Distance Luminosity Exercises Solutions

Ex.3:

Determine the Apparent Magnitude of the red dwarf Proxima Centauri from a distance of 1AU. In other words, how bright would it be if we replaced the Sun with Proxima Centauri? Absolute Magnitude (M) Proxima Centauri: **+ 15.53**

Formula:		d = 1 AU (change to pc)
	$\mathbf{m} - \mathbf{M} = 5 log d - 5$	1 pc ~ 2.06 x 10 ⁵ AU
change to:	$m = 5 \log d - 5 + M$	$1 \text{ AU} = \frac{1}{2.06 \text{ x } 10^5} = 4.854 \text{ x } 10^{-6} \text{ pc}$ 1 AU ~ .000005 pc

$$m = 5 \log d - 5 + M$$

 $m = 5 \log .000005 - 5 + 15.53$

 $m = 5 \log .000005 - 5 + 15.53$

m = 5(-5.301) - 5 + 15.53

m = -26.505 - 5 + 15.53

- So that's a fair bit brighter than the full moon (m = -13),but nowhere near as bright as the Sun (m = -27) Ex. 4:

Astronomers discover a Type IA supernova in a galaxy cluster with an Apparent Magnitude of + 15.819. Determine the distance to the Galaxy cluster. **Express your final answer in Light Years.**

Working Formula:

 $d = 10^{(m - M + 5)/5}$ ("d" is in parsecs)

Data:

m = +15.819 (given)M = -19 (absolute magnitude of a Type Ia Supernova)

 $d = 10^{(15.819 - (-19) + 5)/5}$

d = 10 ^{(39.819)/5}

$$d = 10^{7.9638}$$

= 92,002,578.66 pc

X 3.26 (1 pc = 3.26 LY)

= 299,928,406.4 LY