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ABSTRACT

The influence of the bridge, f -holes, island area, soundpost
and bass bar on the vibro-acoustic modes of the violin has been
investigated over a wide range of frequencies using COMSOL
shell structure finite element (FEA) computations. The body
shell modes other than in the island area have been strongly
damped to reveal the smoothly varying frequency spectrum
of the bridge-island area input filter controlling the energy
transfer from the bowed string to the radiating shell modes. Of
special relevance is the so-called BH-feature between around
2-3 kHz, often correlated with the quality of fine sounding
violins.

1. INTRODUCTION

In a pair of related publications [1, 2], the violin was modeled
as a thin-walled, guitar-shaped box, with arched top and back
plates coupled around their edges by shallow ribs. COMSOL
3.5 finite element shell structure software was used as an aid to
understanding the acoustically important signature modes be-
low around 1 kHz and their relationship to the freely supported
top and back plates before assembly. This paper extends the
investigation to address the influence of the bridge, f -holes,
the island area between them and the bass bar and offset sound-
post on the vibro-acoustic modes of the violin up to 10 kHz.
These components introduce an acoustic filter between the
transverse bowed string forces at the top of the bridge and the
major radiating surfaces of the body shell, hence quality of
sound of an instrument.

Of particular interest is a rather broad peak in amplitudes
of the excited plate resonances often observed in the range 2-3
kHz, referred to as the BH or bridge hill feature. This was
originally associated with the in-plane mode of the top section
of the bridge rocking about its waist originally identified by
Reinicke [3] - typically at around 3 kHz, when mounted on a
rigid base.

Dunnwald [4] and Jansson[5] both noted the appearance
of such a feature in several classic Cremonese Italian violins.
However, Bissinger [6], observed little evidence for any such
correlation in measurements on 12 violins of widely varying
quality.

Jansson and Niewczyk[7] also observed the BH hill feature
on some instruments with a rigid bridge, with no rocking mode
resonance in the frequency range of interest. They therefore
concluded that it was not necessarily a property of the bridge
alone. Subsequently, Durup and Jansson [8], using simplified

inverted L-shaped “f -holes” cut into a rectangular flat plate,
identified a strong correlation of the BH feature with a flapping
resonance of the upper inner-corner “wings” of the island
area. Jansson and co-researchers [9] have recently identified
a similar mode from finite element computations for simply
modeled f -holes cut into both flat and arched rectangular
plates.

At high frequencies, there is a high density and large over-
lap of the damped resonances of the body shell. In such cases
a statistical approach can be used to describe the frequency-
averaged response of the plate modes, as described by Cremer
[10], Chpt.11 and Woodhouse[11].

Woodhouse used a SEA (Statistical Energy Analysis) ap-
proach to derive “skeleton” curves describing the smoothly
varying, mode-averaged, input filter response of a simply mod-
eled bridge mounted on a rectangular plate. In this model,
the bridge vibrations were strongly damped by the resistive,
thin plate, point driving-impedance of the supporting plates,
Zo =

√
3
4 cgmρh

2, where cgmρ is the geometric mean of the
along- and cross-grain characteristic impedances of longitu-
dinal waves and h is the plate thickness. The resulting losses
significantly broaden the rocking mode resonance. In addition,
the mutual plate deformations around the two feet of the bridge
result in a filter response dependent on their separation.

As recognized by Woodhouse, the original model ignored
the influence of the nearby free edges of the f -holes forming
an island area with its own localised modes between them,
though they were included for a parallel slit geometry in a later
hybrid SEA + FEA MSc project by Smith[12].

Such complications are automatically taken into account
in the present paper, which describes the use of finite element
computations to investigate and understand the influence of
the bridge and plate properties on the BI, bridge-island, input
filter and the additional role played by the offset soundpost and
bass bar. Hopefully, such understanding may provide a helpful
guide to luthiers in making and setting up any instrument of
the violin family to optimize its sound.

2. THE FINITE ELEMENT MODEL

The body shell geometry of the violin used in this paper is
identical to that described earlier papers [1, 2], except that
an island area is now defined between the upper and lower
bout areas of the top plate, as illustrated in Fig.1. The bridge
and island area are only weakly damped (η = 0.01), while
the remaining areas of the top and back plates are strongly
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Figure 1. The division of the top plate into an island area
separating the strongly damped lower and upper bout areas.

damped (η =1). The filter response of the bridge and island
area can then be computed as a smoothly varying function of
frequency uncomplicated by the multi-resonant response of
the body shell vibrations, as illustrated in figure 2.

This is similar to Woodhouse’s analytic “skeleton” curve
model [11], but with the coupling to the vibrating plate modes
now moved to the upper and lower boundaries of the island
area, rather than under the two bridge feet. As the energy
radiated from the ends of the island area rapidly decays to a
small value at the plate edges, we have simply pinned the top
plate edges. Coupling to the back plate modes is then only via
the soundpost, when present.

Because the influence of the along- to cross-grain elastic
anisotropy, A = Ealong/Ecross, is important for the localised
island area modes, the lengths of the top and back plates
have been decreased by A1/8 and widths increased by the
same factor maintaining the same area and geometric mean
Egm =

√
EalongEcross. At high frequencies, when arching

is no longer important, the bending wave solutions of the
transformed geometry then reproduce those of the unscaled
anisotropic thin plates (Cremer [10]§11.2). For a spruce top
plate with typical anisotropy of 20, a scaling factor of 1.45
has been used, and 1.22 for the maple back plate with typical
anisotropy of around 5.

A bridge of mass 2.2 g has been used, with its thickness
tapered from 4 mm at the bridge feet to 1.5 mm at the top.
A density of 660 kgm−3 has been assumed with an isotropic
Young’s constant of 4e9 GPa giving a rocking frequency res-
onance of the top half of the bridge about the waist of 3.08
kHz, when mounted on a rigid base. To distinguish between
the uncoupled bridge modes and those of the island area, addi-
tional computations were made with the rigidity of the bridge
increased by a factor of 104, with its mass unchanged. This
raises the rocking mode frequency far beyond any frequency
of interest.

Initially, an unscaled, simply-shaped, bass bar was used
of thickness 5 mm, maximum height 16 mm at its center and
length 12.5 cm running lengthwise under the bass foot of the
bridge. Exact dimensions are unimportant, as both the bridge
and bass bar properties have been varied over several orders
of magnitude to identify and understand their influence on the
bridge-island filter action.

The body shell is excited by a 1N sinusoidal force at the

top of the bridge in line with the bridge plane, either parallel
F‖ or perpendicular F⊥ to the supporting ribs. The resulting
amplitude and phase of the in-line velocity gives the input
admittance A. For brevity, only F‖ will be considered here
with plots of the admittance in phase with the exciting force.
This determines the rate of energy transfer from the vibrating
strings to the acoustically radiating body shell modes, apart
from small losses in the bridge and island area.

3. ISLAND AREA AND F-HOLES
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Figure 2. The computed in-line, in-phase, F‖ admittance,
for a rigid bridge mounted on the empty body shell, initially
without bass bar or f -holes, with both lightly (η = 0.01) and
heavily damped (η = 1) plate modes: (a) for a bridge with
rigidity increased by 104 and (b) with normal rigidity. Then,
after opening the f -holes, (c) with bridge rigidity increased by
104 and (d) for normal rigidity. The curves have been shifted
by 20 dB to identify the separate characteristics. The mode
shapes to the right of the plot are the dominant resonant island
area modes, while those below are the in-plane resonances of
the bridge resting on a rigid base including the rocking mode
at 3 kHz.

Figure 2 illustrates how heavily damping the body shell
modes reveals the underlying frequency dependent filtering
of the bridge-island area. The measurements shown are for
an isotropic top plate before the plates were scaled to account
for anisotropy. The upper two sets of curves illustrate the
admittances of the empty body shell before the f -holes are
cut into the top plate. First in (a), for a rigid bridge with the
relatively featureless admittance determined by the energy
radiated from under the two feet towards the outer edges of
the top plate and in (b), with a normal bridge resulting in the
superposition of two rather broad resonances at a significantly
lower frequency than those of the bridge alone mounted on
a rigid base, which are also illustrated. The rigidly mounted
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bridge modes are the previously described rocking mode at
∼ 3 kHz and a higher frequency mode at ∼ 7 kHz involving
bending of the lower areas of the bridge rotating in anti-phase
with the top of the bridge.

The lower two curves illustrate the frequency dependence
of the admittance at the top of the bridge with f -holes cut
into the top plate. Figure (c) illustrates the admittance for a
rigid bridge, with two strong broad resonances centered on
∼ 500 and 1.8 kHz. These arise from the resonant excitation
of the first two intrinsic island area modes illustrated to the
right of the plot. The lowest frequency mode is a transverse
standing wave across the width of the island area confined
approximately to its length. This mode will couple to many
anti-symmetric modes of the body shell at both low and high
frequencies. The resonance at around 1.8 kHz is equivalent to
that of the “flapping” inner-wing mode originally identified in
highly simplified f -hole structures by Durup and Jansson[8].

Unsurprisingly, there is no evidence in any of these plots
of a strongly peaked resonance at the ”rocking” frequency of
the rigidly supported bridge. This is because the resonance
is spread out over a very wide range of frequencies by its
damping and coupling to the plate modes. It is therefore
important to understand the influence on the admittance as the
coupling between the bridge and island area is varied.

4. BRIDGE-ISLAND COUPLING
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Figure 3. Dependence of the in-line, in-phase, F‖ admittance
of a tapered bridge of mass 2.2 g on the top plate island area
of the body shell without bass bar or soundpost, as its mass
and density are scaled by factors 0.01, 0.1, 0.3, 0.5, 1 and 2
from their unscaled value leaving the 3 kHz rigidly supported
bridge rocking frequency unchanged. The bridge-island mode
shapes are illustrated for frequencies just below their resonant
peaks. The dash-dotted curve is for a rigid unscaled bridge
mass with in-plane rocking frequency 100 times higher.

Consider first the in-line point admittance Ainput at the
top of the bridge, for a central driving force F⊥eiωt exciting
the bouncing mode of the bridge coupled to the localised
symmetric modes of the island area. This can be written as

Ainput =
Aisland + iω/mω2

o

[(1− ω2/ω2
o) + iωmAisland]

. (1)

Aisland is the effective admittance of the local island area
modes under the two feet of the bridge, which are strongly
damped by energy radiated into the upper and lower bouts of
the top plate, while m is the effective mass of the bouncing
mode of the rigidly supported bridge with ωo = 2πfbouncing.
An equivalent expression describes the admittance for F‖, with
appropriate Ainput, m and rocking frequency.

The computed admittance is illustrated in Figure 3 for
F‖ exciting the heavily damped, anti-symmetric, body shell
modes (without offset soundpost or bass bar), as the Young’s
modulus and density of the bridge are simultaneously scaled
by the same wide-ranging factor, bs = 0.01 to 2, maintaining
frocking constant. The coupling of the bridge to the island area
results in markedly different admittance curves from those for
the bridge alone [11].

For the very light and flexible bridge (bs=0.01), the ad-
mittance at the top of the bridge is dominated by that of the
bridge alone, with a strongly peaked resonance just above the
rigidly supported bridge rocking frequency at 3.0 kHz. But
as the admittance of the rocking bridge approaches that of the
island area on which is stands, their modes of vibrations are
strongly coupled together resulting in the illustrated veering
and splitting of the resonant frequencies and damping of the
normal modes describing their coupled vibrations.

The dash-dotted curve is for a rigid bridge of unscaled
mass, but rocking frequency increased by a factor of 100. This
illustrates the unperturbed resonances of the localized island
area modes and the decrease in amplitude at higher frequencies
from the inertial mass of the rocking bridge.

The lowest frequency peak in the admittance at ∼ 400 Hz
involves the initially rigid-body twisting vibrations of the is-
land area coupled to the vibrations of the upper and lower bouts
of the top plate. This transforms with increasing frequency
into a strongly localized transverse bending mode of the island
area. The strong, but relatively weakly damped resonance, just
below 2 kHz involves the rigid body and rocking vibrations
of the bridge vibrating in anti-phase with the “flapping” res-
onances inner wings of the island area, identified earlier by
Durup and Jansson [8] for highly simplified f -hole shapes on
a flat rectangular plate. The strongly damped resonance above
the weakly coupled “rocking” 3 kHz frequency of the bridge
rises to around 4 kHz, with the bridge now coupled to the next
highest frequency transverse bending mode of the island area,
with the top of the bridge now rocking in anti-phase with the
top plate under its feet.

5. BASS BAR AND OFFSET SOUNDPOST

The addition of the bass bar and offset sound post has a very
strong influence on the modes of the island area, hence cou-
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Figure 4. Influence of the bass bar and offset sound post on
the BI admittance input filter (+bb+sp), the sound post alone
(+sp) with bass bar removed and bass bar alone (+sb) with
soundpost removed.

pling to the plate modes and sound of an instrument. Our
model enables the contributions of the bass bar and offset
soundpost to the overall filtering action of the bridge-island
area to be investigated individually, as their coupling strengths
are varied independently from zero to typical normal values.
Likewise, the influence of arching, anisotropic Young’s mod-
uli, plate and bridge masses and rigidity can all be varied in a
similar way - to be described in a more detailed account of the
present investigation.

Here, we simply consider the influence of the bass bar
and soundpost on the BI input filter, starting first with them
both in place at full coupling strength and then removing them
separately, to leave just the sound post or bass bar in place, as
illustrated in figure 4. With both bass bar and soundpost in
place, the computations reveal a pronounced BI-hill feature,
with a very broad resonant response similar to the observed
BH feature when present. The illustrated mode shape is clearly
that of a very strongly damped normal mode, with the bridge
rocking in anti-phase with the transverse vibrations of the
island area. This clearly involves the inner-wings flapping
resonance. However, the mode is slightly asymmetric, which
is not surprising, as the bass bar and soundpost introduce
asymmetry in opposite directions, which will only compensate
for each other by accident.

In contrast, when only the bass bar or soundpost is present,
the strong mid-frequency resonance disappears, with almost all
the plate activity now concentrated in the region of the flapping
inner-wing island area regions, with a top plate thickness de-
pendence to be published later just below 2 kHz. Although the
resonant frequencies are very similar, the modes are strongly
asymmetric, with the vibrational amplitudes on the opposite

side of the island always larger than close to the soundpost
or bass bar, which tend to create nodal areas around or along
them.

Figure 4 suggests that the input filter involving the local-
ized vibrations of both the bridge and island area will strongly
influence both the intensity and tonal balance of sound for all
members of the violin family. This in turn will be strongly
dependent on the offset soundpost and bass bar, “tuned” to
balance the asymmetry induced in opposite directions. This
explains why bass bar adjustments can play such a crucial role
in the quality of sound of an instrument - as widely recog-
nized by luthiers when setting up an instrument to optimize its
sound.

Measurements are now required to test the predictions of
the above model.
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