Question	Marking Guidance	Mark	Comments	
1(a)	(Total number of) protons and neutrons (in nucleus of atom)	1	(number of) nucleons	
1(b)	Zn	1	Do not allow Zn ⁻¹ or Zn ⁺¹ or ZN Ignore numbers	
1(c)(i)	P = ionise (sample) Q = accelerate (sample)	1 1	Allow removing an electron / forms (+) ions Allow speeds (ions) up Penalise molecules / atoms	
1(c)(ii)	<u>m/z</u> (relative) <u>abundance</u> / (relative) <u>intensity</u>	1 1	Allow mass / charge QoL Allow M1 + M2 in any order	
1(d)(i)	$\frac{206 + 207 + (208 \times 2)}{4} = \frac{(829)}{4}$ $= \frac{207.3}{4}$	1 1 1	M1 = topline M2 = ÷ 4 Only 207.3 = 3 marks	
1(d)(ii)	Lead/Pb	1	Not PB	
1(d)(iii)	<u>Same number</u> of electrons (in outer shell) / <u>same</u> electronic configuration	1	gnore electrons determine chemical properties gnore reference to p and n if correct Penalise if incorrect	
Question	Marking Guidance	Mark	Comments	
2(a)(i)	Higher than P	1		
2(a)(ii)	1s² 2s²2p ⁶ 3s¹	1	Allow any order	
2(a)(iii)	$\begin{array}{l} Al^{*}(\mathbf{g}) \ + \ \mathbf{e}^{\ (\cdot)} \ \longrightarrow \ Al^{2*}(\mathbf{g}) \ + \ 2\mathbf{e}^{(\cdot)} \\ OR \\ Al^{*}(\mathbf{g}) \ \longrightarrow \ Al^{2*}(\mathbf{g}) \ + \ \mathbf{e}^{(\cdot)} \\ OR \\ Al^{*}(\mathbf{g}) \ - \ \mathbf{e}^{(\cdot)} \ \longrightarrow \ Al^{2*}(\mathbf{g}) \end{array}$	1		
2(a)(iv)	Electron in Si (removed from) (3)p orbital / electron (removed) from higher energy orbital or sub-shell / <u>electron</u> in silicon is more shielded	1	Accept converse arguments relating to Al Penalise incorrect p-orbital	
2(b)	Sodium / Na <u>Electron</u> (removed) from the 2 nd shell / 2p (orbital)	1 1	Allow Na [*] M2 is dependent on M1 Allow electron from <u>shell</u> nearer the nucleus (so more attracti	
2(c)	Silicon / Si	1	Not SI	
2(d)	Heat or energy needed to overcome the attraction between the (negative) electron and the (positive) nucleus or	1	Not breaking bonds QoL	

Question	Marking Guidance	Mark	Comments	
3(a)(i)	The power of an <u>atom</u> or <u>nucleus</u> to withdraw or attract electrons <i>OR</i> electron density <i>OR</i> a pair of electrons (towards itself)	1	Ignore retain	
	In a <u>covalent</u> bond	1		
3(a)(ii)	More protons / bigger nuclear charge	1		
	Same or similar shielding / electrons in the same shell or principal energy level / atoms get smaller	1	Not same sub-shell Ignore more electrons	
3(b)	lonic		If not ionic then CE = 0/3 If blank lose M1 and mark on	
	Strong or many or lots of (electrostatic) <u>attractions</u> (between ions)		If molecules / IMF / metallic / atoms lose M2 + M3, penalise incorrect ions by 1 mark	
	Between + and – ions / between Li* and F ions / oppositely charged ions	1	Allow strong (ionic) bonds for max 1 out of M2 and M3	
3(c)	Small electronegativity difference / difference = 0.5	1	Must be comparative	
			Allow 2 non-metals	
3(d)(i)	(simple) <u>molecular</u>	1	Ignore simple covalent	
3(d)(ii)	$OF_2 + H_2O \longrightarrow O_2 + 2HF$		Ignore state symbols Allow multiples Allow OF ₂ written as F ₂ O	
3(d)(iii)	45.7% O	1		
	$ \begin{array}{ccc} (& O & F \\ (& \frac{45.7}{16} & \frac{54.3}{19}) \\ (& 16 & 19 \\ (& 2.85 & 2.85) \\ (& 1 & 1 \\ \end{array}) $	1	If students get M2 upside down lose M2 + M3 Check that students who get correct answer divide by 16 and 19 (not 8 and 9). If dividing by 8 and 9 lose M2 and M3 but could allocate M4 ie max 2	
	EF = <u>OF or FO</u>	1	Calculation of OF by other correct method = 3 marks Penalise Fl by 1 mark	
	MF (= $70.0/35$) = O_2F_2 or F_2O_2	1		

4)			
estion	Marking Guidance	Mark	Comments
5(a)	P = 100 000 Pa and T = 298 K	1	Wrong conversion of V or incorrect conversion of P/T lose M1 + M3
	n = <u>PV</u> or <u>100 000 x 4.31</u> RT <u>8.31 x 298</u>	1	If not rearranged correctly then cannot score M2 and M3
	n(total) = 174(.044)	1	
	n (NO) = <u>69.6</u>	1	Allow student's M3 x 4/10 but must be to 3 significant figures
(b)(i)	<u>3000</u> 17	1	Allow answer to 2 significant figures or more
	176.5	1	Allow 176–177 But if answer = 0.176 – 0.18 (from 3/17) then allow 1 mark

176.47 x 46 = 8117.62	1	M1 is for the answer to (b)(i) x 46. But lose this mark if 46 ÷ 2 at any stage However if 92 ÷ 2 allow M1			
8117.62 x <u>80</u> (= 6494 g) 100	1	M2 is for M1 x 80/100			
<u>6494</u> = 6.5 1000	1	M3 is for the answer to M2 ÷ 1000 to min 2 significant figures (kg)			
OR					
If 163 mol used: 163 x 46 = 7498 (1)					
7498 x <u>80</u> = 5998.4 g (1) 100					
6.00 kg (1)					
	$8117.62 \times \frac{80}{100} (= 6494 \text{ g})$ $\frac{6494}{1000} = 6.5$ 1000 OR If 163 mol used: 163 x 46 = 7498 (1) 7498 x $\frac{80}{100} = 5998.4 \text{ g} (1)$	$8117.62 \times \underline{80} (= 6494 \text{ g}) $ $\frac{6494}{100} = 6.5 $ 1 0 0 R If 163 mol used: 163 x 46 = 7498 (1) 7498 x <u>80</u> = 5998.4 g (1) 10			

(C)	$0.543 \times \frac{2}{3}$ (= 0.362)	1	If not $x \frac{2}{3}$ CE = 0/2
	$0.362 \times \frac{1000}{250} = 1.45 \text{ (mol dm}^{-3}\text{)}$	1	Allow 1.447-1.5 (mol dm³) for 2 marks
(d)	NO_2 contributes to acid rain / is an acid gas / forms HNO ₃ / NO_2 is toxic / photochemical smog		Ignore references to water, breathing problems and ozone layer. Not greenhouse gas
(e)	Ensure the ammonia is used up / ensure complete reaction or combustion OR Maximise the yield of nitric acid or products	1	
(f)	Neutralisation	1	Allow acid vs alkali or acid base reaction

5)

stion	Marking Guidance	Mark	Comments
<u>a</u>)		1	Mark is for 3 As-Cl bonds and 1 lone pair
	(Trigonal) pyramid(al) / tetrahedral	1	Allow triangular pyramid
	cı cı	1	Mark is for 2 Cl-Cl bonds and 2 lone pairs Do not penalise if + not shown
	Bent / V-shaped / triangular	1	Not trigonal
b)	There are 4 bonds or 4 pairs of electrons (around As) (Electron pairs / bonds) repel equally	1 1	Can show in a diagram. If lone pair included in shape, CE = 0/2 QoL

6	1
n)
\sim	/

Q	Part	Sub Part	Marking Guidance	Mark	Comments
8	а	i	$2CuFeS_2 + 2SiO_2 + 4O_2 \longrightarrow Cu_2S + 2FeSiO_3 + 3SO_2$	1	
8	а	li	Acid rain	1	
			OR		
			an effect either from acid rain or from an acidic gas in the atmosphere		
8	а	iii	SO ₂ could be used to make H ₂ SO ₄	1	
			OR		
			to make gypsum / plaster or CaSO ₄ (xH ₂ O)		
8	b		$Cu_2S + 2O_2 \longrightarrow 2CuO + SO_2$	1	Or multiples Ignore state symbols
8	С		2CuO + C → 2Cu + CO ₂	1	Or multiples Ignore state symbols
			OR		
			CuO + C Cu + CO		
8	d	i	Any one from the following two ONLY (Scrap) iron is cheap Low energy requirement	1	Apply the list principle Not "less energy"
8	d	ï	$Fe + Cu^{2+} \longrightarrow Fe^{2+} + Cu$	1	Or multiples Ignore state symbols