GCE

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
1	a	i	Series having same functional group and a general formula	1	ALLOW same functional group and members vary by CH_{2} ALLOW organic compounds with the same functional group that differ in length of their hydrocarbon chain
		ii	More surface contact OR bigger molecules More van der Waals' forces	2	BOTH answers need to be comparisons ALLOW higher relative formula mass OR has more electrons OR longer chain length OR more carbon atoms IGNORE surface area / bigger compounds ALLOW stronger van der Waals' forces / stronger induced dipoles VDW forces is not sufficient More intermolecular forces is not sufficient DO NOT ALLOW breaking bonds within the chain / breaking covalent bonds IGNORE reference to bonds if not linked to covalent bonds
	b	i	Pent-1-yne OR pent-2-yne \checkmark	1	ALLOW pentyne Look for answer in the table if not on answer line but answer line takes precedence
		ii	$\mathrm{C}_{n} \mathrm{H}_{2 n-2}{ }^{\checkmark}$	1	ALLOW $\mathrm{C}_{n} \mathrm{H}_{2(n-1)}$

Question			Expected Answers	Marks	Additional Guidance
1	b	iii	Correct displayed formula \checkmark	1	
		iv	Correct skeletal formula of cyclic hydrocarbon with formula $\mathrm{C}_{6} \mathrm{H}_{10} \checkmark$	1	
	c		Energy required to break bonds $=(+) 2912 \checkmark$ Energy released to make bonds $=(-) 4148 \checkmark$ Enthalpy of combustion $=-1236 \checkmark$	3	ALLOW full marks for correct answer with no working out ALLOW $(2 \times 415)+(837)+(2.5 \times 498)$ $\begin{aligned} & \text { ALLOW }(4 \times-805)+(2 \times-464) \\ & \text { OR }(4 \times 805)+(2 \times 464) \end{aligned}$ ALLOW ECF for calculation of enthalpy of combustion ALLOW 2 marks for +1236 with no working out

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
1	d	i	(Enthalpy change) when one mole of a compound \checkmark is made from its elements (in their standard states) (Standard conditions are) 298 K and 100 kPa	3	IGNORE energy required / energy released ALLOW (energy change) when one mole of a substance DO NOT ALLOW enthalpy change for one mole of products ALLOW 1 atmosphere pressure / $101 \mathrm{kPa} / 10^{5} \mathrm{~Pa} /$ $1.01 \times 10^{5} \mathrm{Nm}^{-2} / 1000$ millibars / $25^{\circ} \mathrm{C} /$ any stated temperature in words IGNORE $1 \mathrm{~mol} \mathrm{dm}^{-3}$ for solutions
		ii	From energy cycle Enthalpy change to get elements $=-(-60)-(2-286) /(+)$ $632 \checkmark$ Enthalpy change from elements $=-987+(+227) /(-) 760 \checkmark$ Enthalpy change $=-128 \checkmark$	3	ALLOW full marks for -128 with no working out ALLOW ECF from errors in calculation ALLOW two marks for answer of $-414 /+128 /-1392$ / +1392 ALLOW one mark for answer of +414
	e	i	$\begin{aligned} & \frac{26.0}{100.1} \times 100 \\ & 26.0 \% \checkmark \end{aligned}$	2	First mark for 100.1 OR (64.1 + 36.0) OR (74.1 + 26.0) at bottom of fraction with or without $\times 100$ ALLOW full marks for 26.0 or 26% with no working out ALLOW from two significant figures up to calculator value ALLOW 25.97 / 26\% NO ECF for this part from incorrect numbers in first expression

Question			Expected Answers	Marks	Additional Guidance
1	e	ii	1.56×10^{4} OR 15600 OR $15601 \checkmark$	1	ALLOW calculator value of 15600.62402 and any rounded value to a minimum of three significant figures
		iii	1.5×10^{4} OR $15000 \checkmark$	1	ALLOW 1.50×10^{4} etc.
		iv	$96.2 \checkmark$	1	ALLOW ECF from (iii) - (ii) ALLOW calculator value 96.1538461 and any rounded value to a minimum of two significant figures ALLOW 96.14768284 if 15601 is used ALLOW any value between 88 to 89 if answer to (iii) was calculated by dividing by 26
		v	Any two from: Low atom economy gives a poor sustainability OR low atom economy means lots of waste A use for the aqueous calcium hydroxide needs to be developed to increase atom economy Alternative process needs to be developed with high atom economy	2	ANNOTATE WITH TICKS AND CROSSES IGNORE comments about percentage yield ALLOW ECF from (i) e.g. high atom economy will have good sustainability ALLOW find a use for the waste to increase atom economy
			Total	23	

Question			Expected Answers	Marks	Additional Guidance
2	a	i	Branched chain alkane of formula $\mathrm{C}_{5} \mathrm{H}_{12}$ to $\mathrm{C}_{9} \mathrm{H}_{20}$ e.g. 2-methylpentane, 3-methyloctane	1	Must have position number but ALLOW methylbutane DO NOT ALLOW 1-methylpentane or 2-ethylpentane etc DO NOT ALLOW incorrect nomenclature e.g. 2-methypentane etc
	b	i	Vibrate (more) \checkmark	1	ALLOW bend / stretch / oscillate IGNORE rotate NOT break / molecules vibrate
		ii	Incomplete combustion \checkmark	1	ALLOW not enough oxygen
		iii	NO for photochemical smog OR low level ozone \checkmark CO is toxic	2	ALLOW NO can (eventually) cause acid rain OR can result in respiratory irritation OR can (eventually) depletes high level ozone OR depletes ozone layer IGNORE greenhouse gas ALLOW poisonous OR kills OR lethal ALLOW CO reduces the capacity of blood to carry oxygen Oxygen combines with haemoglobin is insufficient IGNORE CO is harmful / suffocates / greenhouse gas
	C	i	Makes nitrogen AND carbon dioxide \checkmark $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2} \checkmark$	2	ALLOW any correct multiples IGNORE state symbols

Mark Scheme

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
3	b	i	Nucleophilic substitution \checkmark Heterolytic Dipole shown on $\mathrm{C}-\mathrm{I}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{I}^{\delta-}$ Curly arrow from OH^{-}to carbon atom of $\mathrm{C}-\mathrm{I}$ bond \checkmark Curly arrow from C-I bond to the iodine atom \checkmark	5	ANNOTATE WITH TICKS AND CROSSES DO NOT ALLOW fish hooks No need to show lone pair on OH^{-}or I^{-} Curly arrow must come from the negative sign or lone pair on the oxygen of the hydroxide ion ALLOW $\mathrm{S}_{\mathrm{N}} 1$ mechanism dipole shown on $\mathrm{C}-\mathrm{I}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{I}^{\delta-} \checkmark$ curly arrow from C-I bond to the iodine atom \checkmark curly arrow from OH^{-}to correct carbonium ion \checkmark
		ii	Use reflux OR heat for more than 20 minutes \checkmark $\mathrm{C}-\mathrm{Cl}$ stronger bond (than $\mathrm{C}-\mathrm{I}$ bond) OR $\mathrm{C}-\mathrm{Cl}$ shorter bond (than C-I bond) OR C-Cl bond is harder to break OR needs more energy to break $\mathrm{C}-\mathrm{Cl}$ bond OR ora \checkmark	2	ALLOW heat stronger OR heat for longer OR heat at a higher temperature OR more heat Answer must refer to the $\mathrm{C}-\mathrm{Cl}$ bond or $\mathrm{C}-\mathrm{I}$ bonds
			Total	11	

Question			Expected Answers	Marks	Additional Guidance
4	a	i	Any two from: Any value between 1000-1300 \checkmark Any value between 2850-3100 \checkmark Any value between 3200-3550 \checkmark	2	
		ii	Orange to green or blue \checkmark	1	
		iii	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ Correct organic product \checkmark Balanced equation \checkmark	2	IGNORE any state symbols ALLOW $\mathrm{CH}_{3} \mathrm{COH}$ in equation but not for the structure ALLOW equations with molecular formulae but not the product mark
	b	i	Absorption around 2850-3100 (cm^{-1}) so contains C-H bonds \checkmark No other important absorptions present / no other characteristic absorptions \checkmark	2	Answer must have a reference to infrared spectrum i.e. use of cm^{-1} or data from the infrared spectrum 'Has no other peaks so no functional groups present' is not sufficient BUT There are no peaks due to functional groups is sufficient ALLOW peaks instead of absorption ALLOW no absorption due to $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H} /$ no absorption due to carbonyl and hydroxyl
		ii	Peak furthest to right hand side is 58 / molecular ion peak is 58 / peak at highest mass \checkmark	1	ALLOW peak at $m / z 58$ marked on the mass spectrum / M peak is 58 / peak at 58 linked to the molecular mass DO NOT ALLOW highest peak but ALLOW 58 is the highest peak

Question			Expected Answers	Marks	Additional Guidance
4	b	iii	 BOTH isomers correct \checkmark	1	If three structures are drawn then do not award mark ALLOW skeletal formulae / structural formulae IGNORE incorrect names
		iv	$\begin{aligned} & \mathrm{CH}_{3}^{+} \checkmark \\ & \mathrm{C}_{2} \mathrm{H}_{5}^{+} \checkmark \\ & \mathrm{C}_{3} \mathrm{H}_{7}^{+} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+} \checkmark \end{aligned}$	3	Essentially marks are allocated as positive ions \checkmark Formula of two fragments correct (ignore charge) \checkmark BUT formulae of all three fragments correct (ignore charge) $\checkmark \checkmark$
		V	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ because there is a peak at $\mathrm{m} / \mathrm{z}=29 \checkmark$	1	ALLOW name, displayed or skeletal structure ALLOW butane because there is a $\mathrm{C}_{2} \mathrm{H}_{5}$ fragment ALLOW butane because it gives all three fragments listed in (iv)
			Total	13	

Mark Scheme

Question		Expected Answers	Marks	Additional Guidance $\mathbf{5}$ \mathbf{a}	Sideways overlap of two p orbitals on each carbon atom \checkmark forms m-orbital or m-bond above and below plane of molecule \checkmark
see additional page with typical diagrams you might					
see					

Each of the following diagrams is worth one mark. The words p-orbitals must be present to score the mark

One
p-orbitals

p-orbitals

p-orbitals

Each of the diagrams on its own scores no mark

p-orbitals

Mark Scheme

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{5}$	\mathbf{b}	\mathbf{i}	Double bond does not rotate / restricted rotation of the double bond \checkmark Each carbon atom of double bond is bonded to (two) different groups \checkmark	2	ALLOW m bond does not rotate
		ii	C and E \checkmark	1	ALLOW each carbon atom of double bond is bonded to (two) different atoms / each end of the $\pi-b o n d ~ i s ~$ bonded to different groups or atoms \checkmark

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
5	e	i		1	Must have at least two repeat units and the free bonds at the end All carbon-carbon bonds in the polymer chain must be shown ALLOW bond to ethyl group to any part of ethyl group IGNORE any brackets drawn
		ii	Poly(but-1-ene) \checkmark	1	ALLOW polybut-1-ene n.b. the bracket is part of the answer DO NOT ALLOW polybutene
	f	i	(Lots of) OH group present Can form hydrogen bonds with water \checkmark	2	ALLOW hydroxyl group present / hydroxy group Alcohol group is not sufficient
		ii	Any two from: Incineration to produce energy OR combustion to produce energy \checkmark Sorting and recycling OR sorting and remoulding \checkmark Cracked (to give monomers) OR as an organic feedstock	2	Used as a fuel is not sufficient IGNORE use photodegradable or biodegradable polymers
			Total	21	

Mark Scheme

Question			Expected Answers	Marks	Additional Guidance
6	a		Low pressure because more (gas) molecules on right hand side of equation OR low pressure because $\Delta V=$ positive \checkmark Low temperature because the (forward) reaction is exothermic	2	ALLOW low pressure because more (gas) moles on right hand side of equation
	b		Increased pressure speeds up reaction / ora \checkmark $900^{\circ} \mathrm{C}$ increases the rate OR increased temperature speeds up reaction / ora Idea that high enough temperature without compromising yield OR idea that high enough pressure without compromising yield	3	ANNOTATE WITH TICKS AND CROSSES ALLOW 'pushes gases through system'
	C	i	$5.68 \times 10^{7} / 5.7 \times 10^{7} \checkmark$	1	ALLOW two or more significant figures Calculator answer is 5.6812500×10^{7}
		ii	Used to heat the incoming gases \checkmark	1	ALLOW used to heat rest of factory OR sold to the national grid Provide energy to create conditions is not sufficient because one condition is pressure
			Total	7	

