Distance Luminosity Exercises Solutions

Ex.3:
Determine the Apparent Magnitude of the red dwarf Proxima Centauri from a distance of 1AU.
In other words, how bright would it be if we replaced the Sun with Proxima Centauri?
Absolute Magnitude (M) Proxima Centauri: + $\mathbf{1 5 . 5 3}$

Formula:		$\mathrm{d}=1 \mathrm{AU}$ (change to pc$)$ change to: $\mathbf{m}-\mathbf{M}=\mathbf{5 c} \boldsymbol{\operatorname { l o g } \boldsymbol { d } - \mathbf { 5 }} 2.06 \times 10^{5} \mathrm{AU}$ $\mathbf{m}=\mathbf{5} \boldsymbol{\operatorname { l o g } \boldsymbol { d } - \mathbf { 5 } + \mathbf { M }}$$\quad$$\mathrm{AU}=\frac{1}{2.06 \times 10^{5}}=4.854 \times 10^{-6} \mathrm{pc}$ $\mathbf{1} \mathbf{A U} \sim .000005 \mathrm{pc}$

$$
\begin{gathered}
m=5 \log d-5+M \\
m=5 \log .000005-5+15.53 \\
m=5 \log .000005-5+15.53 \\
m=5(-5.301)-5+15.53 \\
m=-26.505-5+15.53 \\
=-15.975
\end{gathered}
$$

- So that's a fair bit brighter than the full moon

$$
(m=-13)
$$

but nowhere near as bright as the Sun

$$
(m=-27)
$$

Ex. 4:
Astronomers discover a Type IA supernova in a galaxy cluster with an Apparent Magnitude of +15.819 . Determine the distance to the Galaxy cluster. Express your final answer in Light Years.

Working Formula:

$$
d=10^{(m-M+5) / 5} \quad(" d \text { " is in parsecs) }
$$

Data:

$$
\begin{aligned}
& m=+15.819 \text { (given) } \\
& M=-19 \text { (absolute magnitude of a Type la Supernova) } \\
& d=10^{(15.819-(-19)+5) / 5} \\
& d=10^{(39.819) / 5} \\
& d=10^{7.9638} \\
& =92,002,578.66 \mathrm{pc} \\
& \times 3.26 \\
& (1 \mathrm{pc}=3.26 \mathrm{LY}) \\
& = \\
& \\
& 299,928,406.4 \mathrm{LY}
\end{aligned}
$$

