Section A

Questions 1-3 : N/A

Question Number	Correct Answer	Mark
4	С	1

Question Number	Correct Answer	Mark
5	С	1

Question Number	Correct Answer	Mark
6	С	1

Question Number	Correct Answer	Mark
7	A	1

Question Number	Correct Answer	Mark
8	D	1

Question Number	Correct Answer	Mark
9	D	1

Question Number	Correct Answer	Mark
10	D	1

Question Number	Correct Answer	Mark
11	Α	1

Question Number	Correct Answer	Mark
12	В	1

Question Number	Correct Answer	Mark
13	В	1

Question Number	Correct Answer	Mark
14	D	1

Question Number	Correct Answer	Mark
15	В	1

Question Number	Correct Answer	Mark
16	В	1

Question Number	Correct Answer	Mark
17	В	1

Question Number	Correct Answer	Mark
18	A	1

Question Number	Correct Answer	Mark
19	В	1

Question Number	Correct Answer	Mark
20	С	1

Question 21 : N/A

;

Question Number	Acceptable Answers	Reject	Mark
22(a)(i)	Addition / reduction / free-radical addition IGNORE references to 'hydrogenation'	`redox' `electrophilic addition' `nucleophilic addition'	1

Question Number	Acceptable Answers	Reject	Mark
22(a)(ii)	First mark: Delocalization (of π/p electrons in benzene ring)(1)IGNORE reference to `resonance'Second mark: Results in more energy needed to 		2
	ALLOW confers stability on the molecule / makes benzene more stable (than expected) IGNORE Reference to carbon-carbon bond lengths Values of any enthalpy changes Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
22(a)(iii)	$\begin{array}{c} \overset{CH \longrightarrow CH_2}{\longrightarrow} + 4 H_2 \rightarrow \\ \end{array} $		3
	$(\Delta H =)$ - 328 (kJ mol ⁻¹) First mark : For "4"		
	Second mark: Product as above / correct skeletal formula of product		
	ALLOW Side chain written as $-C_2H_5$		
	Third mark : -328 (kJ mol ⁻¹)		
	ΝΟΤΕ		
	One H ₂ added showing a CQ correct product with only side chain reduced and cq $\Delta H = -120$ (kJ mol ⁻¹) scores (2)		
	Three H ₂ added showing a CQ correct product with only the benzene ring reduced and cq $\Delta H = -208 \text{ (kJ mol}^{-1} \text{) scores}$ (2)		
	Five H ₂ added with fully correct product drawn and $\Delta H = -448$ (kJ mol ⁻¹) scores (2)		
	Three and a half H_2 added showing a fully correct product and $\Delta H = -268/-293(.3)(kJ mol^{-1})$ scores (2)		
	NOTE Mark scoring points independently		

Question Number	Acceptable Answers	Reject	Mark
22(b)(i)	Mark awarded for displaying		1

Question Number	Acceptable Answers	Reject	Mark
22(b)(ii)	Electrophilic substitution BOTH words needed IGNORE references to 'acylation'		1
	and /or `Friedel-Crafts'		

Question Number	Acceptable Answers	Reject	Mark
22(b)(iii)	Friedel and Crafts		1
	BOTH names are needed for this mark		

Question Number	Acceptable Answers	Reject	Mark
22(b)(iv)	First mark: $C_6H_5COCI + AICI_3 \rightarrow C_6H_5CO^+ + AICI_4^-$ (1)		4
	+ can be anywhere on the C_6H_5CO in the equation for the first mark		
	+ H*		
	$(AICI_4^- + H^+ \rightarrow HCI + AICI_3)$		
	NOTE: If ethanoyl chloride or any other acid chloride or the generic RCOCl is used instead of benzoyl chloride, no first mark can be awarded but the 2nd, 3rd and 4th marks can be awarded consequentially		
	Second mark : First curly arrow, as shown, to start from inside the hexagon to the correct C+ carbon (i.e. not to the benzene ring) Note the + must be on the C of the C=O/CO for this mark		
	(1) Third mark: Intermediate correctly drawn		
	(1) NOTE		
	+ can be shown anywhere in the ring or at the C atom where electrophile is bonded. The 'horseshoe' in the intermediate to cover at least three carbon atoms		
	Fourth mark: Second curly arrow as shown from C— H bond to reform the ring, not from the H atom in this bond		
	(1) NOTE		
	Products do not have to be shown nor the equation for regeneration of the catalyst given		6

Question Number	Acceptable Answers	Reject	Mark
22(b)(v)	Absorbs / reflects / blocks / protects from / shields against / uv (light/ radiation) IGNORE 'non-toxic' / references to IR	adsorbs uv light	1

Question Number	Acceptable Answers		Reject	Mark
22(c)(i)	Any TWO of the fol	lowing		4
		ne bond by formula as		
	matching pair	vavenumber in each		
	UNITS are not requ	uired		
	Bond	Wavenumber		
		range/wavenumber		
		(cm ⁻¹)		
	C=C	1600 / 1580 / 1500 /		
		1450 All four values		
		needed		
	C=0	1700 - 1680		
	C-H	3030		
	C-H	750 / 700		
		Both values needed		
	ΝΟΤΕ			
	ALLOW			
	Correct wavenumbe	er range, or any number		
	within the correct ra	ange, for C=O		
	Mark identification of			
	wavenumber indepe			
	(eg a correct bond v			
	each case)	s one of the two marks in		
	IGNORE			
	nmr values / chemi	cal shifts		

Question Number	Acceptable Answers	Reject	Mark
22(c)(ii)	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & $		2
	EITHER Identifies correctly the three different proton environments		
	ALLOW If the three different proton environments are only shown on one of the benzene rings		
	NOTE On right-hand ring, clockwise from C=O, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments and /or On left-hand ring, anti-clockwise from C=O, positions 2, 3 and 4 And /or 2,4 and 5 are shown as different environments		
	OR		
	Identifies proton Z correctly on both benzene rings (1)		
	Second mark Fully correct labelling both rings using the letters X, Y and Z		
	NOTE X and Y labels are interchangeable, Z is not (1)		

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Lone pair (of electrons on the nitrogen atom) ALLOW non-bonded pair (of electrons on the nitrogen atom)	Lone pairs Spare pair	1

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	(with H ₂ SO ₄)		2
	$(C_4H_9NH_3^+)_2SO_4^{2-}$ (1)		
	ALLOW		
	$C_4H_9NH_3^+HSO_4^-$		
	(with CH₃COOH)		
	$C_4H_9NH_3^+CH_3COO^-$ (1)		
	CHARGES not essential		
	Cation and anion can be in either orde	r	
	Max (1) if formula of the amine is inco	prrect in either case	
	ALLOW (1) if only the correct cation is anion has been omitted in both cases)	-	
	NOTE		
	The correct ions can be shown separat	ely	
	$(\tilde{C}_4 H_9 N H_3^+)_2 + S O_4^{2-}$		

Question Number	Acceptable Answers		Reject	Mark
23(b)	Tin / Sn ALLOW Iron / Fe	(1)	LiAlH ₄	2
	(concentrated) hydrochloric acid		Just 'HCl'	
	NOTE If they write 'HCI', there must be some indication of concentrated Eg 'conc HCI' / 'concentrated HCI'		`dilute' hydrochloric acid / sulfuric acid	
	ALLOW HCl(aq)			
	(Followed by addition of alkali to liberate the free amine)	(1)		
	Mark the two points independently			
	NOTE Do not allow 2 nd mark if there is a suggestion that the acid and alkali a added together simultaneously	are		

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	NOTE If the above structure is drawn, the + charge must be on the N connected directly to the benzene ring ALLOW $-N=N^+$ on ring IGNORE CI^-	N ₂ ⁺ on ring	1

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)			1

Question Number	Acceptable Answers	Reject	Mark
23(c)(iii)	(Conditions) (Presence of) NaOH / KOH / alkali /OH ⁻ (1) ALLOW 'Alkaline (conditions)' or 'base' or		2
	'high pH'IGNOREAny references to temperature		
	(Use) Dye / pigment / colouring / indicator / in foodstuff / in paint / methyl orange (1)		
	IGNORE Any reference to medicines		

Question Number	Acceptable Answers	Reject	Mark
23 (d)	$ \qquad \qquad$		2
	ALLOW The +sign to be on either N atom in the benezenediazonium ion		
	OR		
	$C_6H_5N_2^+ + H_2O \rightarrow C_6H_5OH + N_2 + H^+$		
	OR		
	$C_6H_5N_2CI + H_2O \rightarrow C_6H_5OH + N_2 + HCI$		
	OR		
	$C_{6}H_{5}N_{2}^{+} + 2H_{2}O \rightarrow C_{6}H_{5}OH + N_{2} + H_{3}O^{+}$		
	OR		
	$C_6H_5N_2^+CI^-$ + $H_2O \rightarrow C_6H_5OH$ + N_2 + HCI		
	NOTE $-C_6H_5$ can be written or drawn		
	First markfor N_2 (1)		
	Second markfor rest of the equation correct(1)		
	IGNORE State symbols, even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
23(e)(i)	 (Otherwise) too much (product) remains in solution OR If excess (solvent) is used, crystals might not form ALLOW To avoid losing (too much) product (in the filtrate when crystallization occurs) / 'to maximize the yield'/ 'will crystallize better from a concentrated solution'/ 'will recrystallize (better) when cold' IGNORE References to a 'saturated solution' or references to the time taken for 		1
	crystals to form		

Question Number	Acceptable Answers	Reject	Mark
23(e)(ii)	(Insoluble impurities removed) By hot filtration / During the first filtration / During the second step in the process (1)		2
	(Soluble impurities removed) By remaining in solution / Left in filtrate / Removed when washed (with cold solvent) (1)		

Question Number	Acceptable Answers	Reject	Mark
23(e)(iii)	Measure the melting temperature / melting point and compare with data / known value (from a data book / literature / Internet /data base) (BOTH points needed for the mark)	(0) if reference to determination of the boiling point is made	1
	OR		
	The melting point is sharp (Just this statement is needed for the mark)		
	ALLOW Any form of chromatography		
	IGNORE References to any types of spectroscopy		

Total for Question 23 = 15 Marks

Question Number	Acceptable Answers	Reject	Mark
24(a)(i)	$\begin{array}{llllllllllllllllllllllllllllllllllll$		1

Question Number	Acceptable Answers	Reject	Mark
24(a)(ii)	Ti reduced as oxidation number decreases from +4 to 0 / changes from +4 to 0		2
	(1) Na oxidized as oxidation number increases from 0 to +1 /changes from 0 to +1		
	(1) ALLOW Correct oxidation numbers only for one mark		
	NOTE Max (1) if no + sign included		
	ALLOW '4+' and/or '1+' given instead of +4 and +1		
	NOTE If any of the oxidation numbers are wrong, award max (1) for the idea that during oxidation the oxidation number increases AND during reduction the oxidation number decreases		
	IGNORE References to loss and /or gain of electrons		

Question Number	Acceptable Answers	Reject	Mark
24(b)	(Ti [Ar]) $3d^2 4s^2 / 4s^2 3d^2$ (1)		2
	(Ti ³⁺ [Ar]) $3d^1/ 3d^1 4s^0$ (Ti ⁴⁺ [Ar]) 'nil' / $3d^0 4s^0/3d^0$ space left blank by candidate		
	BOTH Ti ³⁺ and Ti ⁴⁺ correct for second mark (1)		
	Mark CQ on Ti electron configuration for the second mark		
	ALLOW Upper case (e.g. 'D' for 'd' in electronic configurations) Subscripts for numbers of electrons		
	Full correct electronic configurations 1s ² , 2s ²		

Question Number	Acceptable Answers	Reject	Mark
24(c)(i)	(d-block element) EITHER Ti has (two) electrons in the 3d subshell / Ti has a partially filled d-subshell / Ti has a partially filled d-orbital / Ti has electrons in d-orbital(s) / Ti has electrons in d-subshell (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital OR (During the build up of its atoms) last added / valence electron is in a d-subshell / d-orbital	Outer / highest energy electrons are in a d-orbital / Outer / highest energy electrons are in a d-subshell Electrons in the 'd-block'/ 'electrons in the d-shell'	1

Question Number	Acceptable Answers	Reject	Mark
24(c)(ii)	(transition element) Forms one (or more stable) ions / forms Ti³⁺ (ions) which have incomplete d-orbital(s) / an incomplete d-subshell / a partially filled d-subshell / an unpaired d electron IGNORE References to variable oxidation		1
	states		

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	First mark: d-subshell splits /d-orbitals split (in energy by ligands) /d energy level(s) split(s) (1)	d- orbital / d- shell splits	3
	Second mark: absorbs light (in visible region) (1)	absorbs purple light	
	Third mark:		
	Electron transitions from lower to higher energy / electron(s) jump from lower to higher energy		
	OR		
	Electron(s) promoted (within d)		
	(1) Mark independently		
	NOTE Maximum of (1) mark (i.e. the first mark only) if refers to electrons falling back down again		

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	No d-electrons / empty d-subshell		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	TiO₂ `Structure' mark		4
	EITHER		
	Giant (structure) OR Lattice (structure)	TiO ₂ (small) molecule s / simple molecular	
	IGNORE Whether stated as ionic or covalent for this mark (1)		
	TiO ₂ `Bonding' mark		
	EITHER		
	Strong (electrostatic) attraction between ions		
	ALLOW Strong ionic bonds / ionic bonds require a lot of energy to break		
	OR		
	Strong covalent bonds/covalent bonds require a lot of energy to break (1)	For TiO_2 mention of any type of intermolecular forces between molecules of TiO_2	
	TiCl₄ `Structure′ mark		
	(Simple) molecules / (small) molecules / molecular (1)	TiCl₄ giant structure	
	TiCl₄ `Bonding' mark	Covalent bonds broken (on melting) in TiCl4	
	Weak London / dispersion / van der Waals' forces (between	Ionic bonding in TiCl ₄	
	molecules) / London /dispersion / van der Waals' forces (between molecules) require little energy to break	Hydrogen bonding (0) for this mark	
			19

NOTE	
If candidates assumes TiO_2 and $TiCl_4$ are both simple molecular, can score last mark for saying that the named intermolecular forces in TiO_2 are stronger that those in $TiCl_4$	
IGNORE (Permanent) dipole-dipole forces (1) Mark the four scoring points independently	

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	Amphoteric ALLOW Recognisable spellings		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(iii)	$\begin{array}{l} \text{TiO}_2 + 2\text{H}_2\text{O} + 2\text{KOH} \rightarrow \text{K}_2\text{Ti}(\text{OH})_6 \\ \text{OR} \\ \text{TiO}_2 + 2\text{H}_2\text{O} + 2\text{OH}^- \rightarrow \text{Ti}(\text{OH})_6^{2-} \\ \text{IGNORE state symbols even if} \\ \text{incorrect} \end{array}$		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(iv)	H H C H H H H H H H H H H H H H	Two (or more) repeat units shown	1
	CH ₃ IGNORE n and any brackets		

Question Number	Acceptable Answers	Reject	Mark
24(f)(i)	$(H_2O_2 + 2H^+ +) 2e^{(-)} \rightarrow 2H_2O$		1
	BOTH $2e^{(-)}$ and $2H_2O$ needed for the mark		

Question	Acceptable Answers	Reject	Mark
Number			
24(f)(ii)	(Moles $H_2O_2 = \frac{0.0200 \times 22.50}{1000}$ =) 4.5 x 10 ⁻⁴ mol H_2O_2 (1)		3
	(Moles Ti ³⁺ reacting in 25.0 cm ³) = 9.0 x 10^{-4} mol Ti ³⁺		
	(Moles Ti^{3+} in 250 cm ³) = 9.0 x 10 ⁻³ mol Ti^{3+} (1)		
	(Original concentration of Ti ³⁺		
	$= \frac{9.0 \times 10^{-3}}{0.00500}$ =) 1.8 (mol dm ⁻³)		
	(1)		
	1.8 (mol dm ⁻³) with or without working scores (3)		
	NOTES: If mole ratio H_2O_2 : Ti ³⁺ is 1:1 final answer for concentration of Ti ³⁺ is 0.9 (mol dm ⁻³) scores (2) overall		
	If mole ratio H ₂ O ₂ : Ti ³⁺ is 2:1 final answer for concentration of Ti ³⁺ is 0.45 (mol dm ⁻³) scores (2) overall		
	If candidate forgets to multiply no. of moles of Ti ³⁺ by 10 then answer is 0.18 (moldm-3) this scores (2)		
	If volume of H_2O_2 used is 25.0 no first mark, but can score (2) if final answer CQ is 2(.0) (mol dm ⁻³)		

Question Number	Acceptable Answers	Reject	Mark
24 (f)(iii)	(It/titanium(III)/Ti ³⁺) oxidized (by oxygen in the air) ALLOW 'It is a strong reducing agent'	Hydrolysis	1

Question Number	Correct Answer	Mark
25	D	1

Question Number	Correct Answer	Mark
26	В	1

Question Number	Correct Answer	Mark
27	Α	1

Question Number	Correct Answer	Mark
28 (a)	C	1

Question Number	Correct Answer	Mark
28 b)	В	1

Question Number	Correct Answer	Mark
28 (c)	D	1

Question Number	Correct Answer	Mark
29	В	1

Question Number	Correct Answer	Mark
30	D	1

Question Number	Correct Answer	Mark
31	D	1

Question Number	Correct Answer	Mark
32	В	1

Question Number	Correct Answer	Mark
33	Α	1

Question Number	Acceptable Answers	Reject	Mark
34 (a)(i)	(Acid) hydrolysis	substitution	1

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	K ₂ Cr ₂ O ₇ / Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ Potassium dichromate((VI)) / sodium dichromate((VI)) / dichromate((VI)) ions <i>ALLOW</i> manganate((VII)) ions, etc	Just "dichromate" chromates Correct formula with wrong name and vice versa Incorrect oxidation number	1

Question Number	Acceptable Answers	Reject	Mark
(a)(iii)	Lithium tetrahydridoaluminate/ lithium aluminium hydride/ LiAIH4 (in dry ether)	Just [H ⁻]	1

Question Number	Acceptable Answers	Reject	Mark
(a)(iv)	Methyl butanoate (1) $CH_3CH_2CH_2COOH + CH_3OH \rightarrow$ $CH_3CH_2CH_2COOCH_3 + H_2O$ (1) <i>ALLOW</i> \Rightarrow <i>IGNORE</i> state symbols even if wrong	Methyl butoate	2

Question Number	Acceptable Answers	Reject	Mark
34 (a)(v)	CH ₃ -CH ₂ -C ^O Cl Don't penalise undisplayed methyl groups as here. COCI must be displayed as above.	C_3H_7 for CH ₃ CH ₂ CH ₂	1

Question Number	Acceptable Answers	Reject	Mark
(b)(i)	Nitrogen inert / unreactive / less reactive (than oxygen)		1
	OR		
	Oxygen might react with chemicals going through column / sample might oxidise		

Question Number	Acceptable Answers	Reject	Mark
(b)(ii)	Solubility (in liquid / stationary phase) OR	Size of molecule / molar mass	1
	Interaction with liquid / stationary phase	Polarity, unless with explanation	
	Interaction between mobile and stationary phase	Boiling point / volatility	
	OR	Viscosity	
	Attraction for liquid / stationary phase OR	Attraction for carrier gas	
	Strength of (named) intermolecular forces OR	Just a named intermolecular force	
	Adsorption on liquid / stationary phase	Just 'retention time'	
	Absorption on liquid / stationary phase	Density	27

Question Number	Acceptable Answers	Reject	Mark
34 (c)(i)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} H & O & H & O \\ -C - C H_2 - C - O - C - C H_2 - C \\ -L $		2

Question Number	Acceptable Answers	Reject	Mark
(c)(ii)	Hydrolysis OR		1
	Splits / breaks ester link OR	Just 'breaks polymer down'	
	polymer breaks down to monomers		
	OR equation showing hydrolysis		