Section A

Questions 1-3: N/A

Question Number	Correct Answer	Mark
$\mathbf{4}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{5}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{6}$	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{7}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{8}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{9}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	A	$\mathbf{1}$

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 30 MARK SCHEME

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 8}$	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{1 9}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$\mathbf{2 0}$	C	$\mathbf{1}$

Question 21 : N/A

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (a) (i)}$	Addition / reduction / free-radical addition IGNORE references to 'hydrogenation'	'redox' 'electrophilic addition' 'nucleophilic addition'	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	First mark: Delocalization (of п/p electrons in benzene ring) IGNORE reference to 'resonance'		$\mathbf{2}$
	Second mark: Results in more energy needed to break the bonds in benzene (compared with three separate \quad bonds) (1) ALLOW confers stability on the molecule / makes benzene more stable (than expected) IGNORE Reference to carbon-carbon bond lengths Values of any enthalpy changes Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	First mark: For "4" Second mark: Product as above / correct skeletal formula of product ALLOW Side chain written as $-\mathrm{C}_{2} \mathrm{H}_{5}$ Third mark: - $328\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ NOTE One H_{2} added showing a CQ correct product with only side chain reduced and $\mathrm{cq} \Delta \mathrm{H}=-120\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores (2) Three H_{2} added showing a CQ correct product with only the benzene ring reduced and cq $\begin{equation*} \Delta \mathrm{H}=-208\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { scores } \tag{2} \end{equation*}$ Five H_{2} added with fully correct product drawn and $\Delta \mathrm{H}=-448$ ($\mathrm{kJ} \mathrm{mol}^{-1}$) scores Three and a half H_{2} added showing a fully correct product and $\Delta \mathrm{H}=-268 /-293(.3)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ scores NOTE Mark scoring points independently		3

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	Mark awarded for displaying		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b) (i i) ~}$	Electrophilic substitution		$\mathbf{1}$
	BOTH words needed IGNORE references to 'acylation' and /or 'Friedel-Crafts'		

Question Number	Acceptable Answers	Reject	Mark
22(b)(iii)	Friedel and Crafts BOTH names are needed for this mark		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(b)(iv)	First mark: $\begin{equation*} \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O C l}+\mathrm{AlCl}_{3} \rightarrow \mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O}^{+}+\mathrm{AlCl}_{4}^{-} \tag{1} \end{equation*}$ + can be anywhere on the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$ in the equation for the first mark NOTE: If ethanoyl chloride or any other acid chloride or the generic RCOCI is used instead of benzoyl chloride, no first mark can be awarded but the 2nd, 3rd and 4th marks can be awarded consequentially Second mark: First curly arrow, as shown, to start from inside the hexagon to the correct $\mathrm{C}+$ carbon (i.e. not to the benzene ring) Note the + must be on the C of the $\mathrm{C}=\mathrm{O} / \mathrm{CO}$ for this mark Third mark: Intermediate correctly drawn NOTE + can be shown anywhere in the ring or at the C atom where electrophile is bonded. The 'horseshoe' in the intermediate to cover at least three carbon atoms Fourth mark: Second curly arrow as shown from CH bond to reform the ring, not from the H atom in this bond NOTE Products do not have to be shown nor the equation for regeneration of the catalyst given		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 2 (b) (v)}$	Absorbs / reflects / blocks / protects from / shields against / uv (light/ radiation) IGNORE 'non-toxic' / references to IR	adsorbs uv light	$\mathbf{1}$

Question	Acceptable Answers	Reject	Mark
Number			

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Lone pair (of electrons on the nitrogen atom) ALLOW non-bonded pair (of electrons on the nitrogen atom)	Lone pairs Spare pair	$\mathbf{1}$

Question Number	Acceptable Answers ${ }^{\text {a }}$ Reject	Mark
23(a)(ii)	(with $\mathrm{H}_{2} \mathrm{SO}_{4}$) $\begin{equation*} \left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}^{+}\right)_{2} \mathrm{SO}_{4}^{2-} \tag{1} \end{equation*}$ ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+} \mathrm{HSO}_{4}^{-}$ (with $\mathrm{CH}_{3} \mathbf{C O O H}$) $\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{COO}^{-} \tag{1} \end{equation*}$ CHARGES not essential Cation and anion can be in either order Max (1) if formula of the amine is incorrect in either case ALLOW (1) if only the correct cation is given in each case (i.e. the anion has been omitted in both cases) NOTE The correct ions can be shown separately Eg $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+}\right)_{2}+\mathrm{SO}_{4}{ }^{2-}$	2

Question Number	Acceptable Answers	Reject	Mark
23(b)	Tin / Sn ALLOW Iron / Fe (concentrated) hydrochloric acid NOTE If they write ' HCl ', there must be some indication of concentrated Eg 'conc $\mathrm{HCl}^{\prime} /$ 'concentrated HCl^{\prime} ALLOW $\mathrm{HCl}(\mathrm{aq})$ (Followed by addition of alkali to liberate the free amine) Mark the two points independently NOTE Do not allow $2^{\text {nd }}$ mark if there is a suggestion that the acid and alkali are added together simultaneously	LiAlH_{4} Just ' HCl ' 'dilute' hydrochloric acid / sulfuric acid	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (\mathbf { i })}$	NOTE If the above structure is drawn, the + charge must be on the N connected directly to the benzene ring ALLOW $-\mathrm{N}=\mathrm{N}^{+}$on ring IGNORE Cl	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (c) (i i)}$			$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
23(c)(iii)	(Conditions) (Presence of) $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{alkali}$ $/ \mathrm{OH}^{-}$ ALLOW 'Alkaline (conditions)' or 'base' or 'high pH^{\prime} IGNORE Any references to temperature (Use) Dye / pigment / colouring / indicator / in foodstuff / in paint / methyl orange IGNORE Any reference to medicines		2

Question Number	Acceptable Answers	Reject	Mark
23 (d)	ALLOW The + sign to be on either N atom in the benezenediazonium ion OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}^{+}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{HCl}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}_{3} \mathrm{O}^{+}$ OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{HCl}$ NOTE $-\mathrm{C}_{6} \mathrm{H}_{5}$ can be written or drawn First mark for $\mathbf{N}_{\mathbf{2}}$ Second mark for rest of the equation correct IGNORE State symbols, even if incorrect		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i) ~}$	(Otherwise) too much (product) remains in solution OR If excess (solvent) is used, crystals might not form ALLOW To avoid losing (too much) product (in the filtrate when crystallization occurs) /'to maximize the yield'/ 'will crystallize better from a concentrated solution'/ 'will recrystallize (better) when cold' IGNORE References to a 'saturated solution' or references to 'dilution' or references to the time taken for crystals to form	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	(Insoluble impurities removed) By hot filtration / During the first filtration / During the second step in the process (1)		$\mathbf{2}$
	(Soluble impurities removed) By remaining in solution / Left in filtrate / Removed when washed (with cold (1) solvent)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 (e) (i i i)}$	Measure the melting temperature / melting point and compare with data / known value (from a data book / literature / Internet /data base) (BOTH points needed for the mark) OR OR	(0) if reference to determination of the boiling point is made	$\mathbf{1}$
The melting point is sharp (Just this statement is needed for the mark) ALLOW Any form of chromatography IGNORE References to any types of spectroscopy			

Total for Question 23 = 15 Marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (a) (i)}$	$\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow 4 \mathrm{NaCl}+\mathrm{Ti}$		$\mathbf{1}$
	IGNORE State symbols, even if incorrect ALLOW Multiples Reversible arrows		

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Ti reduced as oxidation number decreases from +4 to 0 / changes from $\mathbf{+ 4}$ to 0 Na oxidized as oxidation number increases from $\mathbf{0}$ to $\mathbf{+ 1}$ /changes from 0 to +1 ALLOW Correct oxidation numbers only for one mark NOTE Max (1) if no + sign included ALLOW '4+' and/or '1+' given instead of $\boldsymbol{+ 4}$ and +1 NOTE If any of the oxidation numbers are wrong, award max (1) for the idea that during oxidation the oxidation number increases AND during reduction the oxidation number decreases IGNORE References to loss and /or gain of electrons		2

Question Number	Acceptable Answers	Reject	Mark
24(b)	(Ti [Ar]) $3 d^{2} 4 s^{2} / 4 s^{2} 3 d^{2}$ (Ti ${ }^{3+}$ [Ar]) $3 d^{1} / 3 d^{1} 4 s^{0}$ (Ti^{4+} [Ar]) \quad nil' $/ 3 \mathrm{~d}^{0} 4 \mathrm{~s}^{0} / 3 \mathrm{~d}^{0}$ space left blank by candidate BOTH Ti ${ }^{3+}$ and Ti^{4+} correct for second mark Mark CQ on Ti electron configuration for the second mark ALLOW Upper case (e.g. 'D' for 'd' in electronic configurations) Subscripts for numbers of electrons Full correct electronic configurations $1 s^{2}, 2 s^{2} \ldots$.		2

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	(d-block element) EITHER Ti has (two) electrons in the 3d subshell / Ti has a partially filled d-subshell / Ti has a partially filled d-orbital / Ti has electrons in d-orbital(s) / Ti has electrons in d-subshell (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital	Outer / highest energy electrons are in a d-orbital / Outer / highest energy electrons are in a d-subshell	Electrons in the 'd-block'/ 'electrons in the d-shell'
OR (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital			

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	(transition element) Forms one (or more stable) ions / forms Ti		
	incomplete d-orbital(s) / an incomplete d-subshell / which have a partially filled d-subshell / an unpaired d electron IGNORE References to variable oxidation states	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	First mark: d-subshell splits /d-orbitals split (in energy by ligands)/d energy level(s) split(s) Second mark: absorbs light (in visible region) (1) Third mark: Electron transitions from lower to higher energy / electron(s) jump from lower to higher energy OR Electron(s) promoted (within d) (1) Mark independently NOTE Maximum of (1) mark (i.e. the first mark only) if refers to electrons falling back down again	d-orbital / d-shell splits absorbs purple light	3
Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	No d-electrons / empty d-subshell		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	TiO_{2}		4
	'Structure' mark		
	EITHER		
	Giant (structure) OR Lattice (structure)	TiO_{2} (small) molecules / simple molecular	
	IGNORE Whether stated as ionic or covalent for this mark		
	TiO_{2} 'Bonding' mark		
	EITHER		
	Strong (electrostatic) attraction between ions		
	ALLOW		
	Strong ionic bonds / ionic bonds require a lot of energy to break		
	Strong covalent bonds/covalent bonds require a lot of energy to break	For TiO_{2} mention of any type of intermolecular forces between molecules of TiO_{2}	
	TiCl_{4} 'Structure' mark		
	(Simple) molecules / (small) molecules /molecular	TiCl ${ }_{4}$ giant structure	
	TiCl_{4} 'Bonding' mark	Covalent bonds broken (on melting) in TiCl_{4}	
	Weak London / dispersion / van der Waals' forces (between molecules) /	Ionic bonding in TiCl_{4}	
	London /dispersion / van der Waals' forces (between molecules) require little energy to break	Hydrogen bonding (0) for this mark	
			19

	NOTE		
If candidates assumes TiO_{2} and TiCl_{4} are both simple molecular, can score last mark for saying that the named intermolecular forces in TiO_{2} are stronger that those in TiCl_{4}			
IGNORE (Permanent) dipole-dipole forces Mark the four scoring points (1) independently			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (i i) ~}$	Amphoteric ALLOW Recognisable spellings		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (e) (i i i)}$	$\mathrm{TiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{Ti}(\mathrm{OH})_{6}$ OR $\mathrm{TiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ti}(\mathrm{OH})_{6}{ }^{2-}$ IGNORE state symbols even if incorrect		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(e)(iv)	 MUST have continuation bonds at each end ALLOW CH_{3} IGNORE n and any brackets	 Two (or more) repeat units shown	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4 (f) (i)}$	$\left(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+\right) \mathbf{2 e ^ { (-) }} \rightarrow \mathbf{2 \mathbf { H } _ { 2 } \mathbf { O }}$ $\mathbf{B O T H}$ $2 \mathrm{e}^{(-)}$and $\mathbf{2} \mathrm{H}_{2} \mathrm{O}$ needed for the mark		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(f)(ii)	$\begin{align*} \left(\text { Moles } \mathrm{H}_{2} \mathrm{O}_{2}\right. & =\frac{0.0200 \times 22.50}{1000} \\ & =) 4.5 \times 10^{-4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2} \tag{1} \end{align*}$ (Moles Ti^{3+} reacting in $\left.25.0 \mathrm{~cm}^{3}\right)=9.0 \times 10^{-4} \mathrm{~mol} \mathrm{Ti}^{3+}$ (Moles Ti ${ }^{3+}$ $\begin{equation*} \text { in } \left.250 \mathrm{~cm}^{3}\right)=9.0 \times 10^{-3} \mathrm{~mol} \mathrm{Ti}^{3+} \tag{1} \end{equation*}$ (Original concentration of Ti^{3+} $\begin{align*} & =\frac{9.0 \times 10^{-3}}{0.00500} \\ & =) 1.8\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ 1.8 ($\mathrm{mol} \mathrm{dm}^{-3}$) with or without working scores NOTES: If mole ratio $\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{Ti}^{3+}$ is $1: 1$ final answer for concentration of Ti^{3+} is $0.9\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ scores (2) overall If mole ratio $\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{Ti}^{3+}$ is $2: 1$ final answer for concentration of Ti^{3+} is 0.45 ($\mathrm{mol} \mathrm{dm}{ }^{-3}$) scores (2) overall If candidate forgets to multiply no. of moles of Ti^{3+} by 10 then answer is 0.18 (moldm-3) this scores (2) If volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ used is 25.0 no first mark, but can score (2) if final answer CQ is $2(.0)\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$		3

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 30 MARK SCHEME

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 4}$	(It/titanium(III)/Ti ${ }^{3+}$) oxidized (by (iii) ALLOW 'It is a strongen in the air)	Hydrolysis	$\mathbf{1}$

Question Number	Correct Answer	Mark
25	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
26	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
27	A	$\mathbf{1}$

Question Number	Correct Answer	Mark
28 (a)	C	$\mathbf{1}$

Question Number	Correct Answer	Mark
$28 \overline{\text { b) }}$	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$28 \overline{(\mathbf{c})}$	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
29	B	$\mathbf{1}$

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 30 MARK SCHEME

Question Number	Correct Answer	Mark
30	D	$\mathbf{1}$

Question Number	Correct Answer	Mark
31	\mathbf{D}	$\mathbf{1}$

Question Number	Correct Answer	Mark
32	B	$\mathbf{1}$

Question Number	Correct Answer	Mark
$: 33$	A	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 4}$ (a)(i)	(Acid) hydrolysis	substitution	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark		
(a)(ii)	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ Potassium dichromate((VI)) / sodium dichromate((VI))/ dichromate((VI)) ions ALLOW manganate((VII)) ions, etc	Just "dichromate"	$\mathbf{1}$		
chromates					
Correct				\quad	formula with wrong name and vice versa Incorrect oxidation number
:---					

Question Number	Acceptable Answers	Reject	Mark
(a)(iii)	Lithium tetrahydridoaluminate/ lithium aluminium hydride/ LiAlH_{4} (in dry ether)	Just $\left[\mathrm{H}^{-}\right]$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(a)(iv)	Methyl butanoate (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}^{2}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) ALLOW \rightleftharpoons IGNORE state symbols even if wrong	Methyl butoate	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 4 (a) (v)}$	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}^{-}=\mathrm{O}$ Don't penalise undisplayed methyl groups as here. COCl must be displayed as above.	$\mathrm{C}_{3} \mathrm{H}_{7}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen) OR Oxygen might react with chemicals going through column / sample might oxidise	$\mathbf{1}$	

Question Number	Acceptable Answers	Rej ect	Mark
(b)(ii)	Solubility (in liquid / stationary phase) OR Interaction with liquid / stationary phase OR Interaction between mobile and stationary phase OR Attraction for liquid / stationary phase OR Strength of (named) intermolecular forces OR Adsorption on liquid / stationary phase OR Absorption on liquid / stationary phase	Size of molecule / molar mass Polarity, unless with explanation Boiling point / volatility Viscosity Attraction for carrier gas J ust a named intermolecular force J ust 'retention time' Density	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline 34 \\ & (c)(i) \end{aligned}$	 OR Ester link including $\mathrm{C}=0$ (1) Rest of polymer with oxygens at end correct (1) All H atoms must be shown. PENALISE lack of displayed $\mathrm{C}=0$ once only ACCEPT Without brackets around formula but bonds at end should be shown More than two correct units IGNORE n after brackets		2

Question Number	Acceptable Answers	Rej ect	Mark
(c)(ii)	Hydrolysis		$\mathbf{1}$
	OR Splits / breaks ester link OR polymer breaks down to monomers OR equation showing hydrolysis	Just 'breaks polymer down'	

