$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2013 examination in GCE BIOLOGY - HUMAN BIOLOGY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Page
BY1 - Biology 1
BY2 - Biology 10
HB2 - Human Biology 18
BY4 - Biology 27
HB4 - Human Biology 36
BY5 - Biology 45

Question			Marking details	Marks Available
1.	(a)	(i)	A amino/amine ; B carboxyl;	2
		(ii)	variable group/side chain OR description of; NOT element/ hydrocarbon chain/ R group	1
	(b)	(i)	Dipeptide; NOT polypeptide	1
		(ii)	peptide (bond);	1
	(c)	(i)	hydrogen bonds; NOT H bond	1
		(ii)	Alpha/ a helix; NOT double helix	1
		(iii)	secondary/ 2° (structure) NOT second	1
			Question 1 total	[8]

Question			Marking details	Marks Available
2.	(a)	(i)	Lock and key;	1
		(ii)	Theory 1/ induced fit;	1
	(b)		Enzyme substrate complex; NOT ESC/ ES complex	1
	(c)		Lower the activation energy/eq;	1
	(d)		Enzyme/ active site is unchanged/can be re-used; NOT active sites are a specific shape unqualified	1
	(e)		Temperature (not heat); pH ; NOT acidity Enzyme concentration; Substrate concentration; NOT amount	3
	(f)		Intracellular: inside the cell + Extracellular:outside the cell; NOT inside body	1
			Question 2 total	[9]

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :--- | :--- | :---: |
| (a) | (b) | Root tip/ shoot tip/ meristem;
 AAnaphase;
 B Prophase;
 C Telophase;
 D Metaphase;
 (c) Interphase;
 It is the longest phase;
 (All cells) would be \{haploid/half the number of chromosomes\};
 NOT cells have fewer/ less chromosomes
 (All cells) would be genetically different;
 Question 4 Total | 2 |

Question			Marking details	Marks Available
5.	(a)	(i)	two layers/ double layer of phospholipids; NOT bilayer	1
			fatty acid;	1
		(iii)	Any 2 from: transport/ form hydrophilic pores/ active transport/ channel proteins/ facilitated diffusion; receptors/ cell recognition; enzyme systems;	2 max
	(b)		Decreased fluidity/ rigid membrane - cells/ membranes more easily damaged (as blood flows)/ cannot pass through capillaries so easily;	2
			Membrane proteins change shape / denatured \{carriers/ receptors/membrane enzymes\} - so \{reduced/no\} \{transport/movement\} of molecules;	
	(c)		Any 2 from: \{Unrestricted/ uncontrolled\} \{Cell division/mitosis\}; Forming a mass of cells/ tumour; Preventing \{normal cells/ organs\} from functioning;	2 max
			Question 5 Total	[8]

Question		Marking details	Marks Available
6.	(a)	Causes change in shape of enzyme/active site; So substrate no longer fits into active site; \{No/ fewer\} enzyme substrate complexes;	2 max
	(b)	\{(Insoluble) enzymes/ (enzyme) aggregates\} cannot pass through the filter/ ORA; So the product is uncontaminated with enzymes/ ORA;	2
	(c)	Can tolerate $\{$ higher temperatures/greater range of pHs ; NOT range of temperatures Easily recovered for reuse/ enzymes stay in aggregates/ reused qualified/ uncontaminated product/ separated from product; NOT reused unqualified/ enzymes reused Several enzymes can be used together; Easy addition/removal of enzymes;	3 max
	(d)	Any one from : Gel capsule/alginate beads/ gel beads; cellulose fibres; gel membrane; porous glass beads; NOT inert matrix unqualified/ encapsulation unqualified	1 max

Question			Marking details	Marks Available
7.	(a)	(i)	$\{0.0 \mathrm{M} /$ distilled water\} increase in mass and $\{1.0 \mathrm{M} /$ sucrose solution\} decrease in mass;	1
		(ii) (iii)	Turgid;	1
			Water moves out of the \{cell/ potato\};	3 max
			By osmosis;	
			The external solution has a \{lower water potential than the cell/is hypertonic/ more negative\}/ ORA ; Potato becomes flaccid/cells are plasmolysed;	
		(iv)(v)	Isotonic;	1
			1. Where the line crosses the $\{\mathrm{X} /$ horizontal axis $\}$ there is no change in \{mass/weight\};	3 max
			2. So $\boldsymbol{\Psi}_{\text {cell }}=\boldsymbol{\Psi}_{\text {external }}$ solution (can be expressed in words); 3. This is $\underline{0.3}(M)$ sucrose; (must be linked to point 1 or 2)	
			4. And converts to -860 kPa from the (conversion) table; 5. $\left(\right.$ So $\boldsymbol{\Psi}_{\text {cell }}$ potato $)=-860 \mathrm{kPa}$;	
	(b)			2
			- 1 mark for correct drawing of a plasmolysed plant cell(at any stage); (cell wall must be double line) - 1 mark for correct labelling of a plasmolysed plant cell (plasma membrane pulled away from cell wall - both labelled correctly/ accurately);	
			Question 7 Total	[11]

Quest	Marking details	Marks Available
(b)	A. Ref to DNA and RNA; B. Diagram/description of a nucleotide with correct labels/terms (phosphate \& pentose sugar \& nitrogenous/eq base); C. DNA named sugar Deoxyribose; must link to DNA D. Ref to purines and pyrimidines; E. Correct identification of purines and pyrimidines (Full names only); F. Ref to Uracil replacing thymine in RNA; G. Correct base pairing A-T, C-G (Allow letters;allow from diagram) H. Description/labelled diagram of double helix in DNA; I. Held together by H - bonding; J. Functions of DNA (i) replication in dividing cells; K. (ii) code/ template for protein synthesis; L. Description of RNA as a single chain/ strand (of nucleotides); NOT single helix M. Ref correct sugar Ribose in RNA; correctly linked N. mRNA carries genetic code from the nucleus to the ribosome; O. correct reference to tRNA/ribosomal RNA;	[10]

BIOLOGY BY2

Question			Marking details				Marks Available
1.	(a)	(i)(ii)					4
			Kingdom	Phylum	Class	Genus	
			$\begin{aligned} & \text { Planta(e)/ } \\ & \text { plant(s); } \end{aligned}$				
				Annelid(s)/ annelida			
				Vertebrate/ vertebrata/ chordate/ chordata;			
					Insect/ insecta;		
	(b)		A = Fungi; $B=$ Protoctist(a)/ protoctists/ protists; NOT protozoa A (reproduce by) spores/ hyphae/ mycelium/ chitin walls/ heterotrophic/ saprophytic/ eukaryotic; Accept description of saprophytic B membrane bound organelles present/ eukaryotic/ no tissue differentiation/ (mainly) single celled organisms/ unicellular; Question 1 total				2
							2
							[8]

Question			Marking details	Marks Available
2.	(a) (b)	(i)	Ioss of water vapour/ evaporation of water; from (surface of) leaf /through stomata; Accept lenticels TWO precautions and TWO reasons - Shoot cut under water/inserted under water/flood inside of apparatus with water/ assemble under water; to prevent air entering/ bubbles; - Shoot with large number of leaves; to ensure measurable rate of transpiration; - Avoid wetting leaves/ ensure leaves are dry; blocks stomata/ reduces rate of transpiration; - Leave time for apparatus to settle down; allow plant to adapt to new conditions/ to equilibrate; - Seal joints with Vaseline/ ensure screw clip is closed; to prevent air entering apparatus/ prevent leakage; - Ensure bubble set at appropriate position/ right hand end; to enable a (suitable) reading to be taken; Reference to not allowing air bubbles to enter $=1$ mark (if no precautions are given)	$\begin{gathered} 2 \\ 4 \text { max } \end{gathered}$
	(c)	(i) (ii)	Sun(light); Molecules of water moving together/ water pulled up; Because of cohesion of molecules; adhesion to (walls of) \{xylem/ hydrophilic lining/ vessel wall\}; root pressure \{forces/ pushes\} water upwards; IGNORE capillarity	$\begin{gathered} 1 \\ 2 \text { max } \end{gathered}$
	(d)	(i)	$\begin{aligned} & \mathrm{A}=\text { phloem; } \\ & \mathrm{B}=\text { xylem; } \end{aligned}$	2
		(ii)	$\{$ Xylem/ vascular tissue\} is at the centre/ xylem is star shaped/ central stele; NOT bundle No vascular bundles/ peripheral vascular bundles in stem; Endodermis visible in root/ no pith; Question 2 total	2 max [13]

Question		Marking details	Marks Available
(a)	Any 4 Intercostal muscles contract and ribs move up and out; Diaphragm (muscles) contract and diaphragm flattens; (Internal) volume of thorax increases; accept chest reject lungs Pressure in lungs/ thorax decreases; \{Higher/ difference in\} air pressure outside \{forces/ pushes/ moves/ drawn\} air into lungs;	4	
(b)	(i)	(blood flows across (gills/ filaments/ lamellae/ gill plates) in opposite direction to water; blood/ (oxygen) water always has more oxygen than blood \{diffusion/ concentration\} gradient maintained; oxygen passes from water into blood; across entire \{gill/ gas exchange\} surface; NOT longer higher saturation of blood with oxygen/ more oxygen taken up; (ii) Parallel (flow); (iii)	4
(c)Equilibrium is reached (part way across the gill plates/ lamellae)/\{diffusion/ concentration\} gradient not maintained; \{Lower percentage saturation with/ only saturation\} oxygen/ less oxygen uptake/ less diffusion of oxygen; NOT slower gills dry out; prevents oxygen from dissolving on surface of gills; gills may \{stick together/not open as easily/ collapse\}; decrease in surface area; (Explanation cannot be accepted alone)	2		

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available

\hline 4. \& (a) \& (i)
(ii)
(iii)
(iv)
(v)
(vi)
(i)
(ii)

(i)

(iii) \& \begin{tabular}{l}
C/ D;

K and F;

C;

E;

F

Herbivorous/ herbivore;

\{large/ridged/WM shape $\{$ \{molars/premolars $\}$ for grinding;

\{diastema/space with no teeth/ gap between teeth\} to assist with $\{$ chewing/ (tongue to) manipulate food/cud\};

\{well developed/ sharp/ long\} incisors for \{biting/ cutting/ slicing/ tearing\} (vegetation);

loose articulation/ jaw moves in a \{horizontal/ circular\} plane;

Very small/ no canines;

open roots to allow continuous growth of molars;

Four chambered stomach (NOT four stomachs) / rumen/ large caecum;

Contain cellulose digesting bacteria/ have cellulase producing bacteria; NOT cellulose eating bacteria Long gut \{to allow extra time for digestion of cellulose/ cellulose harder to digest\};

Cud is regurgitated for further chewing;

Question 4 Total

 \&

1
1
1
1
1
1

1

$3 \max$

2

[12]
\end{tabular}

\hline
\end{tabular}

| Question | | Marking details | Marks
 Available |
| :--- | :--- | :--- | :--- | :---: |
| 5. (a) | Parasites (are organisms that) live \{on/ in\} \{another
 organism/ host\} and obtain \{nourishment/ nutrients\} from
 it;
 at the expense of /causing harm to the host; | 2 | |
| (b) | (bttaches to gut wall by \{hooks and suckers/ scolex\};
 \{large/ high/ increased\} surface area to volume ratio; into
 \{digested products/ nutrients\} in host gut absorbed into
 tapeworm;
 short diffusion pathway;
 Question 5 Total | 3 max | |

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :---: | :--- | :---: |
| 6. (a) | (i) | sucrose is produced in (photosynthesising) leaf/ leaves
 are the source of sucrose;
 sucrose travels in phloem;
 phloem removed (by the ringing process);
 sucrose cannot flow to roots/ is blocked;
 amino acids/hormones/ florigen;
 (b) | 3 max |
| (c) | | sucrose used for \{cell wall formation/ cell division/ mitosis/
 respiration\};
 \{Less/ no\} sucrose used (by growing areas/sinks as they
 have been removed);
 therefore more will pass down stem; NOT accumulation | 2 max |
| sucrose not replaced from above (the ring);
 so concentration decreases;
 as movement towards root continues;
 and sucrose used in respiration/storage/ converted to
 starch/ growth/ active transport;
 Question 6 Total | [max | | |

Question			Marking details	Marks Available
7.	(a)		A. Fish/ amphibians show external fertilisation; B. Fertilised \{egg/ zygote/ embryo\} develops outside body of parent; C. Many eggs/ young produced; D. Ensures some survive; E. Reptiles / Bird / Mammals internal fertilisation; F. This allows gametes to be independent of water; G. Increased chance of fertilisation/ fewer gametes \{needed/ wasted\}; H. (Evolution of an) amniote egg; I. eggs surrounded by protective shell/ preventing dessication; J. Birds incubate eggs outside mothers body; K. Mammals - development inside mothers body; L. Nutrients/ oxygen via placenta; M. Young born well developed; N. Birds/ mammals exhibit parental care; O. Relationship between parental care and number of offspring produced;	[10]

Quest	Marking details	Marks Available
(b)	A. wall consists of three layers/ diagram of artery + vein labelled correctly; B. smooth endothelial (lining); C. to reduce friction; D. \{outer layer/ tunica externa\} of collagen (can be on diagram) E. to resist/prevent overstretching; F. artery has a thick wall to resist pressure; G. contain a thick layer of elastic tissue; H. \{ for elastic recoil/ small lumen\} to maintain pressure; I. Smooth muscles in \{small arteries/ arterioles\} \{regulate blood flow/pressure/ ref to vasoconstriction\}; J. arteries closer to the heart have more elastic tissue; K. semilunar valves in aorta/ pulmonary artery; L. Veins have valves to \{prevent backflow of blood/to maintain unidirectional flow\}; M. Walls are thin(ner) because blood at lower pressure; N. (skeletal) muscle contraction returns blood to heart; O. Large lumen reduces resistance to flow/ friction;	[10]

GCE HUMAN BIOLOGY - HB2

Question		Marking details	Marks Available	
$\mathbf{1}$	(a)	Endemic;	1	
	(b)	carrier;	1	
	(c)	vector;	1	
	(d)	bacteriostatic;	(e)	Infectious;
	Question 1 total	1		

Question		Marking details	Marks Available	
$\mathbf{2}$	(a)		Mammalia/ mammals/ mammalian; a group of organisms (with similar characteristics) that can interbreed; NOT breed alone/ reproduce and produce fertile offspring; (c)	2
(ceference to shape of skull/jaw/cranium/teeth being similar				
(allow converse for Gorilla);				
(ii)	Homo erectus; (erectus and sapiens) share same genus; allow converse Question 2 total	1		

Question		Marking details	Marks Available	
$\mathbf{5}$	(a)	A = collagen (fibres); Accept tunica externa/adventitia B = (elastic) muscle (layer); Accept tunica media C= endothelium; Accept tunica intima/ interna (bree correct 2 marks Two correct 1 mark	2	
(c)	(i)(High cholesterol diet) causes fat deposition/ atheroma/ plaques;NOT cholesterol Causes atherosclerosis; causes thrombosis/ blood clot; (i)	Smoking/stress/lack of exercise; Little change/ slight increase 1961-1971; Large increase / ref to nearly doubling \{1971-1981/ in 1981\}; Decrease 1981-2009 (decade on decade); to the same level as 1961; (better treatments) e.g. use of clot busting drugs/warfarin/ streptokinase/ any valid drug; Angioplasty; By-pass surgery; Improved \{awareness/ education\} as to risks of smoking / poor diet; Better/ improved monitoring qualified e.g. blood pressure checks/ cholesterol Question 5 Total	Max 3	1

Question			Marking details	Marks Available
6	(a) (b)		sanitation/ safe disposal of sewage/ good hygiene; provision of \{clean/ safe\} drinking water/ bottled water; vaccine; Reject-antibiotic use/ oral rehydration therapy	Max 2
		(i)	lipoprotein; lipopolysaccharide; (Accept: porins)	2
		(ii)	X = peptidoglycan/ murein;	1
		(iii)	red/ pink;	1
		(iv)	Penicillin prevents formation of \{cross linkages/peptidoglycan\} in cell wall; (Cholera) is a gram negative bacterium; therefore has very little peptidoglycan; lipopolysaccharide layer protects cell from penicillin action;	3
			Question 6 Total	[9]

| Question | | Marking details | Marks
 Available | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | (a) | | A.Endoparasite definition i.e. lives inside body of/ within
 host causing harm/at expense of host; | |

Question		Marking details	Marks Available
8	(b)	A. Oxygen combines with haemoglobin; B. to form oxyhaemoglobin; C. inside red blood cell; D. Ref to adaptation e.g. large SA/no nucleus/biconcave; E. Some carbon dioxide carried in RBC/ as carbaminohaemoglobin; F. Most carried as bicarbonate ions $/ \mathrm{HCO}_{3}{ }^{-}$; G. Conversion of CO_{2} to $\mathrm{HCO}_{3}{ }^{-}$(in RBC); H. HCO_{3} - carried dissolved in plasma; I. Ref to chloride shift; J. which maintains electrochemical neutrality; Max 7 K. (during exercise) increased carbon dioxide in blood; L. lowers pH of blood; M. haemoglobin's oxygen affinity reduced; N. Bohr effect/shift; O. \{causes oxyhaemoglobin to dissociate/ oxygen released more\} \{readily/easily\}; Max 3 Question 7 Total	[10]

GCE BIOLOGY - BY4

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :--- | :--- | :---: |
| $\mathbf{1}$ | (a) | effectors /\{carry out/ bring about\} the response/ react to a
 stimulus; | 1 |
| (b) | only have a nerve net /no CNS / (nerve fibres) non-myelinated/
 branching neurons/ narrower axons;
 NOT shorter neurons/ no reflex arc
 phytochrome;
 Question 1 total | 1 | |

Question			Marking details	Marks Available
2	(a)		axes correctly assigned with correct labels; appropriate linear scales; all points correctly plotted and joined with a curve or ruled straight lines; (tolerance $1 / 2$ small square)	3
	(b)		birth rate must be greater because \{population rose/ sensible explanation\};	1
	(c)	(i)	Any two from nesting / roosting sites (in oakwoods)/ space in habitat; NOT habitat destruction/ shelter source of food/ number of prey; mates; parasites / disease ;	2
		(ii)	Extreme climate/ severe weather / harsh winter /drought/ wind farms/fires/shooting/poisoning/pesticides/egg collecting/ habitat destruction/ deforestation/ flooding/ new top predator;	1
			Question 2 total	[7]

Question			Marking details	Marks Available
3	(a)	(i)	A;	1
		(ii)	A and D;	1
		(iii)		1
	(b)	(i)	\{RuBP/ 5C compound\} and carbon dioxide linked together / carbon dioxide is fixed with RuBP; RuBP carboxylase / RUBISCO \{is the enzyme / catalyses the reaction\}; unstable 6C \{substance/compound\} \{initially formed/ splits into two 3C\};	2 max
		(ii)	Glycerate 3 phosphate reduced; using reduced NADP; ATP also required (to supply energy) / Glycerate 3 phosphate is phosphorylated; \{reduced NADP / ATP\} from the light dependent reactions;	3 max
	(c)	(i)	some (triose phosphate) needed to \{regenerate/ make more\} RuBP;	1
		(ii)	six times;	1
			Question 3 Total	[10]

Question		Marking details	Marks Available	
4	(a)		(improves) aeration / ensures all parts of the culture receive oxygen; helps to mix the contents / prevent \{sedimentation/ clumping\}; improves contact with nutrients;	2
(b)	(i)(ii) Monitor pH; used to determine whether acid or alkali must be added; to maintain optimal pH/ pH required for growth; carbon dioxide; heat needed at the start to speed up \{enzyme reactions/	2		
(c)	(iii) growth/ metabolic rate\}; removal of heat produced by respiration/ more microbes at the end so more respiration/heat;	2		
(lompetition for nutrients/ oxygen; NOT food cower yield; toxic products; contamination of product; Question 4 Total	2			

Question			Marking details	Marks Available
5	(a)	(i)	phosphate / Pi / inorganic phosphate/iP/ $\mathrm{PO}_{4}{ }^{3-}$;	1
		(ii)	W is outer (mitochondrial) membrane; Z is the (mitochondrial) matrix;	2
		(iii)	most concentrated in part X ;	1
	(b)		(reduced NAD) supplies protons; and brings (high energy) electrons; electrons \{supply energy for proton pumping/ fuels proton pumps\};	2
	(c)	(i)	$\left.\begin{array}{l} P=A D P / A D P+P i \\ Q=A T P \end{array}\right\}$	1
		(ii)	cytoplasm/ cytosol;	1
		(iii)	glucose is phosphorylated by ATP; two phosphorylations / production of hexose/fructose (bi)phosphate; hexose (bi)phosphate is split (from 6C to two 3C);	3
	(d)	(i)	allows reduced NAD to be converted back to NAD/ regenerate reduced NAD/ without oxygen reduced NAD not converted to NAD by \{electron transport chain/krebs/ link reaction\}; allowing ATP production/ without oxygen no ATP production by oxidative phosphorylation; allows \{glycolysis/ substrate level phosphorylation\} to continue/ ORA; No O_{2} to act as the final \{hydrogen/ electron\} acceptor/ NADH \{must find an alternative hydrogen acceptor/ must use pyruvate\};	3
		(ii)	Only glycolysis required/ shorter metabolic pathways; oxygen supply too slow/ no need for oxygen \{supply/diffusion\}; no need to carry out Krebs cycle/ electron transport / oxidative phosphorylation; no need to build up a proton gradient; no need to transport pyruvate into the mitochondrion;	Max 1
			Question 5 Total	[15]

Question			Marking details	Marks Available
6	(a)		X is the node of Ranvier; Y is axon /axoplasm;	2
	(b)		Schwann (cell);	1
	(c)		-60mV;	1
	(d)	(i)	(voltage-gated) sodium channels open/ increase in sodium ion permeability; \{sodium ions / Na^{+}\} \{diffuse/ flood/ rush/ sudden influx\} in;	2
		(ii)	repolarisation;	1
	(e)		resting potential is lower / more negative in $\{B /$ the cardiac muscle fibre\}/ ORA; slower repolarisation / time taken to get back to resting potential is longer in $\{B /$ the cardiac muscle fibre $\} /$ ORA; higher peak of depolarisation /more positive potential reached in $\{A /$ neurone $\} /$ ORA; \{no hyperpolarisation/ refractory period/ undershoot\} in Trace B;	2 max
	(f)		contraction; NOT contract faster	1
	(g)		Frog has right to life / \{suffering/ pain/ distress/ harm\} of frog / frogs scarce in the wild; NOT cruel benefits to medicine/ health of heart research;	2
			Question 6 Total	[12]

Question			Marking details	Marks Available
7	(a) (b)		renal artery;	1
			many $\{$ pores/ gaps $\}$ in the \{capillary wall/endothelium / fenestrated wall\}; basement membrane with \{pores / molecular sieve\} (through which large molecules cannot pass); efferent arteriole has \{smaller diameter/ narrower lumen\} than afferent;	2 max
	(c)		(all) glucose (selectively) reabsorbed; (reabsorption)in the proximal convoluted tubule; (reabsorption) by active transport;	2 max
	(d)	(i)	A. water \{reabsorbed from filtrate/removed from filtrate\}; B. less urea reabsorbed / urea not reabsorbed; C. \{sodium / mineral ions\} reabsorbed in proximal convoluted tubule; D. therefore water reabsorbed by osmosis in proximal convoluted tubule; E. \{active transport/ pumping\} of Na^{+}ions in the ascending limb of the loop of Henle; F. water reabsorbed from filtrate in the descending limb of loop of Henle/ descending limb is permeable to water/ ascending limb impermeable; G. hypertonic conditions /high solute concentrations in the medulla/ lowering water potential of medulla/ correct description of concentration gradient towards apex of loop; H. therefore water reabsorbed in the collecting duct/distal convoluted tubule;	5 max
		(ii)	less water lost (in urine)/ conserves water; reduces risk of dehydration; useful in dry habitats/ adaptation to terrestrial life;	2 max
	(e)		ADH /anti diuretic hormone; \{increases reabsorption of water/ increases permeability of collecting duct to water / opens more aquaporins\} so increases ion concentration;	2
			Question 7 Total	[14]

Question		Marking details	Marks Available
8	(a)	A absorption of light $\{$ in photosystems/by pigments $\}$; B energy transferred to reaction centre of photosystem /antenna complex; C (a molecule of) chlorophyll a is the reaction centre; D electrons excited / electrons \{raised to higher energy level / emitted\}/ high energy electrons produced; E \quad high energy / excited $\}$ electrons passed to electron acceptor/ first carrier in chain\}; F electrons (from Photosystem II) pass along \{a chain of electron carriers/ electron transport chain\}; G energy from electrons used to pump protons; H higher concentration of protons inside thylakoid (than in the stroma)/ concentration gradient of protons from thylakoid to stroma; I used to produce ATP; J Photosystem I receives electrons from\{ the chain of carriers / from Photosystem II\}; K Electrons \{used to reduce NADP /to produce reduced NADP\}; L photolysis of water provides electrons to replace those lost by Photosystem II; M oxygen produced \{by photolysis /by splitting of water\}; N cyclic photophosphorylation only involves Photosystem I/ non cyclic involves both photosystems; O light dependent reactions take place \{in thylakoid (membranes)/ in (membranes of) grana\}; [Marks can be awarded for points made using an annotated diagram]	

Question	Marking details	Marks Available
(b)	Nitrogen cycle A death of plant / shedding of \{leaf/other part of plant\}; B consumers feed on plant material then \{die / excrete /defecate/ egest\}; C putrefaction due to bacteria/ decomposition due to\{ fungi/ bacteria\}; D digestion of protein to amino acids; E deamination of amino acids/ammonification; F nitrification is conversion of \{ammonia/ ammonium\} to nitrate; G Nitrosomonas convert \{ammonia/ ammonium\} to nitrite; H Nitrobacter convert nitrite to nitrate; I plants absorb nitrate from the soil; Roles of nitrogen in metabolism $J \quad$ in amine/ amino group; K needed to make amino acids / proteins; L part of (organic) bases ; M needed to make DNA / RNA / nucleic acids/ nucleotides; N part of chlorophyll; O part of NADP/ ATP; Question 8 Total	[10]

GCE HUMAN BIOLOGY - HB4

Question			Marking details	Marks Available
$\mathbf{1}$	(a)		colony;	1
(b)		living;		
(c)				
(d)		Gram positive;	spirillum;	1

Question		Marking details	Marks Available	
(b)	(a)	(i)	mitochondrion; matrix; pyruvate to acetyl Co-A; iso citrate to oxaloglutarate and oxaloglutarate to succinate; decarboxylation; (ii) (iii)	diffuses out of mitochondria; into blood/ tissue fluid/ plasma; carried as hydrogen carbonate ions; breathed out; (c)
dehydrogenation/ dehydrogenase activity/ oxidation of intermediates/compounds; removal of hydrogen ions; stepwise/series of reactions; five pairs of hydrogens; NAD to NADH2/ reduced NAD/ NADH ${ }^{+}+\mathrm{H}^{+} ;$ (d)	3			
Pyruvate is used to form lactic acid; Regenerate NAD; Question 2 total	3 max			

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :--- | :--- | :---: |
| $\mathbf{3}$ | (a) | maintenance/control of internal environment;
 at set point/constant/stable;
 despite external changes;
 hypothalamus;
 Posterior;
 Pituitary;
 ADH;
 Collecting duct walls/ distal convoluted tubules;
 Increases/ rises/ high;
 Question 3 Total | 6 |

Question			Marking details	Marks Available
4	(a)		anaerobic respiration; lactate/lactic acid produced; accumulates in muscle/not removed into blood rapidly enough; low pH in muscle; enzymes less effective; exhaustion of energy glycogen;	3 max
	(b)		endurance events are aerobic; oxygen debt does not develop; little anaerobic respiration; no lactate/lactic acid; maximum energy; from fat/glycogen; longer to reach fatigue; improved blood supply;	3 max
	(c)	(i)	improves supply of oxygen; improves removal of carbon dioxide; improves removal of lactic acid; decreases diffusion distance; increases surface area for exchange;	2 max
		(ii)	increase in number/size of mitochondria; increase in enzymes of Krebs cycle; increase in size of muscle fibres; increase in ETC molecules; increase in myoglobin	2 max
			Question 4 Total	[10]

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :---: | :--- | :---: |
| $\mathbf{5}$ | (a) | (b)
 improves aeration / ensures all parts of the culture receive
 oxygen;
 helps to mix the contents / prevent sedimentation; improves
 contact with nutrients;
 (i)
 used to monitor pH/to measure pH ;
 to maintain optimal pH;
 carbon dioxide; | 2 |
| (ii) | (iii)
 heat needed at the start to speed up enzyme reactions;
 removal of heat produced by respiration;
 more microbes at the end so more respiration/heat;
 Question 5 Total | 2 | |

Question			Marking details	Marks Available
6	(a)	(i)	A = collecting duct; $B=$ efferent arteriole; C = glomerulus; $\mathrm{D}=$ afferent arteriole; $\mathrm{E}=$ Bowman's/renal capsule; F = loop of Henlé; (one mark for every two correct)	3
		(ii)	line to proximal convoluted tubule;	1
		(iii)	line to proximal convoluted tubule;	1
		(iv)	causes increase in blood pressure; forces components of plasma into Bowman's capsule; ultrafiltration;	2
	(b)	(i)	same concentration of both in plasma and filtrate; forced from plasma/ glomerulus into capsule; small molecules; so can pass through gaps;	3 max
		(ii)	concentration of urea increases in tubule; so water is reabsorbed; figs to support (1.0-1.7); into capillaries; urea not reabsorbed;	4 max
		(iii)	glucose normally reabsorbed in proximal convoluted tubule; ratio falls from 1.0 to 0.0 in untreated kidney; prevented by chemical Z; ratio in untreated kidney therefore rises from 1.0 to 1.4; because of water reabsorption;	3 max
		(iv)	inhibits active transport/ blocks protein pores; Respiratory inhibitor/ less ATP/Affects co transport;	1 max
			Question 6 Total	[18]

Question		Marking details	Marks Available	
$\mathbf{7}$	(a)	(b)	inner membrane/crista; ref to NADH/FADH; membrane impermeable to protons; pumped across membrane; to intermembrane space; (c) accepts electrons and protons; final acceptor of ETC; forms water; to maintain flow of electrons; substrate level phosphorylation; glycolysis; triose phosphate to pyruvate; by dehydrogenation; 2 ATP per glucose formed; Question 7 Total	2 max

Question		Marking details	Marks Available
8	(a)	A = resting potential; $B=-60 \text { to }-70 \mathrm{mV} \text {; }$ C = sodium potassium pump sends sodium ion out and potassium ions in; $\mathrm{D}=$ potassium ions diffuse/ pass out; $E=$ depolarisation of membrane; $F=+40 \mathrm{mV}$; $\mathrm{G}=$ opening of sodium channels/gates; $\mathrm{H}=$ sodium ions rush in; I = sodium channels close; $J=$ potassium channels open; $\mathrm{K}=$ potassium ions flow out; $\mathrm{L}=$ resting potential restored/repolarisation; $M=$ ref to local circuits(at nodes of Ranvier); $\mathrm{N}=$ refractory period; $\mathrm{O}=$ ref to myelination and speed of conduction;	

Question		Marking details	Marks Available
8	(b)	```A = light energy converted to chemical energy; \(B=\) light trapped by chlorophyl//photosystems; C = electron emitted; \(\mathrm{D}=\) passed along a chain of carriers; \(\mathrm{E}=\) ATP produced; F = reduced NADP produced; \(G=\) hydrogen from photolysis of water; \(\mathrm{H}=\) electron from photolysis replaces that lost from PSII; 5 max I = carbon dioxide combines with RuBP; \(J=\) enzyme RUBISCO/RuBP carboxylase; \(\mathrm{K}=\) two molecules of GP/PGA formed; \(\mathrm{L}=\) converted to triose phosphate; \(\mathrm{M}=\) using ATP and reduced NADP; \(\mathrm{N}=\) triose phosphate converted to hexose/glucose; \(\mathrm{O}=\) RuBP regenerated```	[10]

GCE BIOLOGY BY5

SUMMER 2013

Question		Marking details	$\begin{array}{c}\text { Marks } \\ \text { Available }\end{array}$
(a)		$\begin{array}{l}\text { Seminiferous tubule - (meiosis) sperm production/ } \\ \text { spermatogenesis; Accept spermatids } \\ \text { Seminal vesicles - produce nutrient (solution) for sperms; } \\ \text { Accept aids sperm motility/ mobility } \\ \text { Reject Neutralise acidic urine }\end{array}$	2
(b)	$\begin{array}{l}\text { Ligase - \{splices / joins\} two \{sections of DNA/ groups of } \\ \text { nucleotides/ sugar phosphates\} together; } \\ \text { Accept joins (donor) DNA into a \{plasmid/ vector\} } \\ \text { Reject joins strands of DNA } \\ \text { Polymerase - joins single nucleotides to end of a DNA chain; } \\ \text { Accept addition of \{free/single\} nucleotides to \{exposed (DNA) } \\ \text { bases/ template\}; } \\ \text { Gene - \{section of DNA / chromosome\} which codes for a } \\ \text { \{single polypeptide / protein/ sequence of amino acids\}; } \\ \text { Allele - \{different/ specific\} \{forms/ versions\} of \{a/same\} gene; } \\ \text { Accept different types of the same gene }\end{array}$	2	

| Question | | Marking details | Marks
 Available |
| :---: | :---: | :---: | :---: | :---: |
| (a) | (i)A. Variation in age at which sexual maturity is reached;
 B. Caused by mutation;
 C. Reach sexual maturity earlier/ Small fish \{have a
 selective advantage/ pass through net\}/ ora;
 D. Breed/ reproduce; reject mate
 E. Pass on alleles to offspring; reject genes
 F. Allele frequency for earlier maturity / hence small size
 at maturity increases;
 G. Figs quoted from graph (in context); | Max | |

| Question | | Marking details | Marks
 Available |
| :--- | :--- | :--- | :--- | :---: |
| (c) | (i) | Eutrophication/ pollution;
 \{Disease/ parasites\} more likely (to spread) in \{cultivated fish/
 overcrowded conditions\}/ disease may spread to wild fish;
 \{Antibiotics/ pesticides\} qualified e.g. can harm other marine
 organisms/ bioaccumulation of pesticides/ enters food chain/
 high cost;
 Problems associated with flow of alleles into wild population;
 Higher level of dioxins/ PCBs in farmed fish; | Max 4 |
| (ii) | Three of each type of chromosome / \{odd/uneven\} number of
 chromosomes/ unpaired chromosomes;
 No pairing of homologous chromosomes/ no bivalent formed;
 Prophase 1 meiosis;
 Meiosis does not take place;
 No gametes produced;
 Question 2 total | [16] | |

Question		Marking details	Marks Available
(c)	Incomplete linkage; Genes \{further/ far\} apart on same chromosome; \{Crossing over/ chiasmata\} can occur; Four types of gametes produced(but not in equal numbers); Small numbers of recombinants / large numbers parental types; Recombinants equal in numbers / parental equal in numbers; Question 3 Total		

Question			Marking details	Marks Available
4.	(a)	(i)	A = Primary oocyte/ Primary follicle; $B=$ Graafian follicle; Accept secondary follicle/ theca $\mathrm{C}=$ Corpus luteum; reject yellow body	3
		(ii)	Ovulation;	1
		(iii)	HCG/ human chorionic gonadotrop(h)in;	1
	(b)	(i)	W = Oogonium/ oogonia; $\mathrm{X}=$ primary oocyte; $\mathrm{Y}=$ Secondary oocyte; $\mathrm{Z}=$ (first) Polar body; reject nucleus accept polar cell	4
		(ii)	Mitosis;	1
		(iii)	Correct number of chromosomes in each; $\mathrm{X}=4 \mathrm{Y}=2$ Cell X Prophase 1 drawn correctly; chromosomes inside nuclear membrane, not on equator Cell Y Metaphase 2 drawn correctly; must be clearly on equator	3
	(c)		Polar bodies produced/ reduction in genetic material at each stage of meiosis; ecf from bi - accept polar nucleus if used in bi Functional gamete retains (most of) the cytoplasm; (Cytoplasm) acts as a food store for zygote/ provide mitochondria for zygote; needed until implantation takes place/ obtained from placenta;	2
			Question 4 Total	[15]

Question		Marking details	Marks Available	
(a)	(i)	repeat experiments; Same area of grassland used for each test/ Same grass covering/ sludge injected to same depth/ Same \{volume / mass/ concentration\} of sludge/ same sludge applied/ Same soil \{type/ gradient/ aspect/ exposure\}/ same soil nitrate concentration/ same time of year; NOT temperature/ pH	[11] (ii)	increase in rainfall increases \{leaching/ nitrate concentration in soil water\}; greater effect on injected sludge with increased rainfall/ ORA; only a small effect at low rainfall;
(c) max				

Question			Marking details	Marks Available
6.	(a)		Rate of Conversion of light energy into chemical energy (by producers /by photosynthesis); Accept rate at which \{products/ organic materials\} are formed/ produced	1
	(b)		(net primary production) decreases; More \{carbohydrate/ glucose\} is \{broken down/ used by\} respiration (than is produced by photosynthesis);	2
	(c)	(i)	(heat lost in) respiration; Excretion; egestion/not all parts of the material are digestible; not all parts eaten;	Max 2
		(ii)	Herbivores: \{difficult to digest/ less efficient at digesting\} cellulose/ have more \{indigestible/ fibrous\} material (in diet)/ ; Reject cannot digest cellulose Carnivores:\{easily digest/ more efficient at digesting \} \{protein/ fat\}; More \{egested material/ faeces\} (lost) by herbivores/ less \{egested material/ faeces\} lost by carnivores;	Max 2
	(d)		Productivity of producers higher/ primary productivity higher; Secondary productivity higher/ more energy stored in consumers; \{Less energy \{used/wasted\} /respiratory rate is lower\} + qualification eg.in cold blooded animals/ buoyancy; Higher \{temperature/ light\} higher rate of photosynthesis;	Max 1
			Question 6 Total	[8]

Question		Marking details	Marks Available
(b)	A. Asexually produced and genetically identical; B. Artificial, cuttings; C. micropropagation; D. meristem removed; E. meristem is \{able to differentiate/ give rise to different cell types/ totipotent\}		
F. cut into small pieces/ explants; G. Culture under sterile conditions; H. On a nutrient \{medium/ agar jelly\}; I. (Cells divide to form a) Callus; J. Callus divided and \{allowed to differentiate into a plantlet/ treated with plant growth substances to promote root and/or shoot growth\};			
Max 8 Advantages, K. speed of production; L. Production of large numbers; M. \{Identical/ desired\} line/ crop uniform/ disease free; Disadvantages N. Must maintain sterile conditons to avoid introduction of pathogens; O. Genetic instability/ increased mutation rate; P. loss of genetic variation/ reduction gene pool/ all susceptible to same diseases; Candidates must attempt an advantage and a disadvantage in order to be awarded full marks.			
Question 8 Total			

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

