

1	(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark Note: A definition for enthalpy change of formation will receive no marks	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid $\text { IGNORE: } 2 \mathrm{~K}^{+}(\mathrm{g})+\mathrm{S}^{2-}(\mathrm{g}) \longrightarrow \mathrm{K}_{2} \mathrm{~S}(\mathrm{~s})$ (question asks for words) ALLOW 1 mark (special case) for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions)

1	(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - $2116\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $\begin{aligned} & -381-(2 \times+89+279+2 \times+419-200+640) \checkmark \\ & -381-1735 \\ & =-2116 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors ALLOW for 1 mark ONE mistake with sign OR use of 2 : -2027 (2×89 not used for K) -1697 (2×419 not used for K) -2516 (+200 rather than -200 for S 1st electron affinity) (+)2116 (wrong sign) -1354 (+381 instead of -381) (+)1354 (+1735 instead of -1735) -836 (-640 instead of +640) $-1558(-279$ instead of +279$)$ $-1760(-2 \times 89$ instead of $+2 \times 89)$ $-439(-2 \times 419$ instead of $+2 \times 419)$ -2120 (rounded to 3SF) For other answers, check for a single transcription error or calculator error which could merit 1 mark DO NOT ALLOW any other answers, e.g. -1608 (2 errors: $\mathbf{2 \times 8 9}$ and $\mathbf{2 \times 4 1 9}$ not used for K) -846 (3 errors:)

Question			Answer	Marks	Guidance
2	(a)	(i)	(entropy) decreases AND (solid/ice has) less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random molecules \checkmark	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered
2	(a)	(ii)	(entropy) increases AND $\left(\mathrm{CO}_{2}\right)$ gas is formed \checkmark Could be from equation with $\mathrm{CO}_{2}(\mathrm{~g})$	1	increases and reason required for mark ASSUME gas is CO_{2} unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H_{2}) ALLOW more gas
2	(a)	(iii)	entropy decreases AND $3 \mathrm{~mol} \mathrm{O}_{2}$ form $2 \mathrm{~mol} \mathrm{O}_{3}$ OR $3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}$ OR 3 mol gas form 2 mol gas	1	decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. $11 / 2 \mathrm{O}_{2} \rightarrow \mathrm{O}_{3} ; \quad \mathrm{O}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{O}_{3}$ ALLOW $\mathrm{O}_{2}+\mathrm{O} \rightarrow \mathrm{O}_{3}$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to $\mathrm{O}_{2}+\mathrm{O} \rightarrow \mathrm{O}_{3}$ IGNORE reaction forms fewer moles/molecules

2	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks $\begin{aligned} & \Delta S=(33+3 \times 189)-(76+3 \times 131) \\ & =(+) 131\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark \\ & \Delta G=115-(298 \times 0.131) \\ & =(+) 75.962 \text { OR } 75.96 \text { OR } 76.0 \text { OR } 76\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	DO NOT ALLOW -131 ALLOW ECF from incorrect calculated value of ΔS
2	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=878$ OR 877.9 OR 877.86, award 2 marks (Minimum temperature when) $\Delta G=0 \mathbf{O R} \Delta H-T \Delta S=0$ OR (For feasibility) $\Delta G=0$ OR $\Delta G<0$ OR $\Delta H-T \Delta S<0$ OR $T=\frac{\square H}{\square S} \checkmark$ $T=\frac{115}{0.131}=878 \mathrm{~K} \checkmark$	2	ALLOW total entropy statement: $\Delta S(\text { total })=0 \text { OR } \Delta S \text { (total) }>0$ ALLOW ECF from incorrect calculated value of ΔS from 2(c)(i) ALLOW 878 up to calculator value of 877.862595 correctly rounded
			Total	9	

Question		Answer	Marks	Guidance
$\mathbf{3}$	(a)		$\left(K_{\mathrm{C}}=\right) \frac{\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]^{2}}$ $\mathbf{1}$	Square brackets are essential State symbols not required. IGNORE incorrect state symbols
$\mathbf{3}$	(b)	(i)	amount of $\mathrm{H}_{2}=3 \times 0.168$ $=0.504(\mathrm{~mol})$	$\mathbf{1}$

3	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=0.153 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$, award 3 marks IF answer $=0.153$ with incorrect units, award 2 marks IF answer from 3(b)(i) for $\boldsymbol{n}\left(\mathrm{H}_{2}\right) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n\left(\mathrm{H}_{2}\right)=0.504 \mathrm{~mol} \mathrm{dm}^{-3}$) $\left[\mathrm{CH}_{4}\right]=2.34 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=4.20 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\left[\mathrm{H}_{2}\right]=0.126\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ Calculation of K_{c} and units $K_{\mathrm{c}}=\frac{4.20 \times 10^{-2} \times(0.126)^{3}}{\left(2.34 \times 10^{-2}\right)^{2}}=0.153 \checkmark \mathrm{~mol}^{2} \mathrm{dm}^{-6} \checkmark$ 3 significant figures are required	3	FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW \div by 4 of equilibrium amounts in all expressions, i.e. ALLOW $\left[\mathrm{CH}_{4}\right]=\frac{9.36 \times 10^{-2}}{4} \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=\frac{0.168}{4} \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{H}_{2}\right]=\frac{0.504}{4} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ ALLOW ECF from incorrect concentrations or from moles From moles: $9.36 \times 10^{-2}, 0.168$ and $0.504, K_{\mathrm{c}}=2.45$ by ECF ALLOW dm ${ }^{-6} \mathrm{~mol}^{2}$ DO NOT ALLOW $\mathrm{mol}^{2} / \mathrm{dm}^{6}$ ALLOW ECF from incorrect K_{c} expression for both calculation and units COMMON ECF From 3(b)(i) answer of 0.1404, $K_{\mathrm{c}}=3.32 \times 10^{-3}$ 2 marks + units $K_{c}=0.0531$ No $\div 4$ throughout 1 mark + units
3	(b)	(iii)	$\begin{aligned} & \text { Initial amount of } \mathrm{CH}_{4} \\ & \text { amount of } \mathrm{CH}_{4}=9.36 \times 10^{-2}+2 \times 0.168 \\ & =0.4296 \mathrm{OR} 0.43(0)(\mathrm{mol}) \checkmark \end{aligned}$	1	NO ECF possible (all data given in question)

Question			Answer		Marks	Guidance
4	(a)	(i)	5 OR 5th (order) ${ }^{\checkmark}$		1	
4	(a)	(ii)	(stoichiometry in) rate equa (stoichiometry) in overall Collision unlikely with more	does not match ation \checkmark an 2 ions/species/particles	2	ALLOW moles/ions/species/particles/molecules/atoms throughout (i.e. emphasis on particles) IGNORE more reactants in overall equation If number of species is stated, ALLOW 3-5 only (rate equation contains 5 ions) DO NOT ALLOW negative ions would repel (there is a mixture of positive and negative ions) IGNORE more than two reactants collide (not related to rate equation)
4	(b)		 Straight upward line AND starting at $0,0 \checkmark$	 Curve with increasing gradient, AND starting at 0,0	2	ALLOW lines starting close to 0,0 ALLOW 2nd order line with 'straight' section early or late as long as an upward curve is seen between.
4	(c)	(i)	$\begin{aligned} & \hline 5.4(0) \checkmark \\ & 614.4(0) \checkmark \end{aligned}$		2	IGNORE sign ALLOW 614 OR 610

4	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=6.7 \times 10^{8}$ OR $670000000 \mathrm{dm}^{12} \mathrm{~mol}^{-4} \mathrm{~s}^{-1}$, award 3 marks IF answer $=6.7 \times 10^{8}$ OR 670000000 with incorrect units, award 2 marks k to >2 SF: $666666666.7 \checkmark$ OR k to 2 SF: 6.7×10^{8} OR 670000000 units: $\mathrm{dm}^{12} \mathrm{~mol}^{-4} \mathrm{~s}^{-1} \checkmark$	3	ALLOW ECF from incorrect initial rates if 1 st experimental results have not been used. (Look to 4(c)(i) to check) i.e. IF other rows have been used, then calculate the rate constant from data chosen. For k, ALLOW 1 mark for the following: $6.6 \times 10^{8} \text { recurring }$ 6.6×10^{8} 2 SF answer for k BUT one power of 10 out i.e. 6.7×10^{9} OR 6.7×10^{7} ALLOW units in any order, e.g. $\mathrm{mol}^{-4} \mathrm{dm}^{12} \mathrm{~s}^{-1}$
4	(c)	(iii)	$\begin{aligned} & \left(K_{\mathrm{a}}=\right) 10^{-3.75} \text { OR } 1.78 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark} \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{1.78 \times 10^{-4} \times 0.0200}} \\ & =1.89 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \end{aligned}$ $\begin{aligned} & \text { initial rate }=6.7 \times 10^{8} \times 0.01 \times 0.015^{2} \times\left(1.89 \times 10^{-3}\right)^{2} \\ & =5.33 \times 10^{-3} \text { to } 5.38 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \\ & \text { OR } 5.3 \times 10^{-3} \text { to } 5.4 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \checkmark \end{aligned}$ Actual value will depend on amount of acceptable rounding in steps and whether figures kept in calculator even if rounding is written down. ALLOW any value in range given above.	3	FULL ANNOTATIONS MUST BE USED For ALL marks, ALLOW 2 SF up to calculator value correctly rounded $1.77827941 \times 10^{-4}$ ALLOW $\sqrt{10^{-3.75} \times 0.0200}$ for first marking point ALLOW $1.88 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW ECF from calculated $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$ and calculated answer for k from 4(c)(ii) e.g. If no square root taken, $\left[\mathrm{H}^{+}\right]=3.56 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ and rate $=1.91 \times 10^{-8} \mathbf{O R} 1.9 \times 10^{-8}$ by ECF
			Total	13	

5	(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co^{3+} DO NOT ALLOW metal (complex contains Co^{3+}) Electron/lone pair on N OR NH_{2} (groups) \checkmark	2	ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' Two is required for 1st marking point Two can be implied using words such as 'both' or 'each' For metal ion, ALLOW transition (metal) ion Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
5	(b)	(ii)	$\left.\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}\right]_{2}\right]^{+} \checkmark$	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square brackets ALLOW $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+} \mathrm{OR}\left[\mathrm{CoC}_{4} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Cl}_{2}\right]^{+}$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$simplifies question Within formula, ALLOW(Cl) $)_{2},\left(\mathrm{Cl}_{2}\right)$ ALLOW CO Within the context of the question, CO is Co
5	(b)	(iii)	$6 \checkmark$	1	

5 (b) (iv)

5	(c)	(i)	$\mathrm{O}_{2} /$ oxygen bonds to $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) \checkmark$ $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II})$ essential for 1st marking point (When required,) O_{2} substituted $\mathbf{O R} \mathrm{O}_{2}$ released \checkmark Fe^{2+} not required for 2nd marking point (e.g. IGNORE Fe)	2	ASSUME that 'it' refers to oxygen ALLOW O_{2} binds to $\mathrm{Fe}^{2+} \mathbf{O R} \mathrm{O}_{2}$ donates electron pair to Fe^{2+} OR O_{2} is a ligand with Fe^{2+} IGNORE O_{2} reacts with $\mathrm{Fe}^{2+} \mathbf{O R} \mathrm{O}_{2}$ is around Fe^{2+} ALLOW bond to O_{2} breaks when O_{2} required OR $\mathrm{H}_{2} \mathrm{O}$ replaces O_{2} OR vice versa ALLOW CO_{2} replaces O_{2} OR vice versa ALLOW O_{2} bonds/binds reversibly
5	(c)	(ii)	$\left(K_{\text {stab }}=\right) \frac{\left[\mathrm{HbO}_{2}(\mathrm{aq})\right]}{[\mathrm{Hb}(\mathrm{aq})]\left[\mathrm{O}_{2}(\mathrm{aq})\right]}$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
5	(c)	(iii)	Both marks require a comparison Stability constant $/ K_{\text {stab }}$ value with CO is greater (than with complex in O_{2}) \checkmark (Coordinate) bond with CO is stronger (than O_{2}) OR CO binds more strongly	2	IGNORE (complex with) CO is more stable ALLOW bond with CO is less likely to break (than O_{2}) ORCO is a stronger ligand (than O_{2}) OR CO has greater affinity for ion/metal/haemoglobin (than O_{2}) ALLOW CO bond formation is irreversible OR CO is not able to break away IGNORE CO bonds more easily OR CO complex forms more easily
Total				18	

Question			Answer	Marks	Guidance
6	(a)		$\underset{\text { Acid 1 }}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\text { Base 2 }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { Acid 2 }}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\text { Base } 1 \checkmark}{\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark}$	2	IGNORE state symbols (even if incorrect) ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid-base pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, i.e. $\underset{\text { Base 2 }}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\text { Acid 1 }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { Acid 2 }}{\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{OH}^{-} \mathbf{x}} \text { Base } 1 \checkmark$ NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF i.e., NO ECF from impossible chemistry
6	(b)	(i)	Water dissociates/ionises OR $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$ OR $2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$	1	ALLOW $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$ OR $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$ IGNORE breaking for dissociation IGNORE water contains H^{+}and OH^{-} IGNORE $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$i.e. no equilibrium sign IGNORE $2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$i.e. no equilibrium sign

6	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=1.15 \times 10^{-11}$, award 2 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-3.06}=8.71 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \\ & {\left[\mathrm{OH}^{-}\right]=\frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}}=1.15 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}} \end{aligned}$ ALLOW answer to two or more significant figures 2SF: $1.1 \times 10^{-11} ; 4 \mathrm{SF}: 1.148 \times 10^{-11}$; calculator $1.148153621 \times 10^{-11}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359×10^{-4} correctly rounded ALLOW alternative approach using pOH : $\begin{aligned} & \mathrm{pOH}=14-3.06=10.94 \checkmark \\ & {\left[\mathrm{OH}^{-}\right]=10^{-10.94}=1.15 \times 10^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark} \end{aligned}$
6	(c)	(i)	$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CaCO}_{3} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols ALLOW \rightleftharpoons provided that reactants on LHS For $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ ALLOW $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2} \mathrm{Ca}^{2+}$ BUT DO NOT ALLOW if either charge is missing or incorrect

6	(c)	(ii)	solution contains $\mathrm{CH}_{3} \mathrm{COOH}$ AND $\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$	1	ALLOW names: ethanoic acid for $\mathrm{CH}_{3} \mathrm{COOH}$ ethanoate for $\mathrm{CH}_{3} \mathrm{COO}^{-}$ ALLOW calcium ethanoate $\mathbf{O R}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$ for $\mathrm{CH}_{3} \mathrm{COO}^{-}$ IGNORE 'acid, salt, conjugate base; responses must identify the acid and conjugate base as ethanoic acid and ethanoate IGNORE ethanoic acid is in excess (in question) BUT DO ALLOW some ethanoic acid is left over/present/some ethanoic acid has reacted IGNORE equilibrium: $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ Dissociation of ethanoic acid only

6	(c)	(iii)	Quality of written communication, QWC		FULL ANNOTATIONS MUST BE USED
			system allows the buffer solution to control the pH on addition of H^{+}and OH^{-}(see below)		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
			$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$		DO NOT ALLOW HA $\rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ DO NOT ALLOW more than one equilibrium equation.
					ALLOW response in terms of $\mathrm{H}^{+}, \mathrm{A}^{-}$and HA
			$\mathrm{OR} \mathrm{CH} 33 \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow$ OR added alkali reacts with H^{+} $\mathrm{ORH}^{+}+\mathrm{OH}^{-} \rightarrow \checkmark$		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
			Equilibrium \rightarrow right OR Equilibrium $\rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$ (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
			$\mathrm{CH}_{3} \mathrm{COO}^{-}$reacts with added acid \checkmark	5	
			Equilibrium \rightarrow left OR Equilibrium $\rightarrow \mathrm{CH}_{3} \mathrm{COOH} \checkmark$ (QWC)		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid

Question			Answer	Marks	Guidance
7	(a)		Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode \checkmark Standard conditions Units essential Temperature of $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND (solution) concentrations of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND pressure of 100 kPa OR $10^{5} \mathrm{~Pa}$ OR $1 \mathrm{bar} \checkmark$	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
7	(b)	(i)	$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \checkmark$	1	State symbols not required ALLOW \rightleftharpoons provided that reactants on LHS
7	(b)	(ii)	Assume $\mathrm{Cu}^{2+} \mid \mathbf{C u}$ OR Cu half cell unless otherwise stated. $\left[\mathrm{Cu}^{2+}\right]$ decreases $\mathbf{O R}<1 \mathrm{~mol} \mathrm{dm}^{-3}$ AND Equilibrium (shown in table) shifts to left \checkmark more electrons are released by $\mathrm{Cu} \checkmark$ The cell has a bigger difference in $E \checkmark$	3	FULL ANNOTATIONS MUST BE USED ALLOW $\left[\mathrm{Cu}^{2+}\right]$ less than standard concentration $/ 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ DO NOT ALLOW water reacts with $\mathrm{Cu}^{2+} \mathbf{O R C u}$ ALLOW E (for $\mathrm{Cu}^{2+} \mid \mathrm{Cu}$) is less positive / more negative /decreases IGNORE standard electrode potential (Cell no longer standard) IGNORE E° decreases CARE DO NOT ALLOW statements about silver E changing (CON) IGNORE just 'cell potential increases' (in the question) The final mark is more subtle and is a consequence of the less positive E value of the copper half cell

7	(c)	(i)	no/less CO_{2} OR $\mathrm{H}_{2} \mathrm{O}$ is only product OR greater efficiency \checkmark	1	IGNORE less pollution IGNORE less carbon emissions IGNORE less fossil fuels used IGNORE no/less greenhouse gas OR no global warming ($\mathrm{H}_{2} \mathrm{O}$ vapour is a greenhouse gas)
7	(c)	(ii)	liquefied/as a liquid AND under pressure/pressurised \checkmark	1	IGNORE adsorption or absorption IGNORE low temperature DO NOT ALLOW liquidise processes are described in the question
7	(d)	(i)	$E=-2.31$ (V) \checkmark	1	- sign AND 2.31 required for the mark
7	(d)	(ii)	$\begin{aligned} & 4 \mathrm{Al}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq}) \\ & \text { species } \checkmark \\ & \text { balance } \checkmark \end{aligned}$	2	IGNORE state symbols ALLOW multiples ALLOW 1 mark for an equation in which OH^{-}are balanced but have not been cancelled, e.g. $4 \mathrm{Al}(\mathrm{~s})+16 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+\underset{4 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})}{6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \rightarrow 12 \mathrm{OH}^{-}(\mathrm{aq})$ ALLOW 1 mark if charge on $\mathrm{Al}(\mathrm{OH})_{4}$ is omitted, i.e $4 \mathrm{Al}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{4}(\mathrm{aq})$ ALLOW 1 mark for an 'correct equation' reversed, i.e. $4 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq}) \rightarrow 4 \mathrm{Al}(\mathrm{~s})+4 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
			Total	11	

Question		Answer	Marks	Guidance
8	(a)	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}{ }^{2-}+6 \mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ First mark for all 6 species Second mark for balancing	2	ALLOW multiples ALLOW oxidation half equation for two marks $\mathrm{Fe}_{2} \mathrm{O}_{3}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$ Correct species would obtain 1 mark - question: equation for oxidation ALLOW variants forming H^{+}for 1 mark, e.g: $\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+5 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}{ }^{2-}+6 \mathrm{Cl}^{-}+5 \mathrm{H}^{+} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+5 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-}+5 \mathrm{HCl}+\mathrm{Cl}^{-} \end{aligned}$
8	(b)	$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{FeO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaFeO}_{4}(\mathrm{~s}) \checkmark$	1	Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or -2 for ionic charges
8	(c)	Reason can ONLY be correct from correct reducing agent reducing agent: $\left.\right\|^{-}$OR KI I' $^{-}$adds/donates/loses electrons AND to $\mathrm{FeO}_{4}{ }^{2-} \mathrm{OR}$ to $\mathrm{BaFeO}_{4} \mathrm{OR}$ to $\mathrm{Fe}(\mathrm{VI})$ or to $\mathrm{Fe}(+6) \checkmark$ ALLOW Fe(6+) OR Fe ${ }^{6+}$	2	IGNORE H ${ }^{+}$OR acidified ALLOW iodide/potassium iodide but DO NOT ALLOW iodine ALLOW I- loses electrons AND to form I_{2} ALLOW $\mathrm{Fe}(6+) \mathrm{OR} \mathrm{Fe}^{6+}$

8 (e)	gas: $\mathrm{O}_{2} \checkmark$ precipitate: $\mathrm{Fe}(\mathrm{OH})_{3} \checkmark$ equation: $2 \mathrm{FeO}_{4}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O} \quad \rightarrow 11 / 2 \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}+4 \mathrm{OH}^{-}$ $\mathrm{OR} 2 \mathrm{FeO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+} \rightarrow 11 / 2 \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}$	3	DO NOT ALLOW names IGNORE a balancing number shown before a formula ALLOW Fe $(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ ALLOW multiples ALLOW $2 \mathrm{FeO}_{4}{ }^{2-}+11 \mathrm{H}_{2} \mathrm{O} \rightarrow 11 / 2 \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+4 \mathrm{OH}^{-}$
	Total	12	

