Question		Expected Answers	Marks	Additional Guidance
1 (a)			1	$\text { ALLOW } \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br $^{+}$
(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles DO NOT ALLOW $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}$ OR 2,4,6-tribromophenol OR tribromophenol
	(ii)	1,2-Dibromocyclohexane \checkmark	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}$ OR structures
	(iii)	MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks benzene electrons or π-bonds are delocalised \checkmark phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in $\mathrm{Br}_{2} \mathrm{OR}$ phenol can polarise the Br_{2} OR cyclohexene can polarise Br_{2} or the $\mathrm{Br}-\mathrm{Br}$ bond \checkmark	5	ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a $\mathrm{C}=\mathrm{C}$ double bond IGNORE slip if cyclohexene is written as cyclohexane but π bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density ALLOW $\mathrm{Br}^{\delta+}$ OR electrophile Br^{+}as alternate to polarise

Question		Expected Answers	Marks	Additional Guidance
2 (a)	(i)	silver mirror \checkmark	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey
	(ii)	$\mathrm{HOCH}_{2} \mathrm{COOH} \checkmark$	1	ALLOW CH $\mathrm{C}_{2} \mathrm{OHCOOH}$ OR CH $\mathrm{OHCO}_{2} \mathrm{H}$ OR $\mathrm{HOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ OR displayed OR skeletal formula $\mathrm{OR}^{\mathrm{HOCH}} \mathrm{COO}^{-}$ DO NOT ALLOW $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ OR 2-hydroxyethanoic acid
(b)		$\underset{\text { reagents }}{\mathrm{HOCH}_{2} \mathrm{CHO}}+\underset{\checkmark}{3[\mathrm{O}]} \rightarrow \underset{\text { both products }}{+\mathrm{HOOCCOOH}} \underset{ }{+} \mathrm{H}_{2} \mathrm{O}$	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark \checkmark$ if molecular formula used $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+3[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}$ max $=1$ Any correctly balanced equation for partial oxidation can score 1 mark \checkmark $\mathrm{HOCH}_{2} \mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{HOCH}_{2} \mathrm{COOH}$ OR $\mathrm{HOCH}_{2} \mathrm{CHO}+2[\mathrm{O}] \rightarrow \mathrm{OHCCOOH}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{HOCH}_{2} \mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{OHCCHO}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{HOCH}_{2} \mathrm{CHO}+2[\mathrm{O}] \rightarrow \mathrm{HOOCCHO}+\mathrm{H}_{2} \mathrm{O}$
(c)	(i)	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \quad \checkmark$	1	ALLOW $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ OR $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$
	(ii)	curly arrow from H^{-}to $\mathrm{C}^{8+} \checkmark$ dipoles and curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O} \checkmark$ intermediate \checkmark curly arrow from intermediate to $\mathrm{H}^{\delta+}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$and if $\mathrm{H}_{2} \mathrm{O}$ is used it must show the curly arrow from the $\mathrm{O}-\mathrm{H}$ bond to the O lone pairs are not essential	4	ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms - Alternative 3 scores all 4 marks even though the intermediate is not shown

(c)	 alanine at $\mathrm{pH}=6.0$ glutamic acid at $\mathrm{pH}=10$	 lysine at $\mathrm{pH}=2.0$		ALLOW CO ${ }_{2}^{-}$ ALLOW NH ${ }_{3}{ }^{+}$ If NH_{3} fully displayed ALLOW + charge on N or H If COO fully displayed ALLOW ${ }^{-}$charge on O only
(d)	valine-glycine-leucine \checkmark		1	ALLOW val-gly-leu DO NOT ALLOW structures
(e)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2} \\ & \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH} \end{aligned}$		2	ALLOW $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ ALLOW HOOCCH $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ ALLOW $\mathrm{CO}_{2} \mathrm{H}$ for COOH ALLOW acid chloride, $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COCl}$ ALLOW displayed formulae or skeletal formulae
		Total	14	

	estion	Expected Answers	Marks	Additional Guidance
4	(a)	```infrared - 1 mark only shows (very broad) peak between \(2500-3300\left(\mathrm{~cm}^{-1}\right)\) (due to \(\mathrm{O}-\mathrm{H}\) bond) \({ }^{13} \mathrm{C}\) NMR - 2 marks \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COOH}\) has 4 peaks (due to 4 different C environments) \(\checkmark\) \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}\) has 3 peaks (due to 3 different C environments)```	3	ALLOW (very broad) peak around $3000\left(\mathrm{~cm}^{-1}\right)$ OR any stated value between 2500 and $3300\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H}$ DO NOT ALLOW peak in range 3200-3550 (cm^{-1}) IGNORE any reference to $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}-\mathrm{O}$ as both are also present in an ester OR to fingerprint region ALLOW ${ }^{13}$ C NMR detects the number of/different C environments' for $1 \checkmark$, suitable example for the 2nd mark
	(b)	splitting pattern explains any two in terms of ' $n+1$ rule' for two marks $\checkmark \checkmark$ Explains any one peak for 1 mark \checkmark - singlet therefore adjacent C (if any) has no Hs - multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs - doublet therefore adjacent C is bonded to 1 H must spell one of multiplet / heptet, singlet, doublet correctly $\max =2 \text { marks }$	6	1 mark for correct ester if two splitting patterns are correctly analysed ignore the third ALLOW singlet because next or bonded to an O ALLOW multiplet/heptet because next to $2 \mathrm{CH}_{3} \mathrm{~S}$ ALLOW doublet because next to a CH ALLOW tolerance on δ values; 3.6-3.8, 2.6-2.8 and 1.1-1.3

Question

(

ALLOW one or more Br at any position on the ring
DO NOT ALLOW Br substitution of OH
ALLOW acyl chloride or acid anhydride and corresponding ester
ALLOW FeCl_{3} to form a purple complex ion (structure not required)
ALLOW diazonium and structure showing azo group substituting one of the Hs in the ring
if no reagent there cannot be any marks for the products
If reagent selected is incorrect but would react with BOTH aspirin and paracetamol ALLOW \checkmark ECF for the correct organic product

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

