Areas outside the box will not be scanned for marking

	SECTION A
	Answer all questions in the spaces provided.
Question 1: N/A Question 2: N/A Question 3: N/A	

4 Two isomeric ketones are shown below.

$$\begin{array}{ccc} CH_3-C-CH_2CH_2CH_3 & CH_3CH_2-C-CH_2CH_2\\ \parallel & 0 & 0 \\ \mathbf{Q} & \mathbf{R} \end{array}$$

4 (a) Name and outline a mechanism for the reaction of compound \mathbf{Q} with HCN and name the product formed.

Name of mechanism

Mechanism

4	(b)	Som	e students were asked to suggest methods to distinguish between isomers \mathbf{Q} and \mathbf{R} .
			student suggested testing the optical activity of the products formed when \mathbf{Q} and ere reacted separately with HCN.
		•	onsidering the optical activity of these products formed from \mathbf{Q} and \mathbf{R} , explain this method would not distinguish between \mathbf{Q} and \mathbf{R} .
		•••••	
		•••••	
		•••••	
		•••••	(3 marks)
		(Extr	ra space)
		•••••	
		•••••	
4	(c)		r students suggested using mass spectrometry and the fragmentation patterns of nolecular ions of the two isomers to distinguish between them.
		•	predicted that only one of the isomers would have a major peak at $m/z = 57$ in its spectrum so that this method would distinguish between Q and R .
4	(c)	(i)	Identify the isomer that has a major peak at $m/z = 57$ in its mass spectrum.
			(1 mark)
4	(c)	(ii)	Write an equation for the fragmentation of the molecular ion of this isomer to form the species that produces the peak at $m/z = 57$.
			(2 marks)
4	(c)	(iii)	Predict the m/z value of a major peak in the mass spectrum of the other isomer.
			(1 mark)

Turn over ▶

13

The triester, T, shown below is found in palm oil. When T is heated with an excess of sodium hydroxide solution, the alcohol glycerol is formed together with a mixture of three other products as shown in the following equation.

$$\begin{array}{c} \text{CH}_{2}\text{COC}(\text{CH}_{2})_{14}\text{COONa} \\ \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{14}\text{CH}_{3} \\ \text{CHOOC}(\text{CH}_{2})_{7}\text{CH} = \text{CH}(\text{CH}_{2})_{7}\text{CH}_{3} + 3\text{NaOH} \longrightarrow \begin{array}{c} \text{CH}_{2}\text{OH} \\ \text{CHOOC}(\text{CH}_{2})_{7}\text{CH} = \text{CH}(\text{CH}_{2})_{7}\text{COONa} \\ \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{12}\text{CH}_{3} \\ \text{CH}_{2}\text{OOH} \end{array}$$

(i) Give the IUPAC name for glycerol. (a)

				(1	mark

(ii) Give a use for the mixture of sodium salts formed in this reaction. (a)

	(1 mark)

5 When **T** is heated with an excess of methanol, glycerol is formed together with a mixture of methyl esters.

5 (b) (i) Give a use for this mixture of methyl esters.

	,	
		(1 mark)

5 (b) One of the methyl esters in the mixture has the IUPAC name methyl (Z)-octadec-9-enoate. Draw two hydrogen atoms on the diagram below to illustrate the meaning of the letter Z in the name of this ester.

$$c=c$$

(1 mark)

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 25

Areas outside the box will not be scanned for marking

(1 mark) Turn over for the next question
Turn over for the next question

6 The three amino acids shown below were obtained by hydrolysis of a protein.

6 (a) (i) Draw the zwitterion of alanine.

(1 mark)

6 (a) (ii) Draw the species formed when valine is dissolved in an alkaline solution.

(1 mark)

6 (a) (iii) Draw the species formed by lysine at low pH.

(1 mark)

6	(b)	Draw the two dipeptides formed by the reaction of alanine with valine.
		(2 marks)
6	(c)	Name a suitable method by which the mixture of amino acids formed by hydrolysis of
U	(0)	the protein can be separated.
		(1 mark)
		Turn over for the next question

7	mole are v	unic chemists use a variety of methods to identify unknown compounds. When the scular formula of a compound is known, spectroscopic and other analytical techniques used to distinguish between possible structural isomers. Use your knowledge of such niques to identify the compounds described below.
	Use	the three tables of spectral data on the Data Sheet where appropriate.
		part below concerns a different pair of structural isomers. v one possible structure for each of the compounds A to J, described below.
7	(a)	Compounds A and B have the molecular formula C_3H_6O A has an absorption at $1715\mathrm{cm}^{-1}$ in its infrared spectrum and has only one peak in its 1H n.m.r. spectrum. B has absorptions at $3300\mathrm{cm}^{-1}$ and at $1645\mathrm{cm}^{-1}$ in its infrared spectrum and does not show $E-Z$ isomerism.
		A B
		(2 marks)
7	(b)	Compounds $\bf C$ and $\bf D$ have the molecular formula C_5H_{12} In their 1H n.m.r. spectra, $\bf C$ has three peaks and $\bf D$ has only one.
		C D

(2 marks)

Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J	7 (c	<i>ز</i>)	Compounds E and F are both esters with the molecular formula $C_4H_8O_2$ In their ¹ H n.m.r. spectra, E has a quartet at $\delta = 2.3$ ppm and F has a quartet at $\delta = 4.1$ ppm.
(d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			${f E}$
(d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
(d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
(d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
(d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			(2 marks)
(2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J	7 (d	d)	Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹
(e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			G H
(e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
(e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
(e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
(e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			
amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J			(2 marks)
	7 (e	e)	Compounds $\bf I$ and $\bf J$ have the molecular formula $C_4H_{11}N$ and both are secondary amines. In their ^{13}C n.m.r. spectra, $\bf I$ has two peaks and $\bf J$ has three.
			I J
			(2 marks)

SECTION B

Answer all questions in the spaces provided.

8 Three isomers of $C_6H_4(NO_2)_2$ are shown below.

$$NO_2$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

8	(a)	(i)	Give the number of peaks in the ¹³ C n.m.r. spectrum of each isomer.	
				••••
				••••
			(3 mars	 ks)

8 (a) (ii) Draw the displayed formula of the compound used as a standard in recording these spectra.

(1 mark)

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 25

Areas outside the box will not be scanned for marking

8	(b)	Isomer X is prepared from nitrobenzene by reaction with a mixture of concentrated nitric acid and concentrated sulfuric acid.				
		The tv X.	vo acids react to form an inorganic species that reacts with nitrobenzene to form			
8	(b)		Give the formula of this inorganic species formed from the two acids and write an equation to show its formation.			
			(2 marks)			
8	(b)		Name and outline a mechanism for the reaction of this inorganic species with nitrobenzene to form \mathbf{X} .			
			(4 marks)			
			Question 8 continues on the next page			

8	(c)	Isom	er Y is used in the production of the polymer Kevlar.
		Y is	first reduced to the diamine shown below.
			H_2N \longrightarrow NH_2
8	(c)	(i)	Identify a suitable reagent or mixture of reagents for the reduction of Y to form this diamine. Write an equation for this reaction using [H] to represent the reducing agent.
			(2 marks)
8	(c)	(ii)	This diamine is then reacted with benzene-1,4-dicarboxylic acid to form Kevlar. Draw the repeating unit of Kevlar.
			(2 marks)

18

8	(c)	(iii)	Kevlar can be used as the inner lining of bicycle tyres. The rubber used for the outer part of the tyre is made of polymerised alkenes.
			State the difference in the biodegradability of Kevlar compared to that of rubber made of polymerised alkenes.
			Use your knowledge of the bonding in these polymer molecules to explain this difference.
			(4 marks)
			(Extra space)
			Turn over for the next question
			There are the man desired

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 25

Areas outside the box will not be scanned for marking

(a)	Name and outline a mechanism for the reaction of CH ₃ CH ₂ NH ₂ with CH ₃ CH ₂ COCl
	Name the amide formed.
	(6 marks)
	(a)

9 (b)	Haloalkanes such as CH ₃ Cl are used in organic synthesis.						
	Outline a three-step synthesis of $CH_3CH_2NH_2$ starting from methane. Your first step should involve the formation of CH_3Cl						
	In your answer, identify the product of the second step and give the reagents and conditions for each step.						
	Equations and mechanisms are not required.						
	(Extra space)						
	END OF QUESTIONS						