Areas outside the box will not be scanned for marking | | SECTION A | |---|--| | | Answer all questions in the spaces provided. | | | | | Question 1: N/A
Question 2: N/A
Question 3: N/A | 4 Two isomeric ketones are shown below. $$\begin{array}{ccc} CH_3-C-CH_2CH_2CH_3 & CH_3CH_2-C-CH_2CH_2\\ \parallel & 0 & 0 \\ \mathbf{Q} & \mathbf{R} \end{array}$$ 4 (a) Name and outline a mechanism for the reaction of compound \mathbf{Q} with HCN and name the product formed. Name of mechanism Mechanism | 4 | (b) | Som | e students were asked to suggest methods to distinguish between isomers \mathbf{Q} and \mathbf{R} . | |---|-----|-------|--| | | | | student suggested testing the optical activity of the products formed when \mathbf{Q} and ere reacted separately with HCN. | | | | • | onsidering the optical activity of these products formed from \mathbf{Q} and \mathbf{R} , explain this method would not distinguish between \mathbf{Q} and \mathbf{R} . | | | | ••••• | | | | | ••••• | | | | | | | | | | ••••• | | | | | ••••• | (3 marks) | | | | (Extr | ra space) | | | | ••••• | | | | | ••••• | | | 4 | (c) | | r students suggested using mass spectrometry and the fragmentation patterns of nolecular ions of the two isomers to distinguish between them. | | | | • | predicted that only one of the isomers would have a major peak at $m/z = 57$ in its spectrum so that this method would distinguish between Q and R . | | 4 | (c) | (i) | Identify the isomer that has a major peak at $m/z = 57$ in its mass spectrum. | | | | | (1 mark) | | 4 | (c) | (ii) | Write an equation for the fragmentation of the molecular ion of this isomer to form the species that produces the peak at $m/z = 57$. | | | | | (2 marks) | | 4 | (c) | (iii) | Predict the m/z value of a major peak in the mass spectrum of the other isomer. | | | | | (1 mark) | Turn over ▶ **13** The triester, T, shown below is found in palm oil. When T is heated with an excess of sodium hydroxide solution, the alcohol glycerol is formed together with a mixture of three other products as shown in the following equation. $$\begin{array}{c} \text{CH}_{2}\text{COC}(\text{CH}_{2})_{14}\text{COONa} \\ \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{14}\text{CH}_{3} \\ \text{CHOOC}(\text{CH}_{2})_{7}\text{CH} = \text{CH}(\text{CH}_{2})_{7}\text{CH}_{3} + 3\text{NaOH} \longrightarrow \begin{array}{c} \text{CH}_{2}\text{OH} \\ \text{CHOOC}(\text{CH}_{2})_{7}\text{CH} = \text{CH}(\text{CH}_{2})_{7}\text{COONa} \\ \text{CH}_{2}\text{OOC}(\text{CH}_{2})_{12}\text{CH}_{3} \\ \text{CH}_{2}\text{OOH} \end{array}$$ (i) Give the IUPAC name for glycerol. (a) |
 |
 |
 |
 |
 | | |------|------|------|------|------|------| | | | | | (1 | mark | (ii) Give a use for the mixture of sodium salts formed in this reaction. (a) |
 | | |------|----------| | | (1 mark) | 5 When **T** is heated with an excess of methanol, glycerol is formed together with a mixture of methyl esters. 5 (b) (i) Give a use for this mixture of methyl esters. | | , |
 | |--|---|----------| | | | (1 mark) | 5 (b) One of the methyl esters in the mixture has the IUPAC name methyl (Z)-octadec-9-enoate. Draw two hydrogen atoms on the diagram below to illustrate the meaning of the letter Z in the name of this ester. $$c=c$$ (1 mark) ## CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 25 Areas outside the box will not be scanned for marking | (1 mark) Turn over for the next question | |---| | Turn over for the next question | 6 The three amino acids shown below were obtained by hydrolysis of a protein. **6** (a) (i) Draw the zwitterion of alanine. (1 mark) 6 (a) (ii) Draw the species formed when valine is dissolved in an alkaline solution. (1 mark) 6 (a) (iii) Draw the species formed by lysine at low pH. (1 mark) | 6 | (b) | Draw the two dipeptides formed by the reaction of alanine with valine. | |---|-----|--| (2 marks) | | 6 | (c) | Name a suitable method by which the mixture of amino acids formed by hydrolysis of | | U | (0) | the protein can be separated. | | | | | | | | (1 mark) | | | | | | | | | | | | Turn over for the next question | 7 | mole
are v | unic chemists use a variety of methods to identify unknown compounds. When the scular formula of a compound is known, spectroscopic and other analytical techniques used to distinguish between possible structural isomers. Use your knowledge of such niques to identify the compounds described below. | |---|---------------|--| | | Use | the three tables of spectral data on the Data Sheet where appropriate. | | | | part below concerns a different pair of structural isomers. v one possible structure for each of the compounds A to J, described below. | | 7 | (a) | Compounds A and B have the molecular formula C_3H_6O A has an absorption at $1715\mathrm{cm}^{-1}$ in its infrared spectrum and has only one peak in its 1H n.m.r. spectrum. B has absorptions at $3300\mathrm{cm}^{-1}$ and at $1645\mathrm{cm}^{-1}$ in its infrared spectrum and does not show $E-Z$ isomerism. | | | | A B | | | | | | | | (2 marks) | | 7 | (b) | Compounds $\bf C$ and $\bf D$ have the molecular formula C_5H_{12}
In their 1H n.m.r. spectra, $\bf C$ has three peaks and $\bf D$ has only one. | | | | C D | | | | | (2 marks) | Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | 7 (c | <i>ز</i>) | Compounds E and F are both esters with the molecular formula $C_4H_8O_2$
In their ¹ H n.m.r. spectra, E has a quartet at $\delta = 2.3$ ppm and F has a quartet at $\delta = 4.1$ ppm. | |---|-------------|------------|--| | (d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | ${f E}$ | | (d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | (d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | (d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | (d) Compounds G and H have the molecular formula C ₆ H ₁₂ O Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ in its infrared spectrum. G forms a silver mirror with Tollens' reagent but H does not. G H (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | (2 marks) | | (2 marks) (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | 7 (d | d) | Each exists as a pair of optical isomers and each has an absorption at about 1700 cm ⁻¹ | | (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | G H | | (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | (e) Compounds I and J have the molecular formula C ₄ H ₁₁ N and both are secondary amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | | | amines. In their ¹³ C n.m.r. spectra, I has two peaks and J has three. I J | | | (2 marks) | | | 7 (e | e) | Compounds $\bf I$ and $\bf J$ have the molecular formula $C_4H_{11}N$ and both are secondary amines. In their ^{13}C n.m.r. spectra, $\bf I$ has two peaks and $\bf J$ has three. | | | | | I J | (2 marks) | ## **SECTION B** Answer all questions in the spaces provided. 8 Three isomers of $C_6H_4(NO_2)_2$ are shown below. $$NO_2$$ NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 | 8 | (a) | (i) | Give the number of peaks in the ¹³ C n.m.r. spectrum of each isomer. | | |---|-----|-----|---|---------| | | | | | •••• | | | | | | •••• | | | | | (3 mars |
ks) | **8** (a) (ii) Draw the displayed formula of the compound used as a standard in recording these spectra. (1 mark) ## CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 25 Areas outside the box will not be scanned for marking | 8 | (b) | Isomer X is prepared from nitrobenzene by reaction with a mixture of concentrated nitric acid and concentrated sulfuric acid. | | | | | |---|-----|--|---|--|--|--| | | | The tv X. | vo acids react to form an inorganic species that reacts with nitrobenzene to form | | | | | 8 | (b) | | Give the formula of this inorganic species formed from the two acids and write an equation to show its formation. | | | | | | | | | | | | | | | | (2 marks) | | | | | 8 | (b) | | Name and outline a mechanism for the reaction of this inorganic species with nitrobenzene to form \mathbf{X} . | (4 marks) | | | | | | | | | | | | | | | | Question 8 continues on the next page | 8 | (c) | Isom | er Y is used in the production of the polymer Kevlar. | |---|-----|------|---| | | | Y is | first reduced to the diamine shown below. | | | | | H_2N \longrightarrow NH_2 | | 8 | (c) | (i) | Identify a suitable reagent or mixture of reagents for the reduction of Y to form this diamine. Write an equation for this reaction using [H] to represent the reducing agent. | | | | | | | | | | (2 marks) | | 8 | (c) | (ii) | This diamine is then reacted with benzene-1,4-dicarboxylic acid to form Kevlar. Draw the repeating unit of Kevlar. | | | | | (2 marks) | 18 | 8 | (c) | (iii) | Kevlar can be used as the inner lining of bicycle tyres. The rubber used for the outer part of the tyre is made of polymerised alkenes. | |---|-----|-------|---| | | | | State the difference in the biodegradability of Kevlar compared to that of rubber made of polymerised alkenes. | | | | | Use your knowledge of the bonding in these polymer molecules to explain this difference. | (4 marks) | | | | | (Extra space) | Turn over for the next question | | | | | There are the man desired | | | | | | ## CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER 25 Areas outside the box will not be scanned for marking | (a) | Name and outline a mechanism for the reaction of CH ₃ CH ₂ NH ₂ with CH ₃ CH ₂ COCl | |-----|--| | | Name the amide formed. | (6 marks) | (a) | | 9 (b) | Haloalkanes such as CH ₃ Cl are used in organic synthesis. | | | | | | | |--------------|--|--|--|--|--|--|--| | | Outline a three-step synthesis of $CH_3CH_2NH_2$ starting from methane. Your first step should involve the formation of CH_3Cl | | | | | | | | | In your answer, identify the product of the second step and give the reagents and conditions for each step. | | | | | | | | | Equations and mechanisms are not required. | (Extra space) | END OF QUESTIONS | | | | | | |