the so called “full flow” as the rocket’s for the subsonic, transonic and low supersonic flight (which corresponds to the ram-mode of the ARCC engine) region without the variable internal nozzle nor the cowl flap. It is called as “over-expanded” nozzle flow. The over-expanded nozzle flow induces flow separations for the conventional rocket nozzle, then; the engine performance of the rocket decreases seriously. The single-sided nozzle, however, does not always induce easily the separation flow such as the rocket because that the other unconfined side (free jet-boundary) should be built up through the aerodynamic interaction of the exhaust gas flow with the free ambient atmospheric air flow under the condition that the engine exhaust velocity at the engine internal nozzle exit is much larger than the flight speed (V5>>V∞) for the whole flight region of subsonic, transonic, and low supersonic. It becomes important to describe the performance of the single-sided nozzle flow as well as the aerodynamics of the engine powered flying vehicle; accordingly, the formation of the free jet-boundary of the engine exhaust gas flow and the interaction with the free ambient atmospheric air flow are discussed in this chapter. 

3.8.1 Free Jet-Boundary
   When the stagnation pressure at the station 5 is satisfied the condition of Eq. 3.8.1, the free jet-boundary of the supersonic exhaust flow is like that of Fig. 2.4.3-3, however, the other boundary is confined by the external nozzle wall. Fig. 3.8.1 shows a schematic of two-dimensional single-sided nozzle flow with flap deflection angle δF. At the lip, before expansion to the free-stream static pressure, the Mach number is MF, where an isentropic relation applied to the corresponding external wall from the internal nozzle exit. In Fig. 3.8.1, the internal nozzle of the engine is assumed only as an extension of the combustor, i.e., no geometry changes.

[image: image727]
Fig. 3.8.1 Total angle turned through by the flow at the lip of a single-sided nozzle
As the stagnation condition at the lip is isentropically same to the station 5, therefore, T05=T0F and p05=p0F. Assuming the mainstream axis is parallel to the cowl, the flow at the lip turns through an angle of ωe-ωF relative to the flap wall, and the overall flow expansion angle with respect to the mainstream αe is 

                   αe= ωe - ωF +δF +α                              (3.8.1.1) 


where ωe and ωF are Prandtl-Meyer angle of Me (where Me is a supposed Mach number after expanding to atmospheric pressure) and MF, respectively, here the subscript e denotes a condition at jet-boundary immediately after expansion to the ambient atmospheric pressure, and α is the angle of attack to the fee atmospheric flow. The flow is turned from this initial expansion angle by the interaction of expansion waves with the free jet-boundary, reflection as compression waves, so that the condition of constant pressure to the free-stream static pressure on the jet-boundary is satisfied at every point. It must be noted here that the free jet-boundary is in the free-stream of a vehicle; specifically in it’s under body, where the free-stream interferes with the free jet-boundary of the exhaust flow. The interference changes the static pressure of the free-stream, then, the intersection of the expansion waves with the jet-boundary changes, and so on, finally approach to a balancing condition. The pressure change of the free-stream due to the jet-boundary is different for subsonic, transonic, supersonic, and hypersonic flow. The present approximation depends on replacing the effects of expansion waves intersecting the flow near the free jet-boundary by the effects of a quasi-one-dimensional area increase. That is, just as in one-dimensional nozzle flow analysis, it is assumed that one can find the average Mach number and static pressure at any axial position in an expanding flow from the area ratio at the given point, instead of going through a characteristic calculation. 

Immediately after leaving the lip exit, then, the flow at the lip has turned through the total angle α. However, as it follows this new direction, it is continually expanding. Hence, in an incremental distance downstream, dξ, there is an increase in area, dA, with a corresponding decrease in pressure, 
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 can be calculated from quasi-one-dimensional relations if one considers a stream tube along the boundary of the jet to be the channel in question. Since a change in static pressure along the jet-boundary is adjusted only to the external ambient atmospheric pressure of the free-stream, this decrease in pressure due to expansion must be balanced by an equivalent increase in pressure which can only be gained by turning the flow through an incremental angle, dθ, because the internal flow is supersonic even if the external flow is subsonic, thus forming a weak compression wave in the internal flow. This process of expansion and compression holds at any point on the free jet-boundary where at ξ, with a given ζ2, and a given direction of flow, θ, the gas in expanding in this given direction toζ2, + dζ2 at ξ+ dξ would undergo a decrease in pressure so that a farther change in direction, θ, results, increasing the pressure at ζ2, + dζ2. 

   The equation for the pressure along the jet-boundary may then be written as follows
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where the left hand side of the Eq. 3.8.1.2 shows the pressure change of the external free-stream due to the free jet-boundary of the exhaust gas, and it must be noted that 
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 for the static condition on the ground. The right hand side of Eq. 3.8.1.2 shows the pressure changes of expansion and compression of the internal supersonic exhaust gas flow. 

   Since a change in area change, dA, is equivalent to a change in Mach number, dM, Eq. 3.8.1.2 can be written in terms of M and θ. Thus,
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where 
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p

¶

¶

 is calculated from isentropic flow relations.

   The shape of external nozzle, ζ1(ξ), is given from view of vehicle design as in Fig. 3.8.1. If a pure two-dimensional nozzle flow is assumed, here the actual ARCC engine powered vehicle has a large aspect ratio of rectangular sectional geometry, then, the assumption is still reasonable for the description of the free jet-boundary of the under side of the exhaust gas flow, no lateral flow in the supersonic flow is considered. The actual nozzle, however, has a finite width of the engine, which induces three dimensional free-jet boundaries. This problem will be discussed in the last part of this section. 

   Letting A5* as a supposed nozzle throat area for the under-expanded exit gas flow at station 5, the isentropic relation gives
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　　(3.8.1.4)　　　

Using the above stated two-dimensional assumption for the longitudinal cross section of the free jet-boundary and taking logarithmic differentials of Eq. 3.8.1.4 gives
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     (3.8.1.5)

Thus, the derivative of the jet-boundary is described as
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   For isentropic flow, the static pressure of the exhaust gas is related to Mξ as follows:
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Then,
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   From linearized supersonic theory, the change in pressure in terms of a very small change in pressure and direction
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   If 
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 in Eq. 3.8.1.2 and Eq. 3.8.1.3, as for the static firing engine condition or just before starting to takeoff on the ground3.8.1, substituting Eqs. 3.8.1.8 and 3.8.1.9 into Eq. 3.8.1.3, we can obtain easily dθ/dM, which describes the angle measured from the original direction of the free jet-boundary as a function of Mξ. However, the free jet-boundary of the exhaust gas-stream interferes with the ambient atmospheric free-flow at the outside of the jet-boundary, i.e., the interaction depends on the free-flight conditions, which determines the free jet-boundary. Then, substituting Eq. 3.8.1.8 and Eq. 3.8.1.9 into Eq. 3.8.1.3, and rewriting gives
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       If θξ is given for ξ and Mξ, the trajectory of the free jet-boundary is described as 
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and
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3.8.2 Interference of Nozzle Exhaust Gas Flow with Ambient Atmospheric Air Flow
   The interaction of the supersonic expanding exhaust gas flow with subsonic or transonic atmospheric ambient outside-stream is only occurred for an airbreathing engine with variable exit nozzle throat or cowl flap maneuver. In an ARCC engine, the variable throat for the exit nozzle is not supposed to be provided with. The flow analysis of an ARCC engine shows that the static pressure is higher than the atmospheric pressure p5>p∞ and the velocity of the exhaust gas stream is much higher than the flight speed of the ARCC engine powered vehicle during from takeoff running through transonic to low supersonic flight V5>>V∞, however; the Mach number of the exhaust gas flow is subsonic as M5<1. Under these conditions, the exhaust gas flow expands soon after leaving the exit of the combustor and the free jet-boundary is applied a negative pressure difference due to the subsonic outside air flow by forming the turbulent shear/mixing layer along the free jet-boundary, which balances the pressure increase of the subsonic engine exhaust flow, during the subsonic and the transonic flights. Under the similar conditions, the exhaust gas flow expands restrainedly soon after leaving the exit of the combustor and the free jet-boundary is applied a positive pressure difference due to the supersonic outside air flow by forming the turbulent shear/mixing layer along the free jet-boundary, which balances the pressure increase of the subsonic engine exhaust flow, during the supersonic flight. In which cases, the generated thrust is not affected so much by the flow through the single-sided external nozzle while the engine exhaust gas flow decreases the momentum through the turbulent shear/mixing layer.

   When the Mach number is larger than unit at the exit of the air/fuel combustor M5>1, the operational mode of the engine is called as the Supersonic Combustion RAM (SCRAM). The starting the SCRAM mode of an ARCC engine is earlier than the conventional Brayton Cycle SCRAM engine as M∞≈4-5. The engine exhaust gas flow builds up the free jet-boundary for the engine condition of M5>1 without any of variable geometrical internal nozzle nor the cowl flap, however; the initial expansion is into the subsonic flow induced by the detached shock in front of the large initial expansion angle of αe because the altitude of the ARCC engine scram-mode is very high and the atmospheric pressure is very low. The following trajectory of the free jet-boundary will be through the transonic and the supersonic flows induced by the detached shock. That is, the interference with the supersonic free air flow should be dealt with the subsonic, transonic, and supersonic air flows for the SCRAM mode of an ARCC engine. 

3.8.2.1 Interaction with subsonic ambient atmospheric flow.
For the subsonic ambient atmospheric condition at the outside of the free jet-boundary, referring to Sec. 3.7.2 and replacing the solid surface by the free jet-boundary, the pressure change of the left hand side of Eq. 3.8.1.10 is approximately expressed as followings:

   Under the conditions of      
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   and further                 
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   The linearized equation of the perturbation velocity components is given by
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  Along the jet-boundary, the slope of the streamline can be assumed to be identical with the slope of the velocity vector, then, the slope of the free jet-boundary to the mainstream axis is approximately given by
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The partial derivative of Eq. (3.8.1.3) can be rewritten by referring the relation of 
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Substituting Eq. (3.8.2.1.4) into Eq. (3.8.2.1.2) gives
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The pressure difference along the jet boundary is expressed for subsonic ambient atmospheric free flow as
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Substituting Eq. 3.8.1.6 into Eq. 3.8.11 gives
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   For a given condition such as ζ1(ξ), p05, M5, γ5, p∞, M∞, and q∞, five dependent parameters of ζ2(ξ), θξ, Mξ, pξ, and (Δp∞)jet-boundary are numerically integrated by five Eqs. 3.8.2.1.6, 3.8.2.1.7, 3.8.1.1.6, 3.8.1.1.7, and 3.8.1.1.11 with respect to ξ with initial condition of Eq. 3.8.1.1. That is, the free jet-boundary of the external nozzle mainstream flow and the pressure difference along the jet-boundary can be obtained under subsonic ambient atmospheric free flight condition.

3.8.2.2 Interaction with transonic ambient atmospheric flow
For the two-dimensional transonic flow, under the following assumptions:

                     (c*-U∞)/c*<<1

                       (c*-u)/c*<<1

                           v/c*<<1

we obtain the approximate differential equation for transonic small perturbations flow as (refer to Sec. 3.7.3 )
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where velocity components u and v are in the ξ-direction and the ζ-direction, respectively.

  Introducing the total velocity potential Ф as the sum of two parts: (ⅰ) c*ξ, representing a uniform parallel flow at the critical speed, and (ⅱ) (1-M∞*)φ, representing the perturbation potential:

              Ф= c*ξ+(1-M∞*)φ; M∞*=U∞/c*                       (3.8.2.2.2)
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Substituting these derivatives into Eq. (3.8.2.2.1), we obtain
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   The local slope of the jet-boundary may be expressed as
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where h(ξ) represents the ratio of the local jet-boundary slope to the thickness ratio δ, and δ≡t/l. In this section, l is defined as the vehicle length and t is as the vehicle height. The boundary condition on the surface of the jet-boundary, assuming that the flow follows along the contour, is, within the assumption of small perturbations,

                            v/u=v/c*=δh(ξ)                        (3.8.2.2.6)

   In order to obtain the pressure difference on the local jet-boundary, (Δp∞)jet-boundary, the concerned velocity perturbations on the jet-boundary are given from Eq. 3.8.2.2.3a and Eq. 3.8.2.2.3b as 
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Substituting these relations into Eq. 3.8.2.2.4, we obtain
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Rewriting gives
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Considering dζ2/dξ<0 and d2ζ2/dξ2>0 for the jet boundary defined in Fig. 3.8.1, integration of Eq. 3.8.2.2.8 gives
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The boundary condition at infinity requires that velocity components there be 
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≈0 and dζ2/dξ=0, then constant of Eq. 3.8.2.2.9 equals to zero. Therefore,
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The ± sign is determined by M∞* as
   For M∞*<1
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   For M∞*>1
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Then, the pressure change of the left hand side of Eq. 3.8.1.10 is approximately expressed as followings:
   For M∞*<1
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   For M∞*>1
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In order to obtain (Δθξ), substituting Eq. 3.8.2.2.12a or Eq. 3.8.2.2.12b into Eq. 3.8.2.1.7, by discriminating the sign of (1-M∞*), the numerical integration of the jet-boundary under the condition of transonic ambient atmospheric flow can be performed as the same method for the subsonic flow of the previous section. 
3.8.2.3 Interaction with supersonic ambient atmospheric flow
It must be noted firstly for supersonic flights that the shock relations should be considered for the free jet-boundary. If a strong shock is supposed to be induced due to a larger expansion angle, specifically in the initial expansion zone at the internal nozzle exit (ξ=0), subsonic outside-flow exists because of the detached shock wave. The detached shock wave induces the curved shock in the downstream. Therefore, interactions with subsonic as well as with transonic ambient atmospheric flow must be considered even for supersonic flights. The following specific analyses are required, such as sonic flow after shock and interactions of initial expansion angle with subsonic downstream flow behind normal shock, with supersonic downstream flow after both of the strong and the weak oblique shocks.

Subsonic and Supersonic Flow after Shock As seen in hodograph shock polar (Fig. 3.7.4.2.3), for each value of M1 (upstream of oblique shock) there is a certain turning angle δ* (turning angle for which flow downstream of shock is sonic, and δ* is calculated from Eqs. 3.7.4.2.8 and 3.7.4.2.11). If the angle is smaller than δ*, then, the flow downstream of the shock is exactly supersonic. There exists also δmax (δmax is calculated from Eqs 3.7.4.2.8 and 3.7.4.2.10), maximum turning angle for oblique shock. The relation between δ* and δmax is such that δ* is always less than δmax. However, for the air of γ=1.4, δ* does not differ from δmax by as much as 0.5 degrees over the entire range of Mach numbers from unity to infinity. This means that, except in a very narrow range, the flow behind a weak shock is supersonic and the flow behind a strong shock is subsonic. If the turning angle of the supersonic flow is larger than δ*, it induces a strong shock. 

From the geometry of the hodograph shock polar, and with the Rankine-Hugoniot equations, we can easily obtain the turning angle δ* across shock for the up-stream Mach number. From the oblique shock relations, it may be seen furthermore that the pressure rise across such a shock is substantially the same as that across a normal shock. Thus we have the approximate rule that strong shocks induced due to the interference for the initial nozzle exit expansion angle αe>δ* are nearly equivalent to normal shocks. That is, the interference should be dealt with the subsonic flow behind the normal shocks. It must be noted that the subsonic flow behind a strong oblique shock can not be treated as irrotational. However, if we assume a normal shock instead of a strong oblique shock, the subsonic downstream flow may be dealt with as irrotational, which gives a larger pressure increase to the free jet-boundary.

The larger static pressure of the downstream induces pushing of the free jet-boundary toward the inside, which is different from aerodynamics of a solid body and increases the related exhaust gas static pressure. Then, the expansion angle of the exhaust gas decreases. If the initial expansion angle αe approaches to a value less than δ*, then, the interference changes into that with weak shock. Those will approach to a balancing position, which will be needed iterated calculations. Therefore, interference with subsonic as well as transonic outside flow must be discussed even for supersonic flight problems.

Interaction of Initial Expansion Angle with Subsonic Down Stream Flow behind Normal Shock For the subsonic flow behind the normal shock at the outside of the free jet-boundary, the pressure change of the left-hand side of Eq. 3.8.1.10 is approximately expressed by the use of the Sub-Section 3.8.2.1 Interaction with subsonic ambient atmospheric flow by letting ( )2 instead of ( )∞, because the physical states are described as ( )1 for the upstream, then those of the downstream are ( )2. Accordingly, under the conditions of 
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   The linearized equation of the perturbation velocity components is given by
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  Along the jet-boundary, the slope of the streamline can be assumed to be identical with the slope of the velocity vector, then, the slope of the free jet-boundary to the mainstream axis is approximately given by
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The partial derivative of Eq. (3.8.2.3.2) can be rewritten by referring the irrotational assumption for the subsonic flow behind the normal shock as 
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Substituting Eq. (3.8.2.3.4) into Eq. (3.8.2.3.2) gives
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The pressure difference along the jet boundary is expressed for subsonic ambient atmospheric free flow behind the normal shock as
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   Substituting Eq. 3.8.2.3.6 into Eq. 3.8.1.10 gives
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   For a given condition such as ζ1(ξ), p05, M5, γ5, p∞, M∞, and q∞, where the state of ( )2 can be easily obtained by normal shock relations, then, five dependent parameters of ζ2(ξ), θξ, Mξ, pξ, and (Δp∞)jet-boundary are numerically integrated by five Eqs. 3.8.2.3.6, 3.8.2.3.7, 3.8.1.6, 3.8.1.7, and 3.8.1.11 with respect to ξ with initial condition of Eq. 3.8.1.1, i.e., the shape of the free jet-boundary of the external nozzle mainstream flow and the pressure difference along the jet-boundary under the downstream subsonic flow behind normal shock around the exit of the internal nozzle. It must be noted that the initial expansion angle given by Eq. 3.8.1.1 must be firstly the expansion to the atmospheric pressure. However, the expansion becomes suddenly in the supersonic flight to the subsonic flow behind the normal shock, which changes the initial expansion angle of Eq. 3.8.1.1. Therefore, iterative calculations are needed to obtain a stabilized solution between the initial expansion angle and the induced subsonic flow pressure behind the normal shock.
Interaction of Expansion Angle with Transonic Down Stream Flow in the Detached Shock Zone The transonic flow around the sonic line in the detached shock zone of the free jet-boundary is very limited area for the free jet-boundary. From a view of the conceptual design phase, the analysis of this kind transonic flow of the free jet-boundary influences neither so much the engine performance nor the aerodynamics of the vehicle. Therefore, we ca neglect this analysis. If one wants to do that, the pressure change of the left-hand side of Eq. 3.8.1.10 is approximately expressed by the use of the Sub-Section 3.8.2.2 Interaction with transonic ambient atmospheric flow by letting ( )2 for the sonic flow instead of ( )∞, and c* by the sonic flow behind the curved shock by the similar analyses as the above described, we can obtain a stabilized shape of the free jet-boundary and the pressure difference of the transonic flow by means of iterated calculations. 

Interaction of Initial Expansion Angle with Supersonic Down Stream Flow behind Oblique Shock If the initial expansion angle is less than the critical deflection angle of the oblique shock relations such as αe<δ*, and further the assumptions of the super sonic linear theory are violated, then, the outside free atmospheric ambient flow can be described by the oblique shock relations. Therefore, a stabilized initial expansion angle can be obtained by the similar iterated calculations as previously stated. If the successive calculations are required the same conditions such as violation of the supersonic linear theory, the analyses are performed by the same procedure.   

Interaction with Supersonic Ambient Flow At the successive numerical calculations, if αe-θξ>δ*, the previously stated normal shock relations are applied by iterating the calculation for obtaining a stabilized direction of flow of the jet-boundary θξ. On the other hand, if αe-θξ<δ* and the perturbation velocities violate the assumptions of the supersonic linear theory, the oblique shock relations will be applied to the jet boundary. If the assumptions of the supersonic linear theory are satisfied, the following two-dimensional linear approximation is applied to the jet-boundary. It must be noted here again that the iteration procedure is also required to obtain a steady-state local equilibrium condition between expansion of the exhaust gas flow and interference with the external ambient atmospheric supersonic flow, exactly similarly as previously stated for obtaining the initial expansion angle αe.

In this section, we shall discuss an approximate method which applies to two-dimensional, supersonic flows which are everywhere shock-free and irrotational and in which there are only small perturbations from a uniform, parallel flow. It is true that most supersonic flows include shocks, but, the entropy changes across weak oblique shocks are so small that may often be disregarded.

Assuming that the flow is two-dimensional, irrotational, and isentropic, and that there are only small perturbations fro a uniform, parallel along the ξ-axis, we may follow exactly the procedure for subsonic flow. Under the following assumptions:
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We arrive at the same linear approximate differential equation for supersonic flow as (3.7.4.1 Linear Theory of the Supersonic Flow)
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where φ is the perturbation velocity potential. The perturbation velocity components are given by
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   In supersonic flow still another restriction appears, namely, that the Mach number may not be too high. Although no definite upper limits can be given, it seems clear from the prescribed assumptions that for practical purposes the maximum allowable magnitude of M∞2 is about ten. Or, more precisely, since u/V∞ and v/V∞ are of the same order of magnitude as the thickness ratio of δbody of thin bodies, we may say that the linearized theory may be used as M∞2δbody is small compared with unity. The interaction of this section deals with the jet-boundary, which tends to thicken the vehicle thickness ratio, specifically in high altitude flight. 

   In order to calculate the relation between the change in pressure and the change in directions as the streamline crosses a region where there are pressures waves; the pressure change on the jet-boundary is approximately given by the linearized supersonic differential equation of Eq. 3.8.2.3.9 as 
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In order to obtain (Δθξ), substituting Eq. 3.8.2.3.11 into Eq. 3.8.1.10, the numerical integration of the jet-boundary under the condition of supersonic ambient atmospheric flow can be performed by the same method for the subsonic and transonic flows of the previous sections.

3.8.2.4 Interaction with hypersonic ambient atmospheric flow
As stated in the previous section, the supersonic linearized theory is only applicable to the condition of M∞2δbody<1. Therefore, the linearized equations for velocity potential are not valid for very large Mach numbers. Indeed, the pressure coefficient varies nonlinearly with thickness ratio and angle of incidence, as compared with the familiar linear laws for thin two-dimensional bodies at moderate supersonic speeds.

   Some of the general features of hypersonic flow may be grasped from a qualitative examination of the exact relations for isentropic flow, Prandtl-Meyer flow, and oblique shock waves. When the Mach number is very large, the speed is very near the maximum speed correspondingly to the stagnation temperature. If the flow is disturbed by a body, the speed of the fluid remains almost unchanged, but the local speed of sound undergoes large changes. The Mach angle is extremely small, and hence the Mach waves tend to follow the surface of the body. Likewise, oblique shock waves make a very small angle with the flow and thus tend also to follow the surface of the body. Referring a flat plate at incident theses considerations give rise to the concept of a hypersonic boundary layer near the surface; within this layer there is confined at the fluid which has been affected by the presence of the body.

   Since the pressure rise across the shock at high M∞ is very much larger than the pressure decrease across the Prandtl-Meyer expansion, as an approximation it may be assumed that there is a vacuum on the upper side of the plate. On the lower side the oblique shock nearly coincide with the plate surface. That is Newton’s corpuscular theory of fluid dynamics. From momentum considerations alone, and assuming that the magnitude of the fluid velocity is substantially unchanged, Newton’s theory yields 
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The initial expansion angle, αe, for the hypersonic ambient atmospheric flow, is supposed to be stabilized similarly as for the supersonic flow. In order to obtain (Δθξ), substituting Eq. 3.8.2.4.1 into Eq. 3.8.1.10, the numerical integration of the jet-boundary under the condition of supersonic ambient atmospheric flow can be performed as the same method for the subsonic, transonic, and supersonic flows of the previous sections.
3.8.3 Lift and Drag Due to Nozzle Exhaust Gas Flow
In the previous sections, the jet-boundary of the nozzle exhaust is dealt with two-dimensional flows. However, the geometrical shape of the engine internal nozzle exit is generally rectangular with a large aspect ratio. If the two-dimensional free jet-boundary is assumed for the lateral direction, the previously discussed methods will be also applicable to describe η1(ξ) of Fig. 3.8.2, whereη1(ξ) designates the lateral expansion length from the engine side exit. However, the actual free jet-boundary is three-dimensional as shown schematically in Fig. 3.8.2 by the dotted line. In the process of describing the free jet-boundary, if we assume a rectangular expansion surrounded by a double-dotted line (this expansion is larger than the actual one), Eq. (3.8.1. 5) can be expressed as
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where bN is the width of the engine internal nozzle exit.

   Because
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Eq. 3.8.3.1 can be approximately expressed by
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   Then, referring Eq. 3.8.1.6, the two-dimensional free jet-boundary can be applicable to the schematic three-dimensional one, however, this method describes a little over expansion flows.
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 can be calculated similarly by the methods of the previous sections. The concerned problem of the free jet-boundary of the nozzle exhaust gas is mainly the calculation of aerodynamic forces due to the free jet-boundary. This quasi three-dimensional method will give a little higher value only for drag calculation, relevant to the free jet-boundary, specifically in the high flight speed region in a higher altitude. Therefore, the presented method will be useful for a conceptual study, because an over estimated drag is taken into account for the single-sided nozzle. The accuracy of the above stated method, however, should be calibrated by the CFD and further be modified by validating through experiments.
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Fig. 3.8.2 Schematic cross-section of external nozzle exhaust gas flow
If a symmetrical expansion is assumed for the side-jet-boundary, the interaction between side-jet-boundarys and free-stream-airflow does not induce any lift force. Then, the lift force component acting to the external nozzle is expressed by the following integration of the local pressure difference (Δp∞) such that the under part of the free jet-boundary minus the over surface of the external nozzle as
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             (3.8.3.4)  

where Δp is the pressure difference vector acting to the local surface and k is the unit vector in the z-axis.
The integration of (Δp∞) for drag force component is, however, different from the lift force. The integration between side-jet-boundary and free-stream-air-flow induces drag force. Therefore, assuming a rectangular expansion for the drag component
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where i is the unit vector in the x-axis.
3.8.4 Numerical Examples
   Two cases of numerical examples3.8.2 are shown in this sub-section. The supersonic exhaust gas flow of the ARCC engine is required a variable geometry type internal nozzle for subsonic, transonic, and low supersonic flights. Even if a variable geometry type internal nozzle is used for these low flight speeds, the expansion of the exhaust gas is not as large as realizing the so called “full flow” of the pure rocket nozzle because the ambient atmospheric pressure is not so low for the stagnation pressure of the ARCC engine exhaust gas flow. Considering that the velocity of the exhaust gas flow is very high because of its high temperature compared with the ambient free atmospheric speed, a variable geometry internal nozzle can not be expected to improve not so much the nozzle efficiency. Therefore, only a higher supersonic flight and hypersonic flight are calculated as examples according the previously described approximate methods, where both of nozzle-exhaust gases are supersonic. It must be noted that the start of the supersonic combustion of the ARCC engine is earlier than the conventional SCRAM jet engine because of the ejector effect of the rocket engine plumes in the ARCC engine as stated in the 2.9 Performance of an ARCC Engine by Numerical Calculation. Here, the geometry of engine exit is assumed to be rectangular such as the engine height=1166.67 mm and the width=20137.40 mm, i.e. the aspect ratio is very large as 17.26, so that the previously stated two-dimensional approximate analysis is applicable. Table 3.8.4.1 and 3.8.4.2 show operating conditions of the vehicle and the ARCC engine for supersonic and hypersonic flights, respectively. Fig. 3.8.4.1 shows the free jet-boundary versus external nozzle wall for a supersonic flight. Fig. 3.8.4.2 shows pressure ratio of the internal to the external flow along the jet-boundary for the supersonic flight. Fig. 3.8.4.3 shows pressure coefficient at the free jet-boundary for the supersonic flight. 

                    Table 3.8.4.1 Supersonic flight and engine conditions    
	Operating Conditions
	    A
	     B
	     C

	z        (km)
	   19.640
	   19.640
	   19.640

	M∞
	    4.41
	    4.41    
	    4.41

	q∞      (k Pascal)
	  80.0
	  80.0
	   80.0

	α       (degrees)
	    0.0
	    5.0
	    0.0

	O/F
	    5.0
	    5.0
	    5.0

	Pc       (atm)
	   80.0
	   80.0
	  120.0

	M5
	   1.27
	   1.27
	   1.34

	Po5       (atm)
	   3.43
	   3.43
	   3.63

	T5        (Kelvin)
	 1352.9
	   1352.9
	   995.7

	γ5
	   1.119
	   1.119
	   1.306

	αe      (degrees)
	   63.7
	   63.7
	   51.2


                     Table 3.8.4.2 Hypersonic flight and engine conditions    

	Operating Conditions
	    A
	     B
	     C

	z        (km)
	   32.06
	   32.06  
	   32.06 

	M∞
	    8.50
	    8.01
	    8.50

	q∞      (k Pascal)
	  45.0
	  40.0 
	  45.0 

	α       (degrees)
	    0.0
	    0.0
	    5.0

	O/F
	    5.0
	    5.0
	    5.0

	Pc       (atm)
	   30.0
	   30.0
	   30.0 

	M5
	   2.21
	   2.06 
	   2.21  

	Po5       (atm)
	   4.90
	   3.59 
	   4.90 

	T5        (Kelvin)
	913.4
	  920.1
	 913.4

	γ5
	   1.280
	   1.283  
	   1.280  

	αe      (degrees)
	   45.2
	   46.3
	  45.2


   Fig. 3.8.4.1 shows that the effect of the angle of attack is large for the shape of the jet-boundary (the case B). The effect of the combustion pressure of the rocket engine is not so little because the full flows are not established for the case A and C. The larger combustion pressure of the rocket engine pc gives a shorter expansion flow. The stagnation pressure of the exhaust gas stream at the station 5, po5, does not increase so much as the increase of the combustion pressure of the rocket engine.

   Fig. 3.8.4.2 shows the pressure ratio of the internal to the external at the free jet-boundary of the nozzle external expansion flows, where only the case of B forms full flow while the other cases of A and C approach to the ambient atmospheric pressure before the full length expansion of the external nozzle wall. The angle of attack of the vehicle (the case of B) makes the external air stream to compress more the free jet-boundary toward the inside of the exhaust gas stream, which tends to suppress the expansion of the exhaust gas stream. The cases of A and C show that the free jet-boundary disappears in the middle points of the external nozzle wall. The case of C shows an early disappearance of the free jet-boundary. The author supposes that this may be due to the higher specific ratio of the case C compared with that of the case A. This is because high pc increases monatomic gas of hydrogen for LO2/LH2 rocket with fuel rich such as O/F=5. The larger specific heat ratio of the stream decreases much more the static pressure for an area change of 
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. After the disappearance of the free jet-boundary, the mixing will be a major mechanics between exhaust gas stream and external ambient atmospheric flow. For each case of A and C, the velocity of the exhaust gas stream is much higher than that of the ambient atmospheric flow. The exhaust gas stream will decrease the core-flow-area by decreasing the momentum through turbulent shear/mixing layer due to the friction, though, keeping the velocity of the exhaust gas stream and the static pressure. This may be a problem of the nozzle efficiency; however, the aerodynamics for a vehicle has little to do with. 
   Fig. 3.8.4.4 shows the free jet-boundary versus the external nozzle wall for a hypersonic flight. Fig. 3.8.4.5 and Fig. 3.8.4.6 show pressure ratio of the internal to the external flow and the pressure coefficient along the free jet-boundary for the hypersonic flight, respectively. The operating conditions of this hypersonic flight are shown in Table 3.8.4.2.  Fig. 3.8.4.4 shows that the effect of the angle of attack is also large for the shape of the free jet-boundary in hypersonic flight (the case of C). The effect of the flight dynamic pressure is little for hypersonic flights. Fig. 3.8.4.5 shows that the nozzle exhaust expansion stream form full flow conditions for three cases. This may be because of the very low atmospheric pressure for these hypersonic flights. The pressure coefficient along the free jet-boundary is important to estimate the aerodynamics of the propulsive lifting body. Figs. 3.8.4.3 and 3.8.4.6 show those data versus the external nozzle wall for the subsonic and the hypersonic flights, respectively. Those data show very low values for every case of Tables 3.8.4.1 and 3.8.4.2. However, very high values appear only in the limited area where is very close to the exit of the internal nozzle, i. e., at the stabilizing of shocks of the initial expansion. It shows, for hypersonic flights, that there exist frequently very small compressions and expansions along the free jet-boundary to the exhaust gas flow. This phenomena might be due to the Newton’s corpuscular theory of fluid dynamics, which assumes that there is a vacuum for the Prandtl-Meyer expansion at where the inclination of the jet-boundary to the free hypersonic air flow is negative such as dζ2/dξ<0. This effect, however, will not influence so much the aerodynamics of the propulsive lifting body, however; it pushes the center of aerodynamics backward of the vehicle.
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Fig. 3.8.4.1 Nozzle free jet-boundary for supersonic flight
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              Fig. 3.8.4.2 Pressure ratio along free jet-boundary for hypersonic flight
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                Fig. 3.8.4.3 Pressure coefficient at the free jet-boundary for supersonic flight
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                    Fig. 3.8.4.4 Nozzle free jet-boundary for hypersonic flight
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                Fig. 3.8.4.5 Pressure ratio along free jet-boundary for hypersonic flight
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            Fig. 3.8.4.6 Pressure coefficient at the free jet-boundary for hypersonic flight

Chapter 4
FLIGHT PERFORMANCE and ATTITUDE CONTROL

4.1 Introductory Remarks

   The conventional aircraft performance is usually described firstly for the cruising and subsequently for the ascent, turning, and takeoff and landing. While that of the rocket is usually described for the mission capability, trajectory, guidance and control as the space transportation system (STS). Because the energy management is most critical issue for the rocket system, a reference trajectory is determined to the mission orbit before launching, then, the guidance and control is required to correct errors due to the disturbance from the reference trajectory. The vehicle of this book is a STS, therefore, the flight performance should be described similarly as those of rocket powered STS. However, an ARCC engine powered vehicle requires a moderate flight dynamic pressure for the engine. This means that the ascent trajectory of the concerned vehicle is quite different from those of rocket powered STSs. The vehicle performances of cruising and turning are required only for transportations such as between takeoff site and the initiation of acceleration toward the mission orbital plane (change of the flight direction). Those are excluded as well as the returning flight analysis to the landing site after re-entry into the atmosphere is over, for the ARCC engine powered vehicle. In this chapter, the ascent flight performance is mainly described.

   The flight performance of an ARCC engine powered SSTO vehicle is measured by the payload capability to the mission orbit. It is related to the trajectory analysis from the takeoff to the mission velocity. That is, the space transportation system is a continuous accelerator powered by an airbreathing power-plant, overcoming the induced aerodynamic drag. The vehicle has, however, limitations of the aerodynamic load (flight dynamic pressure) and the axial acceleration of the vehicle. The maximum dynamic pressure limit is based on structural strengths of the vehicle, which is directly related to the so-called load factor of an aircraft (lift-force/vehicle-weight) and to aeroelastic flutter. The aero-elasticity and flutter is, however, not treated in this book. The limit of the axial acceleration is determined by the admittable value for payloads and most stringently for the crew. The guidance of the ascent trajectory becomes very important, however, it is a little different from that of the rocket powered STS. The vehicle is required a moderate dynamic pressure for the airbreathing engine along the ascent trajectory, which is performed by controls of the attitude of the vehicle and the thrust generated by the engine. The flight trajectory analysis is stated in the following section. The attitude control is recommended to be performed only by control surfaces of the wing, because the control of the body flap interferes with the nozzle exhaust gas flow. The thrust level is determined by engine parameters such as the O/F, the pressure of the rocket engine combustor for an ARCC engine, and the total pressure of the incoming air flow which is deeply related with the flight dynamic pressure and the attack angle of the vehicle. The attitude control dynamics is stated in the 4.3 Section of this chapter.

   The takeoff performance determines the takeoff distance. The hypersonic vehicle requires generally longer takeoff distance with a higher takeoff speed. The higher takeoff speed induces easily a higher dynamic pressure ascent trajectory in a lower altitude, which tends to violate the limitation of flight dynamic pressure. The method of takeoff analysis was written in the former Chapter 3.4. The more detailed analysis is described in the 4.4 Section of this chapter for a combined configuration of a winged propulsive lifting body. The measures of flight performance are stated for an ARCC engine powered spaceplane in 4.5 Section. The final injection into the mission orbit is stated in 4.6 Section.

4.2 Flight Trajectory Analysis

   Flight performance of an ARCC engine powered SSTO vehicle is mainly described by the acquired velocity vector V of the vehicle at an altitude with range (down- and cross-range) from the takeoff site by means of the ARCC engine thrusting. If the flight speed is less than supersonic speeds, the motion equations can be described by the orthogonal two-dimensional coordinates system in a vertical plane to the horizon as the conventional aircraft. If the flight speed is subsonic, the turning motion is required depending on the geographical location of the takeoff site because the mission azimuth should be confirmedly acquired during subsonic flights before starting the acceleration maneuver to the mission orbital plane. The cross range should be treated with as a cruising vehicle during the turning motions, and it is a subsidiary problem in this book. As stated previously, the mission performance of the ARCC engine powered SSTO vehicle is finally measured by the payload capability at the final point to inject the vehicle into the mission orbit by means of rocket firing. That is, the flight performance of an ARCC engine powered SSTO vehicle is measured by two phases. The first is the acquired velocity vector V and the altitude by means of the ARCC engine thrusting. The second is the final payload capability to the mission orbit via orbital transfer by means of the conventional rocket firing. If the flight speed is the higher at the final injection point, the required mass of the rocket propellant becomes the smaller, i.e., it increases the payload capability. When the flight speed becomes hypersonic, the centrifugal force of the vehicle (so-called the Sanger term) can not be neglect in the motion dynamics compared with the earth gravity in those flight speeds, and the motion should be described simultaneously by the geocentric coordinates system for preparing the orbital transfer by means of the rocket firing, specifically the true anomaly and the altitude are concerned issues at the end of the ARCC engine thrusting. In this book, the earth’ rotation is neglected for simplicity, and the atmosphere is treated as stationary.

4.2.1 Translational Motion

4.2.1.1 Subsonic, Transonic and Supersonic Flight The translational motion equations of an ARCC powered SSTO vehicle are described by exactly as those of an aircraft under supersonic flight speeds. The vehicle is replaced by a set of mutually perpendicular axes with their origin at the vehicle’s center of gravity and the vehicle mass is treated as is centered at the point (so-called the centered mass) in the translational motion equations. 
   The translational motion equations in a vertical plane (Fig. 4.2.1) are given by as
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Where
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Where x is the down-range, z is the altitude, and, α and γ are angles of attack and the flight path to the local horizon, respectively. 
   The turning motion of the spaceplane is recommended to be performed under the conditions of equilibrium such that the countering forces are balancing and both angles of α and γ are equal to zeros, then the equations in a horizontal plane (Fig. 4.2.2) are given by as
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where φ is the angle of bank, and rt is the turning radius. The required aerodynamic coefficients and thrust are calculated from Chapter 2 and Chapter 3, respectively. 

   The cross-range should be calculated after the turning maneuver is over, for obtaining the mission azimuth angle, by the perpendicular from the new position to the original direction line. 
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                 Fig. 4.2.1 Forces acting to the vehicle in a vertical plane

4.2.1.2 Hypersonic Flight
The translational motion equation of an airbreathing engine powered SSTO vehicle should be described by adding the centrifugal force to Eq. 4.2.1.1.2 in the hypersonic flights, as following.   
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where rg is the radius of the earth and the Equatorial radius is 6378.140 km.
   In order to prepare the final injection into the mission orbit, the geocentric coordinates system should be prepared as a reference, those are described as followings. The geocentric radius r and the true anomaly θ are given by referring to Fig. 4.2.3 as
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[image: image818]
Fig. 4.2.2 Forces acting to the turning vehicle


[image: image819]
Fig. 4.2.3 The geocentric coordinates and the true anomaly

4.3 Attitude Control Dynamics
   The attitude control dynamics is usually described by the body axes (ξ,η,ζ). In this section, the ξ-axis is taken to be parallel to the thrust line of the ARCC engine (see Fig. 3.2.2). The η-axis is in the span-wise and the ζ-axis is the vertical. Equations of the rotational motion are generally given by the six equations under the assumption of the rigid body. For an airbreathing powered SSTO vehicle, however, the highly complicated maneuverability is not required specifically during the ascent powered flight. Therefore, in this book, the following three equations can describe simply the attitude control dynamics in the two-dimensional motions (refer to Fig. 4.3.1) as
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Where u and w are velocity components of the ξ-axis and ζ-axis, respectively, and q is the pitching angular velocity. Fξ, Fζ, Iη, and M are the axial force, the perpendicular force to the vehicle axis, the moment of inertia around the η-axis and the pitching moment around the center of gravity, and those are given as
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It must be noted that the Iη is different between flight conditions of the gears-down and the gears-up. The center of the gravity (c.g) is moving due to the consumption pf the propellants and the center of the aerodynamics (c.a) is moving a little much during the flight specifically depending on the flight Mach number, which are very different compared with the cruising condition of the conventional aircraft such as α≈0, γ=0 and L=mg. Where c.a is the center of aerodynamics and c.g is the center of vehicle gravity, respectively.

   For the hypersonic flight, the centrifugal force should be added to Eqs. 4.3.4, 4.3.5, and 4.3.6 as
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[image: image830]
Fig. 4.3.1 Body axes and longitudinal moment

4.4 Dynamics of Takeoff

   From Fig. 4.4.1 and referring Chapter 3 Section 3.4, the dynamics during head-down ground running is described as
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where Ff-nose and Ff-main are friction forces of the nose-gear and two main-gears, respectively. The coefficient of the friction is listed versus types of the ground surfaces (see Table 3.4.2). 

   When the vehicle approaches to some level of the running speed, there may be a situation such that the nose-gear is off from the ground; however, the main gears are still on the ground. This is called the head-up ground running (Fig. 4.4.2). The dynamics during head-up ground running is described as
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During the head-up ground running, however, the stability of the vehicle’s rotation around the main-gears axis should be carefully checked. After the whole gears are off the ground, the takeoff analysis can be performed as the Section 3.4 Takeoff and Landing.


[image: image833]
Fig. 4.4.1 Forces during head-down ground run
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Fig. 4.4.2 Forces during head-up running

Chapter 5

FLIGHT PERFORMANCE OF AN ARCC ENGINE POWERED SSTO VEHICL

5.1 Introduction

   The author has published research papers of the airbreathing rocket combined cycle (ARCC) engine5.1-5.3 and concerning with the performance of the ARCC engine powered vehicle for a single-stage-to-orbit (SSTO) capability5.4,5.5. The first paper5.4 of the ARCC engine powered SSTO vehicle had the problems due to deficiencies both of the engine and the flight simulation computer programs. The ARCC engine has various so-called ram-modes during supersonic flights. In the early phase of the ram-modes, the normal shock stands in the forward location of the engine. If the flight speed increases the location of the normal shock moves toward the downstream direction. If the normal shock stands firstly behind the Mach disk of the rocket exhaust gas flow, the stability problem of the Mach disk location is induced because of the pressure disturbance in the downstream, however; which changes the location of the Mach disk. In order to take into account the stability of the Mach disk, much sophisticated programming techniques were required for the engine performance computing program. Therefore, the first engine computer program5.1 was skipped some of them, which induced the requirement of the assistance of the external rocket engine during the supersonic flight as the Orbital Maneuvering Engine (OME) of the U.S. Space Shuttle in the reference5.4. Another critical problem was that due to the balances between the required thrust levels and the induced aerodynamic drags during takeoff, subsonic, supersonic and hypersonic flights, therefore; variable rocket nozzle throat was temporarily adopted to obtain a balanced thrust level to the generated aerodynamic drag. Those problems were solved by improving the ARCC engine performance computation program and by increasing the number of multi-strut-rocket in the reference5.5, however; which still had a problem of the required thrust level during the supersonic flight for a constant configuration ARCC engine because of the balance between the required thrust level and the aerodynamic drag.

   The trade-off between the vehicle volume and the slenderness is very critical issue for an airbreathing engine powered SSTO vehicle. The airbreathing engine powered SSTO vehicle is required hydrogen fuel because of the highest calorific value and of the highest thermal conductivity, however; the specific volume is the highest among the other fuels. This means that the airbreathing engine powered SSTO vehicle is required a large volume for the vehicle (Kuchemann tau). The airbreathing engine powered SSTO vehicle should flight from subsonic to hypersonic through transonic and supersonic regions with a reasonable flight dynamic pressure, which induces a very large aerodynamic drag specifically during transonic and supersonic flights. Therefore, the vehicle is required a smaller slenderness for the configuration. The designer should find an optimum solution for these mutually contradictory requirements. The second paper5.5 of the ARCC engine powered SSTO vehicle had the problem of the slenderness. The large aerodynamic drag of the body is tentatively solved by the use of the modified model to the curved shock area of the vehicle head as in the hypersonic flow by the use of the modified Newtonian model. The result showed the required reduction level of the vehicle slenderness, which also suggested an enable configuration of an ARCC engine powered SSTO vehicle. This chapter is the result of flight simulation calculations for the newly designed ARCC engine powered SSTO vehicle.

5.2 Design Process of a Numerical Vehicle by Means of Flight Simulation

   Fig. 5.2.1 shows the design procedure of a numerical vehicle for the ARCC engine powered SSTO vehicle by means of flight simulation computations. The mission goal is shown in Table 5.2.1 of which objectives are tentatively defined in this chapter to be almost equivalent to those of the U.S. Space Shuttle5.6 for transporting the crew and payloads to the ISS (International Space Station). However, the vehicle size is aimed to be equivalent to those of the current Jet Liners class as TOGW (Take-Off Gross Weight) and the onboard fuel mass ratio to the TOGW (fuel mass fraction) supposing the use of the conventional airports. The TOGW of the maximum Jet Liner Boeing 747-4005.7 is 362,875 kg and the fuel mass fractions of the CONCORDE Supersonic Transport5.8 and the Boeing 747-400 are 51.34 % and 50.124 %, respectively. Here it must be also noted that the lift-off gross weight of the all rocket powered Space Shuttle is 2,040,000 kg. 

Table 5.2.1 Mission goal to the ARCC engine powered SSTO vehicle
	Mission orbit
	Both ways to ISS

	TOGW
	< 360,000 kg

	TO distance over 50’
	 < 1,500 m

	TO speed
	 < 140 m/sec

	Crew size
	  >5 persons

	Payloads
	  > 20,000 kg

	Permissible max. dynamic pressure
	  < 1 atm.

	Permissible max. axial acceleration 
	  < 3 g

	Propellants mass fraction at TO
	  about 50 %

	Residual propellants+Contingency at re-entry into the atmosphere
	  about 10 %


   The crew size is tentatively decided to be more than five because that of the Space Shuttle is seven. The current payload capability of the Space Shuttle Orbiter is less than 20,000 kg; however the goal of this chapter is set to be more than 20,000 kg. The permissible maximum axial acceleration (ξg) should be determined from the view of the crew safety, this is defined exactly same to the value of the Space Shuttle.

   The permissible maximum dynamic pressure is closely related with the limited load factor of the aircraft. The current aircraft is generally designed for maximum q limits of about 85 k Pa5.9. The limited load factor increases for the higher dynamic pressure. Some of the military aircrafts are designed for the very high dynamic pressure. The flight dynamic pressure is however important for the thrust generation of the ARCC engine, therefore; a higher maximum dynamic pressure is tentatively determined for the ARCC engine powered SSTO vehicle of this chapter.

   The takeoff distance over 50-foot5.10 is referred to those of the conventional Jet Liners. The higher takeoff speed requires not only a longer takeoff distance but also easily produces a higher flight dynamic pressure during the successive subsonic ascent flight, which induces a guidance and control problem to the vehicle. A shorter takeoff distance is set as well as a lower takeoff speed, which requires a larger area of each wing. 

   The design procedure of a numerical vehicle is shown in Fig. 5.2.1 by block diagrams, which can be performed in a personal computer. The first step is to give various numerical values of a lifting body, from which one can calculate the volume, the surface area, the center of gravity and the slenderness. The volume determines sizes of the crew compartment, the payload compartments, the LOX tank volume and the LH2 tank volume, which calculate the crew payload, the payloads, and propellants weights. The surface area determines the vehicle dry and empty weight, and the ARCC engine size. If the ARCC engine size is determined, an optimal pitch length between the struts should be obtained by the iteration method. The optimum pitch length between the struts is described in 2 AIRBREATHING ROCKET COMBINING CYCLE Engine. 

Assuming wing planform, if the attaching points of the wing lead and the trail of the root chord are given, the numerical wing gives area, the center of aerodynamics, and the control surface. This process is exactly applied to the vertical tail. When the first estimate of the weights of the body, wings, and the ARCC engine are obtained, the weight of the landing gear can be estimated based on the first estimate, then, the first estimate of the takeoff gross weight (TOGW) is finally obtained after iterated calculations. The estimate of the landing gear weight is stated in 5.4 Weight Estimation of this chapter.

   When the first estimate of the TOGW is obtained, the designer can check the static stability of the vehicle, wing loading of the takeoff, and thrust levels for the takeoff before starting the takeoff analysis. We have to check these data and redesign the numerical vehicle by going back to the first step. After repeating the redesigning process, we may go to the process of the takeoff analysis where we calculate the takeoff distance and the takeoff speed with supports of aerodynamics. The output of the takeoff analysis should meet the requirements of the mission goal.

[image: image835.wmf]
Fig. 5.2.1 Design procedure of a numerical vehicle by means of flight simulation
   After the takeoff is successfully performed, the guidance and control strategy is necessary to the whole flight path through subsonic, transonic, supersonic, hypersonic flight, and final injection of the vehicle into the mission orbit. The guidance strategy is to give an optimum ascent flight path with effective accelerations of the vehicle and sometimes with coasting flights under the constraints given to the vehicle. The optimum ascent flight path is the one with a minimum propellant consumption to the mission orbit. In order to perform the strategy, the control maneuvers are planned to the angle of attack (α) by means of elevon deflection angle (δel), the combustion pressure (pc) and O/F of the rocket engine, and the event times of the ARCC engine on/off for the coasting of the vehicle. The constraint of flight dynamic pressure is very stringent specifically for low supersonic through transonic flights because the lift force becomes lower while the drag force becomes higher during these flight speeds, where the vehicle can not raise the flight altitude and the flight dynamic pressure easily violates the constraint given to the vehicle due to the lower altitude with the larger atmospheric pressure. Therefore, coasting flights are necessary for raising the flight altitude in these flight speeds region, which are very similar to the so-called the “pull-up and dive” maneuver of the supersonic fighter flight. The optimum ascent flight path with a minimum propellant consumption can be evaluated only after the mission goal is achieved. The specific impulse (Isp) or the effective specific impulse (Eisp) of the ARCC engine may be one of the measures to evaluate an optimum path on the way of the ascent flight. However, the system specific impulse (Sisp) is proposed for the measure. Final decision of going to orbital transfer by means of the conventional rocket firing toward the mission orbit is the final ending of the ARCC engine powered flight, which determines the mission capability of the vehicle. Various measures are supposed for the decision making such as levels of the Isp, the Eisp, the Sisp, and the permissible maximum speed limits of the ARCC engine, which will be described in 5.5 Flight Analysis of this chapter.
5.3 An example of the Numerical Vehicle

   The ARCC engine powered SSTO vehicle geometry and the nomenclature are shown in Fig. 2.3.2, Fig. 2.3.3, Fig. 2.3.5, Fig. 3.5.1, and Fig. 3.5.2.Fig. 3.5.1 is rewritten in Fig. 5.3.1 for the reference. Those of the ARCC engine geometry are shown in Fig. 2.3.4, Fig. 2.3.5, and Fig. 3.5.3. Table 5.3.1, Table 5.3.2, and Table 5.3.3 show numerical values which give configuration of a lifting body, wing and vertical tail. Table 5.3.4 shows numerical values of an ARCC engine geometry. All numerical sizes are given by non-dimensional values divided by the body length. Those numerical values were obtained after repeated flight calculations according to the procedure shown in Fig. 5.2.1. The non-dimensional numerical values are very convenient for various parameters to converge toward the mission goal.

The body shape is given simply by ruled surfaces, symmetrical about the longitudinal axis (ξ-axis), for the purpose of conceptual study. If the cross section and the camber are given along the vehicle axis by numerical functions as ruled surfaces, the body surface can be easily calculated by methodology of differential geometry for the local tangent, normal, and binormal vectors, surface area, planform area, sectional area, and sectional volume. Those values will be used for calculations of mass distribution, inertias of momentum, and aerodynamic forces. The side lines connecting the local span are tentatively drawn by strait lines. This is a simplified configuration specifically for conceptual phases, which will not influence so much upon the vehicle characteristics such as Kuchemann tau, aerodynamics, mass properties, and vehicle dynamics. The Kuchemann tau is defined as a measure of tank volume for low density fuel such that (volume of the vehicle)/(planform area)3/2. Therefore, much more sophisticated curves will be selected in the advanced design phases. Widths of the forward head and body-trailing-edge are determined firstly from point view of the Kuchemann tau; then, it will be optimized from the aerodynamic performances after repeated flight simulations.

Table 5.3.1 Dimensions of the lifting body

	Vehicle length:
	L=70.0  m 

	Head span
	11.164 m

	Body sweep
	86.0 degrees

	Body slenderness
	    0.060

	Planform area
	1,296.5   m2

	Ramp area
	  682.23  m2

	External nozzle area
	  436.00  m2

	Total volume
	3,116.65   m3

	Numbers of struts
	7

	Partition crew/payload1 
	ξpay1=0.152

	Partition payload1/payload2
	ξpay2=0.5275

	Partition payload2/LOX
	ξLOX=0.611

	Partition LOX/LH2
	ξLH2=0.632


   The aerodynamic characteristics of the propulsive lifting body wing complex are closely related with selection of wing profile specifically in subsonic flight. It must be noted that the specified functions of the wing are primarily for assisting the takeoff performance and secondarily for control of vehicle attitude during the ascent flight. The final selection of the wing planform was also after repeated flight simulation; therefore, non-dimensional planform is very important as for the body configuration, based on the body length. If the takeoff performance is primarily issue for the vehicle, the vertical cross sectional shape of the lifting body should be that of the low speed; then, the aerodynamic center of the body would be in rather forward position such as 23-25% for the vehicle length. Therefore, rearward position of the wing leading edge will be better for obtaining static margin for the vehicle specifically during takeoff run. The selection of the vertical wing planform is based on the directional controllability of the vehicle, which purpose is to the final mission orbital plane with associated bank maneuver. Because the required energy for that maneuver is larger for the higher flight speed, that maneuver is recommended during subsonic flights. 

[image: image836]
Fig. 5.3.1 Vertical section view of numerical vehicle

The supersonic problem of the previous study5.5 was solved by redesigning the lifting body shape to be much more slender than those of Table 2.9.1. The original body upper shape is given by bupper (refer to Fig. 3.2.2) by a cubic equation for ξ<ξmax and a polynomial smoothly connecting the curve of the backbone from the maximum thickness to the tail for ξ>ξmax, where ξmax is the location of the maximum thickness of the upper body. The cubic equation is important to describe the curved shock during the supersonic flight which induced a large wave drag to the body. Varying the curvature of the cubic equation a reasonable slenderness was obtained for supersonic flights after repeated flight calculations. The final location of the maximum thickness was determined as 0.40, and the maximum bupper and the camber were given as 0.02935 to the body length and 1/3 to the bupper, respectively. The wing plays an important role specifically at takeoff running because the propulsive lifting body can not produce enough aerodynamic lift force under the condition of the very low dynamic flight pressure. Therefore, the airfoil was selected to have high lift coefficient from the conventional low speed airfoil sections as NACA 4412. The wing trailing edge flap chord ratio was also selected for the longitudinal controllability of the vehicle through the whole flight Mach numbers. The sizes of wings were also determined after repeated flight calculations to perform the assisting functions for the mission flight.
Table 5.3.2 Wing

	Airfoil section
	NACA 4412

	Wing lead location
	ξwl=0.35

	Wing trail location
	ξwt=1.0

	Wing sweep
	44 degrees

	Taper ratio
	0.2446

	Wing area @
	215.193 m2

	Trailing edge flap chord ratio
	cf/c=0.12


Table 5.3.3 Vertical tail

	Wing lead location
	ξvl=0.813

	Wing trail location
	ξvt=0.967

	Wing sweep
	50 degrees

	Taper ratio
	0.2052

	Wing area
	155.738 m2


The pitch length of struts, be, should be selected to optimize the unit ARCC engine performance and the required thrust level for the vehicle during the whole ascent flight by selecting the number of the strut rocket engine units. The side length between the side strut and the engine side wall, bs, should be determined from different point view of the unit ARCC engine, because growths of the boundary layer on the side walls and the active cooling for the side walls are different from the other unit flow. However, a simplified assumption such as bs=be/2 is well applicable for the conceptual phases. The engine height eh is also another important parameter which determines performance of the ARCC engine. If it is higher, the aerodynamic drag increases and design and putting up of gears become more difficult. If it is lower, growths of the boundary layers on the internal engine panels become larger, and then internal losses of the engine become larger. By using the non-dimensional engine height, the optimized engine height can be also selected by repeated flight simulations.
Table 5.3.4 shows values of the numerical engine. The distributor of the rocket engine is the connecting part of oxygen and hydrogen fuel to each injector independently. The injector is composed of many injectors in a form of array, which inject into the rocket combustion chamber. Ignition sub-system should be provided in the distributor and injector part. The engine system requires the other subsystems such as pumps, valves, filters and piping for propellants and coolant, however; these sub-systems can be located rather freely in any places of the engine systems. Because the rocket engine of the ARCC engine does not require very high combustion pressure for the air/rocket-exhaust-gas mixing, then, a gas-generator cycle is recommended. Therefore, pre-combustors are not required, for examples, the LE-7A engine of H2A provides with. Active cooling is supposed for both of strut wall and rocket combustor wall. However; that of the strut wall should be transpiration cooling to the incoming airflow for the very high enthalpy condition, while this of the rocket combustion chamber wall may be grooved wall with thinly plated for regenerative fuel flow. The internal nozzle is also composed of essentially same cooled wall as an extension of the air/fuel combustion chamber; however, that of the single-sided nozzle might be made by heat-resistance metal because of the supersonic divergent flow.

Table 5.3.4 Dimensions of the ARCC engine

	Engine height:
	eh=1.167 m 

	Engine inlet width
	ew=20.265 m

	Forward ramp angle:
	δb= 4.0 degrees

	Half angle of strut head
	δc=4.0 degrees

	Location of head of strut:
	ξei= 0.61874

	Location of end of rocket:
	ξree=0.64374

	Length of rocket
	1.75 m

	Location of engine exit:
	ξee=0.71874

	Length of ARCC engine
	7.0 m

	Length of air/fuel combustion
	   5.25 m

	Pitch length of struts:
	be=2894.6 mm

	Width of 2-dimensional rocket:
	br=116.7 mm

	Throat width of rocket engine :
	bt=11.67 mm

	Expansion ratio of rocket engine:
	3

	Rocket engine combustion efficiency:
	ηrocket=0.70

	Air/Fuel combustion efficiency:
	ηair/fuel=0.70

	Expansion efficiency:
	ηnozzle=0.80


The most different data of the ARCC engine geometry are the engine height and the forward ramp angle compared to the previous one5.5. Both were reduced to smaller values corresponding to the change of the slenderness of the lifting body, respectively, by keeping the required thrust levels during the whole flight Mach numbers.

5.4 Weight Estimation
The structural design of an aircraft is usually performed primarily in the preliminary and detail design phases. Only gross structural aspects are considered in the conceptual design phase. During the conceptual design phase the vehicle size and configuration are changing, as the design converges on the goal. The purpose of this section is primarily to start the designer thinking about structural concepts for effective in the flight simulation by giving appropriate weight distribution to a numerical vehicle. Secondarily, present an ARCC engine powered SSTO vehicle specifically relevant issues concerning with materials and structures specialists to be studied for solving them, because those are far from any conventional rocket’s as well as aircraft’s. However, the basic design will not be different from those of fuselage frame with covered metal sheets, and wing design consisting of heavy cantilever beams. The fuselage frame is made up of metal formers and bulkheads with stringers and longerons running lengthwise along the fuselage. The longerons are similar to stringers but are larger, serving a major structural purpose in that they are designed to take loads. The fuselage frame is usually covered with metal sheets riveted or spot welded to the metal frame. Wing design consists of heavy spars which take the spanwise bending and shear. Metal ribs are spaced along the span in chordwise direction to maintain the airfoil shape. Metal skins are attached to this framework to establish the structure in torsion and provide stiffness. Wing surfaces are usually the build up structures because their available volume can be used for housing fuel, landing gears, and equipment. All of these structural weights are however assumed here to be the equivalent masses of the assumed thicknesses for the corresponding surfaces, respectively, for simplicity in this section. The remainder of the aircraft structure is largely non-structural (secondary structure) in that it consists of fairings, cowlings, fillets, and flap surfaces. These items are made of shaped skin, stabilized by stringers and formers. The selection of materials and design of structures are based on loads to the vehicle. Because the concerned vehicle is an accelerator, the limited axial acceleration should be considered, in this paper, the maximum axial acceleration of the Space Shuttle is referred as a measure, which is 3g, where g is the earth gravity. 

The body of an ARCC engine powered vehicle and wings, however, must be further provided with thermal protection systems (TPS) to almost whole exposed surfaces including the ARCC engine parts and the load structures must be designed for stresses caused thermal extensions due to aerodynamic heating and shrinkages due to cryogenic propellants. Those thermal loads and thermal stresses are different in every parts of the vehicle surfaces. The leading head of the body and the leading edges of wings are most hardly suffered with aerodynamic heating specifically during hypersonic ascent and descent flights. We can select different trajectories for the ascent and descent. Along the ascent trajectory, the ARCC engine requires higher dynamic pressure than a minimum dynamic pressure for a reasonable thrust. In the returning trajectory after the mission is over, weight of the vehicle becomes generally much smaller because of the consumed propellants during the ascent and acceleration to the mission orbit. Along the descent trajectory, therefore, the dynamic pressure will be much lower than those of the ascent flight phase due to low wing loading and low ballistic coefficient of the vehicle.

In the ascent trajectory, specifically during high-speed propulsive flight, active thermal protection systems are required not only to the vehicle head and the leading edges of wings but also to the leading heads of struts and under cowl. The other parts of the body and wings may be provided with passive types as those of the Space Shuttle. The forward ramp might be provided with transpiration cooling by transpiring either of helium, water or liquid oxygen, however, which is best, for the purpose has not been studied yet. The whole surfaces of the engine internal flows are also assumed to be cooled by the transpiration of fuel hydrogen which is best because of high specific heat and assisting the air combustion. Porous cupper-based composite wall is supposed for them. However, for low flight speeds such as the recovery temperature does not exceed the limit temperature of the materials, the transpiration cooling is required only after the end of strut-rockets, because the walls are exposed to the high temperature of rocket exhaust gases and air/fuel combustion gases. In the conceptual phase, assumption of equivalent thickness of appropriate metal is enough for estimation of the first order mass distribution of the vehicle. The TPS of vehicle surfaces are also approximately accounted into thicknesses. 
Table 5.4.1 shows horizontal areas and volumes of each compartments of the body, which show the carrying capacity of the ARCC powered SSTO vehicle. Table 5.4.2 shows the average specific weight of each compartment of the vehicle (refer to Table 3.6.1). Values of compartments for liquid oxygen and liquid hydrogen are those of propellants. The cockpit, electronic instrument, auxiliary powers, air, water, food, crew, and crew’s luggage are supposed to be in the crew compartment. The personal requirement of each crew is assumed to be about 500 kg which includes the personal baggage, drinkables and food for 5 day-stays in the body.
The Payload1 and Payload2 show those of the forward payload and the rear payload, respectively. The forward payload is assumed to have the characteristic feature of light and bulky payload such as solar panels, antennae, masts, satellites while the rear payload is assumed here to have the characteristic feature of heavy and compact payload such as radiation protection walls for human stay in the orbit, water tanks, food supplies, and heavy machine and instrument. This kind of arrangement is easy for adjustment of the center of gravity of the vehicle. The partition walls of Payload2/LOX and the LOX/LH2 are supposed much heavier than those of the Crew/Payload1, the Payload1/Payload2 because of thermal protection system due to the cryogenics. 
Table 5.4.3 shows supposed material and thickness of each part of the vehicle. The surfaces including the forward ramp and the external single-sided nozzle wall and two partitions for cryogenics of the lifting body are supposed to be composed of double sheets with 5 mm thickness aluminum plate considering thermal protection systems for the aerodynamic heating and for the cryogenics, respectively. The external surfaces of the ARCC engine are of double sheets with 10 mm thickness aluminum because of the external and the internal heating. The inner surfaces of the ARCC engine are of double sheets with 8 mm thickness of copper plate considering the transpiration cooling from the coolant jacket wall. The outer and inner surfaces of the strut are also of double sheets with 4 mm thickness of copper plate considering the transpiration cooling to the outer surfaces and grooved walls for hydrogen coolant to the inner surfaces. The external surfaces of two wings and a vertical-tail are supposed to be equivalent to the surfaces of the lifting body. The masses of the injector and the nozzle are estimated by assuming the br/2 length of nickel solid blocks, respectively.

Table 5.4.4 shows the calculated area and the estimated mass at the takeoff. Combining Table 5.4.1 with Table 5.4.4 gives the Kuchemann tau of the vehicle.

Table 5.4.1 Carrying capacity

	Crew compartment area
	 197.07  m2

	Crew compartment volume
	137.51  m3

	Payload1 compartment area
	 486.84  m2

	Payload1 compartment volume
	1,397.30  m3

	Payload2 compartment area
	 108.26  m2

	Payload2 compartment volume
	 418.01  m3

	LOX tank area
	  27.23  m2

	LOX tank volume
	114.85  m3

	LH2 tank area
	477.12  m2

	LH2 tank volume
	1,048.98  m3


           Table 5.4.2 Specific weights of average for each compartment
	Compartment
	Crew
	Payload1
	Payload2
	LOX
	LH2

	Specific weight

(kg/m3)
	60
	  7.78
	  83.2
	1,118/0
	 71


Table 5.4.3 Assumed material and thickness of the plate

	Item
	Material
	Thickness (mm)
	Structure

	Lifting body
	
	
	

	      Surfaces
	Aluminum 
	  5 mm @
	double

	      Partition
	Aluminum 
	  2 mm @
	double

	      Partition for cryogenics
	Aluminum 
	  5 mm @
	double

	      Forward ramp
	Aluminum 
	  5 mm @
	double

	      External nozzle
	Aluminum 
	  5 mm @
	double

	ARCC Engine
	
	
	

	      External surface
	Aluminum 
	 10 mm @
	double

	      Inner surface
	Copper
	  8 mm @
	double

	Rocket strut
	
	  
	

	      Outer surface
	Copper
	  4mm @
	double

	      Inner surface
	Copper
	  4 mm @
	double

	      Injector
	Copper
	 br/2
	solid

	      Nozzle
	Nickel
	 br/2
	solid

	Wing
	Aluminum 
	  5 mm @
	double


Table 5.4.4 Areas and weights of numerical vehicle
	Wing area
	2x215.19      m2

	Vertical-tail area
	155.74      m2

	Total planform area
	1726.9       m2

	Cargo payload1+
	10,872.4      kg

	Cargo payload2+
	34,778.2      kg

	Total cargo payload+contingency
	45,650.6      kg

	Crew payload+avionics+others
	8,250.4      kg

	Engine weight
	25,199.6      kg

	Landing gear weight
	4,705.1      kg

	TOGW
	300,803.0      kg

	Initial propellant weight fraction
	67.44     %

	Initial LOX weight
	128,400.0      kg

	Initial LH2 weight
	74,477.8      kg

	Kuchemann tau
	0.0434


5.5 Flight Analysis

   When an ARCC engine powered SSTO vehicle configuration is given by numerical values as stated in the previous sections, the flight analysis of the vehicle is performed based on aerodynamics, flight dynamics and the guidance and control. Aerodynamics cover subsonic, transonic, supersonic, and hypersonic, however; the concerned vehicle should describe interference of the ARCC engine exhaust gas flow through the single-sided external nozzle with free air flow. Most concerned aerodynamics are supersonic flight and the interaction of the exhaust gas flow with free air flow for the propulsive lifting body, these have been described in the previous chapter in 3.7 Aerodynamics of the Propulsive Lifting Body and in 3.8 External Nozzle Expansion Gas-dynamics and Interaction with Free Air-stream. Flight dynamics and the guidance and control also have been described in 4 Flight and Attitude Control Dynamics. The summarized reviews of them are described in this chapter specifically about the concerned features of the ARCC engine powered SSTO vehicle.

5.5.1 Aerodynamics

   Aerodynamics from subsonic to hypersonic flight is very important not only to evaluate propulsion system especially its effective performance by calculating the drag force and vehicle performance by the lift force for a body, but also attitude control of the vehicle and design of thermal protection systems for aerodynamic heating. Lift and drag data for an aircraft throughout the Mach numbers range of its flight envelope are necessary ingredients for any performance analysis. Moment data, about all three axes, are necessary for stability and control analysis. The working equations, methodology, and a lot of data for estimating wing lift and drag have been published during the 20th century specifically for subsonic, transonic, and supersonic flights5.11-5.14.

   Aerodynamic data for a propulsive lifting body with single-sided nozzle, however, have been studied only by the CFD for a specific supersonic or hypersonic flight condition of a specific vehicle configuration. The CFD, however in the art-of-the-state, can not give a generic performance analysis for conceptual study of the concerned problems of ARCC engine powered space planes. There has been none of generic working equations, methodology, and data for estimating lift, drag, and moments. It is summarized by now such that what the properties should be of the combined flow-field generated volume, lift, drag and propulsion: the nozzle expansion should be interfered with ambient free atmospheric air flow which cannot be utilized also for the provision of volume, drag and lift; and all this should be achieved within a large number of constraints and extra conditions, such as lift, and thrust minus drag, i.e. effective thrust, but also details concerning their distribution over the body. However, useful such a fully-integrated propulsive lifting body may be, the close integration of so many design parameters makes it difficult to establish a general and comprehensive design theory.

As the author has discussed in 3 ARCC Engine Powered Single Stage to Orbit Space Transportation VehiclE, the proposed ARCC engine powered vehicle has a surface of which span-wise is symmetric and ruled ones which are composed by generating lines for each of the upper and under bodies. If, geometrically, a vehicle dimensions in the flight direction are large compared with its normal to the flight direction; and if, aerodynamically, the leading edges lie well within the Mach cone from the apex for the supersonic flight, the slender theory can be applied to flow-field from subsonic to supersonic flights. It must be remembered that the local osculating plane at any point on the prescribed ruled surfaces is composed of unit vectors aξ and aθ, where aξ is the local tangent to the ξ-curve and aθ is the local tangent to the θ-curve on the surface. The normal vector is n is easily obtained by the vector products of the both vectors, which is normal to the ambient air flow direction. The aθ is also the local binormal at the point. That is, aξ and aθ are in the local osculating plane and n is normal to the plane. If the angle of attack is zero, an assumption is made specifically to the concerned lifting body such that there no flows exist in both of the normal and the binormal direction. If the motion of the attitude is kept only in the longitudinal direction and the angle of attack is kept to be small so that the cross sectional flow components of the free air flow to the body axis are negligible, these assumptions are enough for estimation of conceptual performance of an ascending ARCC engine powered SSTO vehicle. Then, the aerodynamics of the vehicle can be described by flow-field deflection on the local surface through any flight Mach number regions; under the conditions of streamlines on the local surface such as 
[image: image837.wmf] and 
[image: image838.wmf]. Here,
[image: image839.wmf] is the velocity vector of the ambient air flow-fields on the vehicle surface. The local normal and binormal vectors are easily calculated by the differential geometry as well as the tangential vector. If the angle of attack is very small, this condition is reasonable for the concerned vehicle because of the requirement of the spaceplane, and the effect of the angle of attack can be easily taken into account by extension of the linear theory.

   The three-dimensional flow-field is easily solved by the linearized differential equation of the velocity potential for subsonic, transonic, and supersonic flows under the assumption of irrotational flow fields. However, shock analysis is required for supersonic flows because of the violation of the linearization. The Newtonian flow model with the differential geometry much easily solves the hypersonic flow. Supersonic flow-field is specifically stated in this section because the trade-off between the volume and the wave drag in the supersonic flow-field is very critical for the viability of an ARCC engine powered SSTO vehicle. 
   Supersonic Flow In a supersonic flow, a detached shock always stands in front of a blunt body. When the shock is detached, it is invariably curved. The curved shock begins at a point in front of stagnation-region as a normal shock, and must gradually weaken until some downstream point. Therefore, the neighboring flows are divided by a sonic line as subsonic flows in the forward-region and supersonic flows in the downstream-region. The estimation of the sonic line and the subsonic flows in the forward-region are required a cumbersome method. 

Oblique shocks tend to occur in supersonic flow because continuous compression waves tend to merge until they form a discontinuity. Normal shocks are only special forms of discontinuities within the fluid. When the velocity is everywhere continuous, regions having different types of flow may be “patched” together only on the characteristic curves. That is, along the characteristic there is no discontinuity in the velocity or any other fluid property, but there may be discontinuities in the derivatives of the velocity or of other fluid properties. When we deal with shocks, however, we are no longer bound by this rule, because we admit the possibility of discontinuities in all fluid properties across the shock line. Hence the shock is also a patching line which joins regions having different types of flow. But it is essential to keep in mind the distinction that the physical characteristics, or Mach lines, are patching lines for continuous flows, whereas shocks are patching lines for discontinuous flows. 

The hodograph shock polar shows that for each value of supersonic Mach number M1 there is a certain turning angle, δ*, for which the flow downstream of the shock is exactly sonic. That is, there exists the strong shock for a larger deflection angle of the flow as δ>δ* and the weak shock for a smaller deflection angle of the flow δ<δ*. This means that the flow behind a weak shock is supersonic and the flow behind a strong shock is subsonic. A strong shock even with small turning angle will have a shock angle of nearly 90 degrees. From the oblique shock relations, it may be seen furthermore that the pressure rise across such a shock is almost the same as that across a normal shock. Thus we have the approximate rule that strong shocks of small turning angle are nearly equivalent to normal shocks. However, the subsonic flow fields in the front region of the sonic line are varied from the normal shock conditions to the sonic flow conditions. Most of the wave drag is produced in this region. Therefore, it is essential to determine the head shape of a lifting body to be conquered the induced wave drag by the ARCC engine thrust for acquiring a reasonable acceleration to the vehicle in this supersonic flight region. Most part of the iterated calculations of Fig. 5.2.1 was carried out during this process to obtain the results of this flight simulation. It must be noted that the subsonic flows of the curved shock down streams are not irrotational. However, the subsonic flow was dealt with as irrotational by extending the irrotationality for the normal shock down stream. The author supposes that this assumption will not have an effect so much on the estimation of the performance of the concerned vehicle.

   The oblique shock wave relations are described for the two-dimensional flow. If we suppose that the bow shock wave generated by a three-dimensional blunt body is an enveloped surface generated by the local oblique shock wave which is generated by the deflection angle of a body surface and, simultaneously, shifted to the upstream due to the detached strong normal shock. When we remind that the concerned body surface is one of the ruled surface, we can assume that the local deflection angle at the point of the osculating plane on the surface defines the local oblique shock wave of which composes an envelope line for the bow shock wave by shifting to the upstream. The detached bow shock wave ahead of the nose is as a normal shock and gradually weakens in the downstream. The sonic line also forms a sonic surface in the bow shock. Here, the author assumes as that the shape of the bow shock wave is approximately similar to the enveloped oblique shock surface shifted to the upstream, which is generated due to the deflection of the shape of the body. That is, the supersonic flow can be approximately determined by the deflection angle on the surface by the oblique shock relations. The distinction of the for- and down-stream between subsonic and supersonic is locally determined by comparing the local flow deflection angle with δ* of the local hodograph shock polar. Where δ* is the local angle for which downstream flow of shock is sonic. For the supersonic flow, oblique shock relations are applied for the flow fields where assumptions of the linear theory are violated.

   External Nozzle Expansion Gas-dynamics and Interaction with Free-Stream The free jet-boundary of the exhaust gas stream interferes with the free ambient air flow-field along the single-sided nozzle flow. The interference was described in the reference5.15 and in 3.8 External Nozzle Expansion Gas-dynamics and Interaction with Free Air-stream of this book for subsonic, transonic, supersonic, and hypersonic free air flow and the pressure coefficient, lift and drag forces along the free jet-boundary. It discussed an approximate method for describing the aerodynamics, which affects the aerodynamic forces of the vehicle. It is two-dimensional analysis. However, aspect ratios of the concerned vehicles are very large; for example, the vehicle has value of 17.37 for the case of Table 5.3.4. This means that the two-dimensional analysis has reasonable accuracies for the conceptual studies.  
5.5.2 Flight Dynamics

   Flight dynamics of the vehicle are described in a vertical plane for the numerical flight simulation. For flights lower than 1000 m altitude, the gears of the vehicle were downed. Those were put back in their places for flights higher than the altitude. The mass properties of the vehicle were taken into account of the consumptions of propellants and coolant for every step of flight time. In the hypersonic flight, the geocentric polar coordinates system was used for preparing injecting the vehicle into the mission orbit by rocket firing. The termination of the ARCC engine powered flight is expressed by the altitude, true anomaly (θ, i.e. from the start point), flight Mach number, and the inclination of the flight path to the local horizontal (γ). The maximum flight dynamic pressure and the axial acceleration to the vehicle are major constraints given to the vehicle, so that q∞<100 K Pa and the vehicle axial-acceleration<3g are kept during the whole trajectory, according to the mission goal shown in Table 5.2.1. The flight trajectory was guided by controlling the angle of attack and the pressure of rocket combustion chamber for keeping the above stated constraints.

The ARCC engine powered SSTO vehicle is an accelerator to the mission orbit so that the vehicle should have the required velocity at the final ARCC engine termination. The acceleration performance of a rocket is generally measured by the specific impulse, Isp. The effective specific impulse taking into account the aerodynamic drag force, Eisp, is used to evaluate the airbreathing engine powered vehicle comparing with the rocket. In this section, the author proposes another kind of specific impulse, which evaluates the vehicle performance for an ascending accelerator by system specific impulse as Sisp. The definition of system specific impulse is as following. Fig. 5.5.1 shows forces acting to a vehicle and the related abbreviations.
   Definition of System Specific Impulses (Sisp)


[image: image840]
　　　　　　　　　　  　　Fig. 5.5.1 Forces acting to a vehicle
In Fig. 5.5.1, lblift, lbdrag are the lift force and the drag force, respectively, acting to the lifting body, where the direction of the forces are different from those of the conventional ones such as wlift and w-vdrag, because the numerical calculations of the lifting body aerodynamics are much more convenient by the use of the body coordinates system. Here, w-v drag designates total drags of the wings and the vertical-tail.

   Then, letting,
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                        cf=(Vcosα)2/(RE+r)                              (5.5.3)
where cf is the centrifugal acceleration and RE is the mean radius of the Earth.

The Eisp and the Sisp are defined by Eq. 5.5.4 and Eq. 5.5.5, respectively.
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where 
[image: image845.wmf]r

m

·

is mass flow rate of the rocket engine propellants, and 
[image: image846.wmf]hwc
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·

is mass flow rate of the hydrogen coolant for the engine walls. The sign of Eq. 5.5.5 is defined as taking plus for Fξ>0 or Fς>0 which shows accelerating or ascending the vehicle, and minus for Fξ<0 and Fς<0 which shows decelerating and simultaneously descending.

5.5.3 Guidance and Control

   Only trailing edge flaps of wings performed the longitudinal attitude control of the vehicle. The body flap was not used because of the effect on the nozzle expansion flow. The aerodynamic center and center of gravity of the vehicle were estimated during calculations of the vehicle aerodynamics and the mass properties for every step of flight time. The distribution of each compartment of the previously stated numerical vehicle is arranged to obtain a reasonable longitudinal static margin with understanding the aerodynamics of the vehicle. A specific feature of guidance and control is a requirement of lower takeoff speed for a hypersonic vehicle. This means that higher takeoff speed induces difficulties to keeping the constraints of flight dynamic pressure and maximum axial acceleration. Because of lower lifts in the transonic and supersonic flight, the vehicle tends to increase the dynamic pressure and axial-acceleration. In order to avoid the problem, coasting flights were also required to obtain the lower dynamic pressure as well as the lower takeoff speed with higher lift. However, this maneuver requires later a dive flight to acquire a reasonable flight dynamic pressure for restarting and obtaining a reasonable thrust generation of the ARCC engine. Then, repetition of “pull-up and dive”, through the flight path, will be required for obtaining a reasonable thrust level for acceleration under constraints of the load. 
5.6 Numerical Results of a Flight Simulation
   The values given by Tables 5.3.1, 5.3.2, 5.3.3, and 5.3.4 are those of an ARCC engine powered SSTO vehicle which has been converged to the mission goal given by Table 5.2.1 by means of the iterated flight simulation calculations according to the procedure of Fig. 5.2.1. The mass properties of the numerical vehicle were calculated according to the assumptions of 5.4 Weight Estimation. The final mission performance of the numerical vehicle is measured in this section by the vehicle situation in the entry orbit into the atmosphere toward the landing site at an altitude about 100 km. The SSTO vehicle should transport about 20 Mg payloads to the International Space Station in the orbit of about 500 km altitude. AS a transportation system, the vehicle should transport the equivalent mass of the returning payloads after achieving the mission goal given by Table 5.2.1. The reason is that the entry analysis of the vehicle is out of this book. Therefore, dry & empty mass with crew is mainly evaluated as a measure of the safety and the reliability of the SSTO vehicle.
   Flight Data The flight performance of the vehicle is shown in Fig. 5.6.1 to Fig. 5.6.8. Fig. 5.6.1 shows the mass ratio of the vehicle and altitude versus flight Mach numbers. The mass ratio is defined such that the mass of the vehicle at the flight Mach number is divided by the gross mass at the takeoff (TOGW); which shows the remained mass as well as the consumed propellants. The coasting flights were performed twice from a low supersonic to a subsonic through transonic flights and during supersonic flights. The so-called “pull-up and dive” maneuvers are shown eight times in supersonic and hypersonic flights. The coasting flights are due to the takeoff maneuver as previously stated. The “pull-up and dive” were also performed to keep the limited constraints of the dynamic pressure and the axial acceleration. That is, the coasting flight and the “pull-up and dive” are for the same purpose, however; the stopping of the ARCC engine induces another problem of the engine cooling during the coasting flight. The tangent of the mass-ratio-curve shows another expression of the effective specific impulse (Eisp). When the Eisp is smaller the tangent becomes the larger in minus direction. The terminal flight Mach number, the altitude, and the flight path angle of the ARCC engine powered vehicle are very important parameters for the performance of the vehicle as a SSTO system. This will be discussed in the later part of this section. 
Fig. 5.6.2 shows loads of dynamic pressure and axial acceleration to the vehicle. Both data are in the assumed constraints. Fig. 5.6.3 shows the ARCC engine thrust and aerodynamic forces of the propulsive lifting body and wing complex, which are related with performance measures of specific impulse of the ARCC engine Isp, effective specific impulse Eisp, and system specific impulse Sisp. Fig. 5.6.4 shows those measures with the rocket combustion pressure pc as a reference. Fig. 5.6.4 shows that very high pc is required during low supersonic flight just after transonic flight speed because of the high drag with low thrust level in this flight region, where any kind of specific impulse is very low. The low performance of the ARCC engine in this flight Mach numbers region is one of the important key issues to decide the numbers of the unit ARCC engine as a multi-engine system. Fig. 5.6.5 shows ratios of mass flow of rocket propellant and engine internal wall coolant of hydrogen to that of airflow through the engine, and those data are used for calculations of various specific impulses as shown in Eq. 5.6.4. It must be noted that there exist two peaks of the very high ratio of the rocket engine mass flow rate to the incoming air flow rate at about M∞≈2.3-2.5 and about M∞≈16.2-16.4. The first peak is due to the very low q flight path just soon after the second coasting flight in the low supersonic flight. The second peak is due to the low q flight during the fifth “pull-up and dive” maneuver.

   Fig. 5.6.6 shows temperatures of the ARCC engine internal flow, where T3a, T5, and Te designate static temperatures of the incoming air flow in front of the mixing (station No. 3), of the engine exhaust gas at the air/fuel combustion (station no. 5), and of the engine exhaust gas after expansion to the atmospheric pressure, respectively. Those data suggest criteria concerning with the termination of the ARCC engine because of the effectiveness, which will be discussed in the later part of this section. Fig. 5.6.7 shows the inclination of the flight path to the horizon γ, the angle of attack, and the deflection angle of the trailing-edge-flap. Two large deflection maneuvers were performed for the trailing-edge-flaps of the wings during the takeoff and the flight Mach numbers about M∞≈12.5-13.3. The first is easily understood because of the takeoff maneuver. The second is for the “pull-up” maneuver of the so called “pull-up and dive” where the lift force becomes lower than drag force and the centrifugal force is not so large to raise the vehicle. Fig. 5.6.8 shows the center of aerodynamics and the center of gravity of the vehicle, which suggests that some method may be required to adjust the center of gravity location depending on the flight Mach number for acquiring the desirable static margins by means of active mass movement. The rear ward movement of the aerodynamic center in the supersonic and hypersonic flights is mainly due to the interference of the free jet-boundary of the engine exhaust gas flow with free air flow.

Fig. 5.6.9 shows the aerodynamic forces acting to the propulsive lifting body including coasting flights. It shows also that the most of the aerodynamic drag of the vehicle complex is due to that induced by the propulsive lifting body while the lift force of the propulsive body is very small compared with those of wings. Fig. 5.6.10 shows the center of aerodynamics and the center of gravity of the propulsive lifting body, respectively. It shows that most of the changes with respect to the aerodynamic center do much toward the movements of that of the complex vehicle.

Fig. 5.6.11 shows the initial expansion angle of the ARCC engine exhaust gas at the exit of the internal nozzle and the angle of attack of the vehicle. The initial expansion angle of the ARCC engine exhaust gas at the exit of the internal nozzle is deeply related with the movement of the aerodynamic center of the propulsive lifting body as shown in Fig. 5.6.10. It shows also that an increase of attack angle tends to press down the initial expansion angle of the exhaust gas flow. Fig. 5.6.12 shows the static pressure at the exit of the ARCC engine air/fuel combustor. The data show that the static pressure levels are enough for expanding to the corresponding atmospheric pressure without by means of the variable internal nozzle throat. However, those show a little concerns about the real gas effects of the expanding engine exhaust gas flow (refer to 2.4.6 Flight Speed limits of the ARCC Engine of this book) and about the induction time (refer to Eq. 2.7.4.16 in 2.7.4 Fuel/Air Combustion of this book). These problems will be discussed in later.

   Termination of the ARCC Engine Table 5.6.1 and Table 5.6.2 show conditions of the termination of the ARCC engine powered flight from where the orbital transfers were performed to the mission orbit by means of the conventional rocket firing, and the results of the transportation capability. Cases of A, B, and C are selected such conditions as references which are far much beyond than the maximum speed limits of the conventional Brayton cycle airbreathing engine powered vehicle. Any data of cases of A, B, C in Table 5.6.1 show no problem concerning with operation of the ARCC engine for selecting these limits. The data of case D show the problems for the Eisp and the Sisp due to the smallness and the minus sign, respectively, however; it was already stated that the transportation capability of the airbreathing engine powered SSTO vehicle should be evaluated at the final mission orbit after the orbital transfer was performed. Table 5.6.2 shows them. 

Real Gas Effects T3a of Table 5.6.1 is the static temperature of the entering air flow just before mixing with the rocket exhaust gas and the air flow combusts later with hydrogen fuel in the air/fuel combustor of the ARCC engine. Therefore, the static temperature T3a is one of the most concerned states of the ARCC engine. The reference 5.16 reports that for temperature of 1,600 K the air composition does not change in the shock-compression process, consequently, ideal-gas relations can be used in this range. The static temperatures of T3a for the cases of A, B, C, and D in Table 5.6.1 are smaller than 1,600 K. The real gas effects of the air begin at approximately 1,700 K5.17, which depends on the pressure. If the pressure is lower the dissociated species mole fraction increases rapidly. The most concerned dissociation is that of molecular oxygen because that of nitrogen is to begin in a much higher temperature. The dissociation of molecular oxygen (O2) into atomic oxygen (O) begins at approximately 1,700 K, and the mole fraction of the dissociated oxygen is still under five percent of the oxygen molecules at about 2,000 K for a static pressure of 0.01 atm.5.18. The static temperatures T3a of cases E, F, G, and H are exactly in these regions in Table 5.6.1. However, if the static pressures of p5 are considered, here it must be noted that the p5 is almost equally designed to be p4 in the ARCC engine, the static pressures are much higher than the reference pressure5.18. The effects of the oxygen molecule dissociation will be much smaller than five percent, which are included in air/fuel combustion efficiency of Table 5.3.4 as ηair/fuel=0.70. Then the results of the flight simulation calculations have good accuracies concerning with the real gas effects of the entering air combustion for the conceptual design of this book.

Another problem concerning with real gas effects is for the thermodynamic expansion of the engine exhaust flow in the single-sided nozzle, which is measured by the static temperature of T5. The concerned molecular species are nitrogen (N2), steam (H2O), hydrogen (H2), and a small fraction of oxygen (O2). The most concerned species is nitrogen (N2), however; the dissociation of molecular nitrogen (N2) into atomic nitrogen (N) begins at about 3,500 K. The very small mole fractions of nitric oxide (NO) can be formed during the processes of mixing and air/hydrogen combustion, however, the peak being 3 percent of the present molecule nitrogen (N2) in the vicinity of 2,800 K5.18. The dissociations of the other molecules steam (H2O) and hydrogen (H2) begin at much higher temperatures. The dissociation of molecular oxygen (O2) is insignificantly small at the exit of the air/fuel combustor and can be disregarded. The static temperatures of the engine exhaust gas flow at the exit of the ARCC air/fuel combustor T5 in Table 5.6.1 show that all cases have no problem concerning with real gas effects in the expansion flow. The real gas effects of the expansion gas flow into the atmospheric pressure are taken into accounts in the nozzle expansion efficiency assumed in Table 5.3.4 as nozzle=0.80.

   As a summarized review, it can be concluded that the data of Table 5.6.1 do not affect so much to the ARCC engine performance due to the real gas effects so that the results of Table 5.6.2 are reasonably described as a transportation capability. 

Table 5.6.1 Termination cases of the ARCC engine powered
	     Conditions

Case
	M∞
	q∞
k Pa
	Isp

sec
	Eisp

sec
	Sisp

sec
	T3a
Kelvin
	p5
atm.
	T5
Kelvin

	A
	16.0
	37.8
	8686
	4919
	4326
	1060
	0.10
	1337

	B
	18.0
	36.0
	9972
	5345
	4591
	1250
	0.10
	1905

	C
	20.0
	26.5
	8228
	2501
	2012
	1500
	0.08
	2185

	D
	20.8
	20.4
	6384
	 186
	-1122
	1600
	0.06
	2252

	E
	21.9
	21.8
	7517
	 945
	 861
	1700
	0.07
	2396

	F
	22.9
	18.3
	6009
	-361
	-1198
	1800
	0.06
	2493

	G
	23.9
	23.6
	9560
	2237
	1782
	1900
	0.08
	2704

	H
	24.4
	12.9
	9556
	2043
	1571
	1950
	0.08
	2769


   Induction Time The static pressure p5 is actually the pressure of the air/fuel combustor of the ARCC engine. The levels of p5 are another concerned problem because of the induction time (sometimes called the ignition delay time) with respect to the combustor length. Table 5.6.1 shows that cases of D and F show the lowest p5 as 0.06 atm. However, the lowest p5 is 0.0500 atm for flight Mach number M∞=21.2477 at q∞=15.80 k Pa in Fig. 5.6.12, which is located between cases of D and E of Table 5.6.1. The static temperature after combustion of air/hydrogen is T5=2,251.6 K. Using this minimum static pressure of the air/hydrogen combustion and T5, Eq. 2.7.4.17 gives the required total time for the combustion and equilibrium as tc=7.6x10-6 seconds. The air/hydrogen combustor length given by Table 5.3.4 is well longer than the required length for the tc=7.6x10-6 seconds, even if it includes the mixing length. 
   Mission Performance of the ARCC Engine Powered SSTO Vehicle The mission performance and transportation capability of the ARCC engine powered SSTO vehicle are shown in Table 5.6.2. Those are measured firstly by the [Vehicle mass at the ARCC engine termination] and finally by the [Vehicle mass before entry maneuver] into the atmosphere. The [Vehicle mass before entry maneuver] is calculated for the vehicle situation such that after the required orbital transfer to the ISS, exchange of the payload as well as parts of crew at the ISS, and finishing the second orbital transfer maneuver to a low altitude orbit (approximately 100 km), the vehicle is preparing the entry maneuver into the atmosphere for each case of the ARCC engine termination condition. The payload capability and the crew size are assumed to be equivalent for both of going and returning of the vehicle as a transportation system. Table 5.6.2 shows that cases of A, B, C, and D can not perform the given mission goal of the payload capability given by Table 5.2.1 because of the earlier termination of the ARCC engine so that the payload capability is reduced to the corresponding level for each case of them. 

   Safety factor in comparison to US Space Shuttle If the assumption of Table 5.2.1 such that [Residual propellants+Contingency] before the entry maneuver into the atmosphere is about 10 % is applied to the results of the flight simulation calculations of Table 5.6.2, the [Dry & empty mass with crew] can be calculated from the [Vehicle mass before entry maneuver] by reducing the corresponding [Residual propellants+Contingency]. Here, [Dry & empty mass with crew] is so called the operating empty weight of the aircraft. The measure of the safety or the reliability of the SSTO vehicle has not published in any reports before. Here, the author tries to introduce a reference value of the safety. The author estimates a value which is the operating empty weight of the U.S. Space Shuttle Orbiter divided by the Orbiter body surface area, as 139 kg/m2. Applying this value directly to the lifting body surface (707.236 m2) of Table 5.3.1, one can obtain the fully furbished operating empty vehicle weight as 98,317 kg as a reference which is equivalently furbished as with the US Space Shuttle Orbiter. The values of [Safety factor to the reference (%)] in Table 5.6.2 are those of the [Dry & empty mass with crew] divided by the reference weight of 98,317 kg, expressed by percent. The author believes that if the next generation manned space transportation will be developed in future, the vehicle system should be designed and manufactured with much more safe or reliable with providing redundancies, warning systems, and higher load factors. These endeavors will raise the required [Safety factor to the reference (%)] defined here.

   Evaluation of the results Numbers of the asterisk in the [Dry & empty mass with crew] show the comprehensive evaluations given by the author to the numerical results given by Table 5.6.2. Case A is given one satiric (*) which the payload is greatly short of the given mission and the safety is almost equivalent to the reference value. Cases B and C increase the safety, however; the payload are remained to be little and case D increases the payload capability which is however still short of the given mission, therefore; cases B, C, and D are given two asterisks (**). Cases E and F are given three asterisks (***) because the payload capability are satisfied for the mission requirement. Nobody knows at present which value of the safety factor is recommendable for the next generation manned space transportation vehicle, however, the author proposes in this book tentatively that more than by the fifty percent improvement of the safety or the reliability to the reference vehicle will be the goal of the next generation manned space transportation vehicle in future. This is the reason that cases of G and H are given to be four asterisks (****).
Table 5.6.2 Results of the flight simulation of the ARCC engine powered SSTO vehicle

	T/O speed: 136.158 m/s, T/O ground distance 976.09 m

	Final Termination of the ARCC engine
	A
	B
	C
	D
	E
	F
	G
	H

	Flight Mach number
	16.03
	18.04
	20.09
	20.80
	21.88
	22.89
	23.91
	24.37

	Altitude       (km)
	42.71
	44.76
	49.07
	51.95
	52.06
	54.28
	52.84
	53.45

	Flight path angle γ (degrees)
	-1.985
	-2.779
	-2.069
	-1.851
	-1.767
	-1.517
	-1.193
	-1.055

	True anomaly angle θ (degrees)
	27.48
	60.37
	83.82
	91.76
	112.32
	122.90
	139.55
	143.35

	Vehicle mass at the ARCC engine termination  (Mg)
	241.90
	231.46
	226.65
	225.16
	221.52
	219.72
	216.99
	216.37

	Crew (7 persons)   (kg)
	3,500
	3,500
	3,500
	3,500
	3,500
	3,500
	3,500
	3,500

	Avionics of the crew compartment      (kg)
	4,750
	4,750
	4,750
	4,750
	4,750
	4,750
	4,750
	4,750

	Cargo payload     (kg)
	5,000
	5,000
	5,000
	10,000
	20,000
	20,000
	20,000
	20,000

	Vehicle mass before entry maneuver         (Mg)
	114.36
	128.65
	149.58
	156.19
	166.27
	174.50
	188.03
	193.14

	Returning payload  (kg)
	 5,000
	 5,000
	 5,000
	10,000
	20,000
	20,000
	20,000
	20,000

	Propellants, Contingency (kg)
	11,436
	12,865
	14,958
	15.619
	16,627
	17,450
	18,803
	19,314

	Dry & empty mass  (Mg)

with crew
	 97.92

*
	110.85

**
	129.62

**
	130.57

**
	129.64

***
	137.05

***
	149.23

****
	153.83

****

	Safety factor to the refernce (%)
	100
	 113
	 132
	 133
	 132
	 139
	 152
	 156


References
5.1  T. Yamanaka and et al., “AIRBREATER/ROCKET COMBINED CYCLE (ARCC) ENGINE        FOR SPACEPLANES”, AIAA 99-4812, 9th International Space Planes and Hypersonic Systems and Technologies Conference, 1-5 November 1999, Norfolk, VA.

5.2  T. Yamanaka, “Innovative Breakthroughs to a Reusable STS,” 「The Space Transportation Market: Evolution or Revolution? 」, Edited by M. Rycroft, Kluwer Academic Publishers, Dordrecht, The Netherlands,  pp. 167-175
5.3  T. Yamanaka, “Air-Breathing Rocket Combined Cycle Engine: The Concept and Theory,” AIAA 2002-5145, 11th International Space Planes and Hypersonic Systems and Technologies Conference, 29 September-4 October, Orleans, France

5.4  T. Yamanaka and et al., “AN ARCC ENGINE POWERED SPACEPLANE,” AIAA 2001-1923, 10th International Space Planes and Hypersonic Systems and Technologies Conference, 24-27 April 2001, Kyoto, Japan

5.5  Yamanaka, T., “FLIGHT PERFORMANCE OF AN AIRBREATHING ROCKET COMBINED ENGINE POWERED SPACEPLANE,” AIAA-2003-6996, 12th International Space Planes and Hypersonic Systems and Technologies Conference, 15-19 December 2003, Norfolk VA.
5.6  Edited by Andrew Wilson, Jane’s SPACE DIRECTORY, Jane’s Information Group Limited, London, Twelfth Edition 1996-97, 1996, p. 265 
5.7  JANE’S ALL THE WORLD AIRCRAFT 2002-2003, Jane’s Information Group Limited, London, 2002
5.8  JANE’S ALL THE WORLD AIRCRAFT1980-1981, Jane’s Publishing Co. Limited, London, 1980 
5.9  Nicolai. M. Leland, “Fundamentals of AIRCRAFT DESIGN”, METS, Inc., California, 1975, p. 4-3
5.10 Anon., “Airworthiness Standards: Part 23-Normal, Utility and Acrobatic Category Airplanes: Part 25- Transport Category Airplanes, “Federal Aviation Regulation, Vol. III, Department of Transportation, U.S. Government Printing office, Washington, D.C., December 1969

5.11 Abbott, I. H., et al., “Characteristics of Airfoil Sections,” NACA TR824, 1945
5.12 Abott, I. H. et al, Theory of Wing Sections, Dover Publications, Inc., New York, N. Y., 1949
5.13 Leland M. Nicolai, Fundamentals of AIRCRAFT DESIGN, METS, Inc. 6520 Kingsland Court, San Jose, California 95120, U.S.A, 1984
5.14 D. Kuchemann, FRS, THE AERODYNAMIC DESIGN OF AIRCRAFT, PERGAMON INTERNATIONAL LIBRARY, OXFORD, 1985
5.15 T. Yamanaka, “AN APPROXIMATE METHOD TO DESCRIBE FREE-JET-BOUNDARY OF THE SINGLE-SIDED NOZZLE FLOW”, AIAA-2003-6999, 12th International Space Planes and Hypersonic Systems and Technologies Conference, 15-19 December 2003, Norfolk VA
5.16 Bertin, J. John, [Hypersonic Aerothermodynamics], AIAA Education Series, 1994, p. 21
5.17 Heiser H. William and Pratt T., David, [Hypersonic Airbreathing Propulsion], AIAA Education Series, 1994, p. 100
5.18 ibd., pp. 48-52

[image: image847.wmf]0

10000

20000

30000

40000

50000

60000

0

5

10

15

20

25

30

Flight Mach No.

Altitude (m)

0

0,2

0,4

0,6

0,8

1

1,2

Mass ratio (m/m0)

 

Altitude (m)

 

Mass ratio (m/m

0

)

 


Fig. 5.6.1 Flight trajectory and mass ratio
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Fig. 5.6.2 Flight dynamic pressure and axial acceleration
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Fig. 5.6.3 Aerodynamic forces and thrust
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Fig. 5.6.4 Specific impulses and pressure of rocket engine
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Fig. 5.6.5 Mass flow rates of rocket and hydrogen coolant versus air
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Fig. 5.6.6 Critical temperatures of engine flow
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Fig. 5.6.7 Angle of attack, flap deflection angle and inclination of the flight path to the horizon
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Fig. 5.6.8 Aerodynamic center and center of gravity of the vehicle
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Fig. 5.6.9 Aerodynamic forces acting to the propulsive lifting body
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Fig. 5.6.10 Aerodynamic center and center of gravity of the propulsive lifting body
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Fig. 5.6.11 Initial expansion angle of the exhaust gas flow and the angle of attack
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Fig. 5.6.12 Static pressure of the air/hydrogen fuel combustion
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Artist’s conception of the ARCC engine powered SSTO vehicle

Courtesy of the former National Aerospace Laboratory
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