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SUMMARY

The internal-rating-based Basel II approach increases the need for the development of more realistic
default probability models. In this paper, we follow the approach taken in McNeil A and Wendin J
[7], (J. Empirical Finance 2007) by constructing generalized linear mixed models for estimating default
probabilities from annual data on companies with different credit ratings. The models considered, in
contrast to McNeil A and Wendin J [7], (J. Empirical Finance 2007), allow parsimonious parametric
models to capture simultaneously dependencies of the default probabilities on time and credit ratings.
Macro-economic variables can also be included. Estimation of all model parameters are facilitated with a
Bayesian approach using Markov chain Monte Carlo methods. Special emphasis is given to the investigation
of predictive capabilities of the models considered. In particular, predictable model specifications are
used. The empirical study using default data from Standard and Poor’s gives evidence that the correlation
between credit ratings further apart decreases and is higher than the one induced by the autoregressive
time dynamics. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Basel II (2004) agreement allows financial institutions to choose an internal-rating-based (IRB)
approach to calculate the capital requirement for credit risk. McNeil et al. [1] provide in Chapter 8
a survey of default probability models used in credit risk management. In particular, threshold and
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Bernoulli mixture models are discussed. The risk weight formulas to be used in an IRB Basel II
approach can be derived from a one-factor Gaussian threshold model with preassigned constant
asset correlation (see, for example, Section 8.4.5 of [1]).

However, it has long been known that the value at risk and other risk indicators of a credit
portfolio are sensitive to the accuracy of the estimation of default correlations. As the data are
scarce, it is a challenge to estimate the default correlations among the creditors correctly. In
particular, empirical studies have shown that credit default correlations vary over time [2], rating
classes and industry sectors (see [3–5]) and macro-economic variables [6]. This empirical evidence
of varying default correlations is not reflected so far in the Basel II approach. McNeil and Wendin
[7] have utilized generalized linear mixed models (GLMM) to capture these dependencies. As
[1] point out on page 403, a GLMM modeling approach allows for flexible models, which can
incorporate macro-economic information as well as dynamic dependence structures. In contrast
to standard industry credit risk models such as Credit Metrics or the KMV model, in a GLMM
setup all model parameters are estimated jointly and no external data sources are needed for
model parameters. In particular, McNeil and Wendin [7] studied Bernoulli mixture models with
time-dependent random effects. The time dynamic is modeled through a latent autoregressive
component. For their analysis, they used a Bayesian approach applying Markov chain Monte
Carlo (MCMC) techniques to facilitate parameter estimation and inference in a dynamic setting.
This is a very powerful estimation method, since estimation of all parameters is conducted in a
single step and the dependence structure assumed allows one to borrow strength for the fit of
an area with scarce data from areas with more information. MCMC methods are summarized
in [8] and discussed in detail in [9], while many examples are provided in [10]. The empirical
study presented in [7] using Standard & Poor’s data on U.S. firms clearly demonstrated the
usefulness and potential of their approach. In particular, they investigated an unstructured model
for modeling the dependency among default events on rating categories using a large number of
parameters.

We would like to extend their work in two directions: Firstly, it would be interesting to see
whether one can use more parsimonious models to uncover the structure of this dependency on
rating categories. For instance, we would like to analyze whether the dependence on the rating
categories is constant over all categories or whether the dependence decays for categories with
their risk rating further apart. Secondly, for the application of such models for credit portfolio
management, it is vital to investigate the usefulness of these models for prediction. In light of the
recent increase in U.S. morgage defaults, the aspect of predicting the default probabilities for each
rating categories becomes very interesting for investors of mortgage portfolios.

For the first question, we propose to model the joint dynamic over time and rating categories
using a vector autoregressive latent component with different correlation structures of the error
model. This allows us to model different correlation structures among the rating categories. The
model fit of the considered models was assessed using the well-established deviance information
criterion (DIC) of [11] for models fitted by MCMC techniques in addition to graphical checks.

For the second question, we consider models for prediction of one time period, which allows
information to be included up to the previous time period. For the macro-economic variables
included in the models this means using a time-shifted version of the variable. To compare the
predictions we used the Brier score [12], conditional predictive ordinate (CPO) and standardized
predictive residuals proposed by Gelfand [13] and also utilized in [7]. Finally, we also investigated
the information loss resulting from only using the macro-economic information available up to the
previous year rather than the complete information.
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To illustrate our approach, we analyze annual data from Standard & Poor’s from 1981 to 2005. As
in [7], we included the Chicago Fed National Activity Index (CFNAI) as a macro-economic variable
to capture the cyclical component of the systematic risk due to common economic conditions.
With regard to prediction, our analysis suggests that the dependence induced by the rating classes
decays for rating classes further apart rather than being constant over all rating classes. When
considering predictions using a time-shifted CFNAI, the model with decaying dependencies shows
the best predictive capability among the models investigated. The information loss from using
this time-shifted variable in contrast to the unshifted one was seen not to be severe in this
data set.

2. BAYESIAN INFERENCE FOR BINOMIAL MIXED REGRESSION

We start with a similar setup as [7], in particular, we assume that there are K different rating
categories and T periods under consideration. Let mtk be the number of firms in category k in
time period t and Mtk the number of defaults in category k in time period t , t=1,2, . . . ,T ;
k=1,2, . . . ,K . One can then consider indicator variables Ys,t,k such that in time period t the sth
obligor of rating category k defaults Ys,t,k takes values 1 and 0 otherwise. We consider models of
the form

Mtk |btk ∼Bin(mtk,g(�k−x′
tb−btk)) independent (1)

where bt =(bt1, . . . ,btK )′ represents the unobserved risk vector in time period t and has a specified
distribution; l=(�1, . . . ,�K ) and b are fixed, unknown parameters; xt is a p-dimensional covariate
vector representing observed macro-economic risk factors in time period t ; and g(·) is a known
link function for binomial data such as the logit or probit link. In our empirical study, we will use
the logit link. In the following, we will explore different distributions for bt , t=1, . . . ,T .

The above model can be motivated as follows: Given bt , the default indicators Ys,t,k are
independent and take value 1 with probability g(�k−x′

tb−btk) and value 0 otherwise. By defining

Vs,t,k =x′
tb+btk+�s,t,k (2)

where �s,t,k ∼g i.i.d. we can reformulate the model as follows: The sth obligor in rating category k
defaults in time period t iff Vs,t,k<�k . Vs,t,k can be thought to represent the asset value of the sth
obligor in rating category k in time period t and �k can be thought of as the critical liability as
laid out in [14]. The component x′

tb represents the asset value attributable to the observed macro-
economic market conditions, while btk is the contribution of rating category k in time period t .
The idiosyncratic term �s,t,k captures the contributions, which cannot be explained by global or
rating category factors.

The implied asset correlation cor(Vs,t,k,Vr,�,l) is given by

cor(Vs,t,k,Vr,�,l)= cov(bt,k,b�,l)√
var(bt,k)+�2

√
var(bt,k)+�2

(3)

where var(�s,t,k)=�2. For the logit link, we have �2=�2/3. We see that the distribution of
bt , t=1, . . . ,T , can be used to capture different aspects of the default correlations. We discuss
several such choices.
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Our baseline model is

bt =(bt , . . . ,bt )
′ where bt ∼N (0,�2) i.i.d. (Model0)

Therefore, the layout asset values Vs,t,k and Vr,�,l are independent for t �=�. This assumption
is clearly not realistic, because one surely would expect asset values in subsequent years to be
correlated. Furthermore, the correlation between asset values of obligors in the same time period
is always var(bt )/(var(bt )+�2), whether or not they are in the same rating category.

For the next model, we assume that the asset value correlations are time dependent but inde-
pendent of the rating category. In particular, we assume that

bt =(bt , . . . ,bt )
′

where

bt = �bt−1+��t , t=1,2, . . . ,T (Model1)

b0 = ��0/
√
1−�2 with �0,�1, . . . ,T i.i.d N (0,1)

This AR(1) time series for bt has a N (0,�2/(1−�2)) stationary distribution for |�|<1. This model
was considered in [7]. The asset values of obligors in subsequent years are now correlated with
cov(bt−1,bt )=�2/(1+�2), t=1,2, . . . ,T , but correlations between asset values of obligors in the
same time period are still constant over rating categories.

The next two models allow for category-dependent asset correlations. In Model2, btk is assumed
to be a first-order vector autoregressive AR(1) time series with

bt = �bt−1+et, t=1,2, . . . ,T

b0 = e0/
√
1−�2

where e0,e1, . . . are i.i.d. NK (0,�) with

�= �2

1−�2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 � . . . �K−1

� 1 . . . �K−2

...
...

. . .
...

�K−1 �K−2 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(Model2) (4)

Here Nn(l,�) denotes an n-dimensional normal distribution with mean vector l and covariance
matrix �. Model2 introduces implied asset correlations

cor(Vs,t,k,Vr,�,l)= �k,l�|t−�|/(1−�2)

�2/((1−�2)(1−�2))+�2
=

�2

(1−�2)(1−�2)
�|k−l|�|t−�|

�2/((1−�2)(1−�2))+�2
(5)

Here the asset values of obligors in the same rating category are most strongly correlated, and
the asset values of obligors in similar rating categories are more closely correlated than those of
obligors in disparate rating categories.
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The final model considered is similar to Model2, only the covariance matrix � is replaced by

�= �2

1−�2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 � . . . �

� 1 . . . �

...
...

. . .
...

� � . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(Model3) (6)

The implied asset correlations for Model3 are

cor(Vs,t,k,Vr,�,l)= �k,l�|t−�|/(1−�2)

�2/(1−�2)+�2
=

�2

(1−�2)(1−�2)
�1(k �=l)�|t−�|

�2/(1−�2)+�2
(7)

where 1(k �= l) takes the value 1 if k �= l and 0 otherwise. This model incorporates the assumption
that asset values of obligors in the same rating category are more closely correlated than those of
obligors in different rating categories; however, for obligors in different rating categories it does
not make a difference whether or not their rating categories are similar.

To complete the model formulation for a Bayesian setup, we have to specify the prior distri-
butions. As in [7] we choose non-informative priors for the parameters and hyperparameters
of our models. In all models, we chose an ordered normal NK (0,�2� I ) distribution as prior
for l with �� =100000, i.e. we require �1>�2>�3>�4>�5 and the prior distribution then is
NK (0,�2� I )I�1>�2>�3>�4>�5 . The variance �2 was given an improper prior decaying as 1/x .

This corresponds to the limiting case �2∼ Inv�(	,
) with 	=0 and 
=0, where Inv�(	,
)
denotes the inverse Gamma distribution with parameters 	 and 
. The coefficient b was given
a N (0,�2� I ) prior, where �� =10000. In Model1, Model2 and Model3, � was given a normal

prior with mean 0 and standard deviation 1
4 truncated to the interval (−1,1). This informative

prior was chosen to improve convergence of the Markov chain and had little influence on the
quality of the estimates. In Model2 and Model3, the parameter � was given a uniform prior
on (−1,1).

We used an MCMC algorithm to simulate from the posterior distributions. Our algorithms
update parameters one at a time. To simulate from univariate full conditional distributions, which
are only known up to a constant, we apply the ARS (adaptive rejection sampling) and ARMS
algorithms [15, 16]. The former is intended for log-concave densities only, whereas the latter can
be applied to a wide range of univariate densities. Only in one case this ARMS-algorithm was
found not to work, and hence a Metropolis-sampling step had to be employed. For every model,
10 000 iterations were used as a burn-in to give the sampler the opportunity to settle down to
equilibrium. The estimates were based on the following 200 000 iterations. Every 40th iteration
was used so that there was a sample of 5000 simulations available for analysis. This sub-sampling
frequency was chosen after having considered autocorrelation functions for the simulated values
of the parameters.

For both prediction and estimation, we conducted our analyses using not only covariate values
from the current year but also covariate values from the previous year. This was done to realistically
simulate the situation of predicting default probabilities for the coming year, when only covariate
values of the current year are available.
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3. MODEL COMPARISON OF FIT AND PREDICTIVE POWER

To assess model fit, the complete data were used to estimate the posterior distributions. This gives
estimates of quantiles, median, mean and standard deviation for all parameters for all models.
Credible intervals, which are the Bayesian equivalent to confidence intervals, are used to assess
the significance of parameters.

The DIC introduced by Spiegelhalter et al. [11] is used to compare the fit of different models.
For a probability model p(y|h) with observed data y=(y1, y2, . . . , yn) it is defined as DIC :=
E[D(h|y)]+ pD . The posterior mean deviance is defined as D(h)=−2log(l(y|h)) and corresponds
to a Bayesian measure of fit or adequacy, whereas the effective number of parameters pD :=
E[D(h|y)]−D(E[�|y]) is a measure of model complexity. In the case of a model with no random
effects, pD gives the number of parameters. Hence, this score considers both complexity and
goodness of fit. When comparing models, the model with smallest DIC would be preferred.

Furthermore, seeing that in practical applications one is even more interested in the predictive
quality of a model, we will consider this aspect carefully. To gain an idea of the predictive quality,
we fitted the models using the data of all time periods except the last one and then computed the
predictive distributions of the default probabilities for the last time period. To assess the goodness
of those predictions, we will use the verification score introduced by Brier [12]. Let pObstk be the
observed default probability in year t and rating category k and let ptkr be the simulated value of
the default probability in year t and rating category k from the r th iteration of the MCMC process.
Assume that there are R iterations. As our predictions were made for 2005, the corresponding
Brier score to measure the goodness of these predicted default probabilities is defined as

B= 1

R

R∑
r=1

K∑
k=1

(p2005kr − pObs2005k)
2

Seeing that default probabilities vary strongly across rating categories, this Brier score assigns
greater weight to riskier rating categories than to less risky rating categories. In order to adjust for
this, we also considered a relative Brier score, which is defined by

BRe= 1

R

R∑
r=1

K∑
k=1

((p2005kr/p
Obs
2005k)−1)2

A model with small (relative) Brier score would be preferred.
Further, we used the category-specific CPO for 2005, which for rating category k is defined by

CPO2005,k = p(N2005,k,Obs|{Nt,1,Obs, . . . ,Nt,K ,Obs}, t �=2005)

CPO2005,k gives the conditional probability of observing N2005,k,Obs given all observations up to
year 2004 and for a good model one would expect it to be large. Note that {CPO2005,k,k=1, . . . ,K }
can be estimated using the MCMC iterates.

Finally, we considered the univariate, standardized predictive residual d2005,k defined by

d2005,k := N2005,k,Obs−E(N2005,k |{Nt,1,Obs, . . . ,Nt,K ,Obs}, t �=2005)√
var(N2005,k |{Nt.1,Obs, . . . ,Nt,K ,Obs}, t �=2005)

Here, the model with small |d2005,k | would be preferred. The last two scores were also considered
in [7], which facilitates comparison of results. For details of these scores, see [13]. Again d2005,k
can be estimated using the MCMC iterates.
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4. AN EMPIRICAL STUDY OF S&P DEFAULT DATA

4.1. Description of the data

The default data used are available from Standard and Poor’s CreditProTM web site. It contains
yearly default data from 1981 to 2005 in seven rating categories: ‘CCC’, ‘B’, ‘BB’, ‘BBB’,
‘A’, ‘AA’, ‘AAA’ ranked according to decreasing risk. Only categories CCC to A have been
considered, because in categories AA and AAA, defaults are too rare to allow for statistical
inference. Alternatively, one could also have combined the rating categories AAA, AA and A into
one rating category ‘A or above’. For simplicity, we will number the rating categories 1, . . . ,5.
The average number of firms per rating category per year is 450.

There are significant numbers of firms that were rated at the beginning of a year but not at the
end of a year, so that there is no information available on whether or not they defaulted. These
firms have been excluded from the analysis.

The CFNAI, which is published monthly, was used as a macro-economic indicator and its
yearly average was used as the covariable. The CFNAI is based on data from the following broad
categories: production and income; employment, unemployment and hours; personal consumption
and housing; sales, orders and inventories and is thought to give a gauge on current and future
economic activity and inflation.

4.2. Results

4.2.1. Estimation and model fit. Table I summarizes the posterior distributions of all parameters
for all models considered for the unshifted and shifted CFNAI, respectively. One can see very
clearly that �, when the unshifted CFNAI is used, is significantly �=0, i.e. the CFNAI is able to
explain part of the inhomogeneity of default rates over time. Instead when the shifted CFNAI is
used, the estimated regression coefficient is reduced and not quite significant, thus showing some
information loss. The importance of the CFNAI is also illustrated in Figure 1, where one can see the
fitted (t<2005) and predicted (t=2005) default probabilities from Model2, the observed default
probabilities and (scaled) CFNAI in the same graph. One can observe that the CFNAI and the
default probabilities behave very similarly over time. One can also see that for Model1, Model2 and
Model3, the correlation parameter � for the time structure is significant, i.e. the time dependency
of the unobserved risk helps to explain observed default probabilities. Moreover, in Model2 and
Model3 correlation parameter � for the dependence between rating categories is distinct from 0
and higher than �, which indicates that the new correlation structures of Model2 and Model3
improve the fit. Further, the time correlation measured by � is lower than the correlation induced
by the dependency between the categories measured by �.

Table II shows DIC scores using the unshifted CFNAI and the shifted CFNAI. For the unshifted
and the shifted CFNAI, one can see that Model2 and Model3 have significantly lower DIC scores
than Model0 and Model1, thus indicating a better fit when a dependency on the rating category
is allowed. Since the DIC scores are the lowest for Model3, we see a slight preference in model
fit for a equidistant correlation structure among the rating categories. The DIC values for Model0
and Model1 are quite similar for each of the two CFNAI specifications, which implies that the
sole introduction of an unobserved autoregressive risk component does not improve the fit over
the base model much. One can see that the DIC scores are consistently higher when using the
shifted CFNAI than when using the unshifted CFNAI. This could be expected, because one would
expect this year’s CFNAI to give more relevant information than last year’s CFNAI. However, the
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Table I. Posterior mean estimates with estimated standard errors and estimated posterior quantiles based
on complete data 1981–2005 with unshifted and shifted CFNAI, respectively.

Unshifted CFNAI Shifted CFNAI

10% 50% Mean (Std dev.) 90% 10% 50% Mean (Std dev.) 90%

l1
Model0 −1.8 −1.0 −1.0 (0.13) −0.9 −1.2 −1.0 −1.0 (0.14) −0.8
Model1 −1.3 −1.0 −1.1 (0.18) −0.8 −1.3 −1.0 −1.0 (0.19) −0.8
Model2 −1.6 −1.2 −1.2 (0.46) −0.9 −2.3 −1.1 −1.2 (0.96) −0.7
Model3 −1.4 −1.1 −1.0 (0.42) −0.8 −1.4 −1.1 −1.1 (0.23) −0.9
l2
Model0 −3.1 −3.0 −3.0 (0.12) −2.8 −3.1 −3.0 −3.0 (0.13) −2.8
Model1 −3.2 −3.1 −3.0 (0.17) −2.8 −3.2 −3.0 −3.0 (0.19) −2.8
Model2 −3.5 −3.1 −3.1 (0.35) −2.8 −4.7 −3.1 −3.3 (0.83) −2.7
Model3 −3.3 −3.0 −3.0 (0.40) −2.7 −3.3 −3.0 −3.0 (0.23) −2.8
l3
Model0 −4.8 −4.6 −4.6 (0.14) −4.4 −4.8 −4.6 −4.6 (0.15) −4.4
Model1 −4.9 −4.6 −4.7 (0.19) −4.4 −4.9 −4.6 −4.6 (0.20) −4.4
Model2 −5.1 −4.7 −4.7 (0.39) −4.4 −6.5 −4.7 −4.0 (0.86) −4.4
Model3 −4.9 −4.7 −4.6 (0.47) −4.3 −5.0 −4.7 −4.7 (0.24) −4.4
l4
Model0 −6.3 −6.1 −6.0 (0.19) −5.8 −6.3 −6.0 −6.0 (0.19) −5.8
Model1 −6.4 −6.1 −6.1 (0.22) −5.8 −6.4 −6.1 −6.1 (0.24) −5.8
Model2 −6.6 −6.2 −6.2 (0.37) −5.8 −8.9 −6.2 −6.6 (1.20) −5.8
Model3 −6.5 −6.1 −6.1 (0.49) −5.8 −6.5 −6.1 −6.1 (0.28) −5.8
l5
Model0 −8.5 −8.0 −8.0 (0.38) −7.5 −8.5 −8.0 −8.0 (0.38) −7.5
Model1 −8.6 −8.0 −8.0 (0.39) −7.6 −8.6 −8.1 −8.0 (0.41) −7.5
Model2 −8.7 −8.1 −8.1 (0.53) −7.5 −10.6 −8.2 −8.6 (1.30) −7.6
Model3 −8.8 −8.1 −8.0 (0.50) −7.5 −8.6 −8.1 −8.1 (0.43) −7.6
b
Model0 0.28 0.53 0.53 (0.19) 0.77 −0.06 0.21 0.22 (0.22) 0.49
Model1 0.25 0.49 0.49 (0.18) 0.72 −0.07 0.19 0.19 (0.20) 0.45
Model2 0.27 0.50 0.50 (0.18) 0.73 −0.05 0.21 0.20 (0.20) 0.44
Model3 0.28 0.51 0.51 (0.18) 0.72 −0.05 0.20 0.20 (0.20) 0.45
r
Model0 0.39 0.50 0.50 (0.10) 0.64 0.48 0.59 0.60 (0.11) 0.76
Model1 0.35 0.45 0.46 (0.09) 0.58 0.42 0.53 0.54 (0.10) 0.68
Model2 0.12 0.22 0.22 (0.08) 0.32 0.10 0.21 0.21 (0.08) 0.32
Model3 0.36 0.46 0.46 (0.09) 0.58 0.43 0.53 0.54 (0.09) 0.66
a
Model0 — — — — — — — —
Model1 0.10 0.35 0.35 (0.19) 0.59 0.10 0.34 0.33 (0.18) 0.57
Model2 0.22 0.49 0.51 (0.24) 0.87 0.22 0.52 0.56 (0.28) 1.00
Model3 0.16 0.44 0.46 (0.24) 0.81 0.16 0.40 0.40 (0.19) 0.64
q
Model0 — — — — — — — —
Model1 — — — — — — — —
Model2 0.75 0.88 0.87 (0.090) 0.96 0.81 0.92 0.90 (0.07) 0.98
Model3 0.73 0.82 0.82 (0.068) 0.91 0.75 0.84 0.83 (0.06) 0.91

Copyright q 2008 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. (2008)
DOI: 10.1002/asmb



MODELING DEPENDENCIES BETWEEN RATING CATEGORIES

1985 1990 1995 2000 2005

0.0

0.2

0.4

0.6

0.8

de
fa

ul
ts

Model 2 : CCC

exp
80% CI
CFNAI

obs –1.5

–0.5

CFNAI

1.5

2.5

Figure 1. Fitted and predicted default probabilities (solid line) in Model2 with
unshifted CFNAI (dashed line).

Table II. DIC score to assess model fit for the considered models.

Index not shifted DIC Effective number of parameters

Model0 7827.04 25.81
Model1 7826.28 24.93
Model2 7818.11 38.42
Model3 7816.40 38.64

Index shifted DIC Effective number of parameters

Model0 8102.44 26.23
Model1 8102.68 25.94
Model2 8096.70 38.86
Model3 8094.83 41.52

Models are fitted with data 1981–2005 using unshifted CFNAI (top) and shifted CFNAI (bottom).

DIC scores using the shifted CFNAI are in the range of those using the unshifted CFNAI, which
indicates that using the shifted CFNAI one still obtains an acceptable model fit.

In Figure 2 one can see the observed default rates, the posterior fitted default probabilities for
1981–2004 and the predicted default probabilities for 2005 using the unshifted CFNAI. These
probabilities are shown for all models and all rating categories except for category A (too few
defaults). For instance, concentrating on rating category B and the year 1990, one can see that
although for Model0 and Model1 the observed default probability is not in the fitted 80% credible
interval, it is in this interval for Model2 and Model3. One can also see that the fitted expected
default probability 1990 is clearly closer to observed default probability 1990 for Model2 and
Model3. This again illustrates the improved fit of Model2 and Model3. For comparison, we also
include a similar plot using the shifted CFNAI (see Figure 3). We see that there is no large
difference in the fit and the prediction.
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Figure 2. Estimated posterior mean default probabilities for t=1981, . . . ,2004 and predicted
default probability for 2005 (solid line) with 80% credible intervals (dotted lines) and observed

default probabilities (o) using the unshifted CFNAI.
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Figure 3. Estimated posterior mean default probabilities for t=1981, . . . ,2004 and predicted
default probability for 2005 (solid line) with 80% credible intervals (dotted lines) and observed

default probabilities (o) using the shifted CFNAI.
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From a model fit perspective, one might be led to conclude that Model3 is slightly preferable to
Model2. This is somewhat not expected, since we would expect Model2 to fit better than Model3.
The reasoning behind this is that companies in adjacent rating categories share more characteristics
and are exposed to more similar kind of risks than those in rating categories further apart. However,
we like to note that the DIC is only approximate in exponential family models and problems with
the DIC measure have been reported elsewhere. Therefore, DIC should be used only as a rough
guideline. We place greater emphasis on checking the predictive capabilities of the models, since
this is the primary interest of the data analyst.

4.2.2. Analysis of predictive distributions. Figure 4 and the top part of Table III summarize the
predictive distributions for 2005 obtained for the different models using the unshifted CFNAI. In
general, the point predictions such as the mode, mean and median of the predictive distribution
are higher than the observed values. Further, the predictive distributions are skewed with a long
right tail, so that mean and median are to the right of the mode of the distribution. Comparing
the distributions obtained for rating category BBB, one can see in Figure 4 that the mode of
the distribution is closest to the observed default probability for Model2. The same effect can be
observed in the upper part of Table III. For comparsion, we also added the corresponding plot for
the shifted CFNAI (see Figure 5). The predictive distributions are as expected less concentrated
using the shifted CFNAI compared with those using the unshifted CFNAI.

The lower part of Table III shows the predicted default probabilities for 2005, but this time the
shifted CFNAI was used. As one would expect, using this less informative covariate, one obtains
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Figure 4. Predictive densities for 2005 in the different rating categories using unshifted CFNAI. The
vertical solid line indicates the observed default probability in 2005 and the vertical dashed lines show

the 90% credible interval.
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Table III. Predicted default probabilities in 2005 with estimated standard errors and estimated quantiles
of the predicted default distribution using the unshifted (top) and shifted CFNAI (bottom).

Rating Observed Model 5% 50% Mean (Std dev.) Mode 95%

Unshifted CFNAI
CCC 0.11 Model0 0.14 0.26 0.27 (0.092) 0.24 0.43

Model1 0.12 0.23 0.24 (0.085) 0.21 0.39
Model2 0.11 0.21 0.22 (0.084) 0.20 0.38
Model3 0.11 0.21 0.23 (0.085) 0.19 0.39

B 0.019 Model0 0.022 0.046 0.051 (0.025) 0.041 0.097
Model1 0.018 0.039 0.043 (0.021) 0.032 0.081
Model2 0.015 0.034 0.038 (0.020) 0.026 0.076
Model3 0.015 0.035 0.039 (0.021) 0.028 0.077

BB 0.0022 Model0 0.0042 0.0094 0.0110 (0.0057) 0.0079 0.0212
Model1 0.0036 0.0078 0.0089 (0.0048) 0.0064 0.0170
Model2 0.0029 0.0068 0.0078 (0.0045) 0.0056 0.0161
Model3 0.0031 0.0072 0.0082 (0.0047) 0.0060 0.0165

BBB 0.0007 Model0 0.0010 0.0022 0.0025 (0.0014) 0.0018 0.0050
Model1 0.0008 0.0019 0.0021 (0.0012) 0.0015 0.0041
Model2 0.0007 0.0016 0.0011 (0.0019) 0.0012 0.0039
Model3 0.0007 0.0017 0.0019 (0.0011) 0.0014 0.0039

A 0 Model0 0.00012 0.00032 0.00038 (0.0003) 0.00024 0.00085
Model1 0.00010 0.00026 0.00032 (0.0002) 0.00020 0.00069
Model2 0.00008 0.00024 0.00029 (0.0002) 0.00018 0.00067
Model3 0.00009 0.00025 0.00030 (0.0002) 0.00018 0.00067

Shifted CFNAI
CCC 0.11 Model0 0.12 0.27 0.29 (0.12) 0.23 0.50

Model1 0.10 0.23 0.24 (0.11) 0.19 0.44
Model2 0.09 0.21 0.22 (0.10) 0.20 0.42
Model3 0.09 0.21 0.23 (0.10) 0.20 0.42

B 0.019 Model0 0.019 0.049 0.057 (0.034) 0.037 0.122
Model1 0.015 0.039 0.046 (0.028) 0.030 0.099
Model2 0.012 0.033 0.039 (0.026) 0.023 0.086
Model3 0.013 0.035 0.041 (0.027) 0.027 0.092

BB 0.0022 Model0 0.0037 0.0101 0.0120 (0.0080) 0.0077 0.0273
Model1 0.0030 0.0080 0.0096 (0.0065) 0.0057 0.0213
Model2 0.0024 0.0068 0.0081 (0.0059) 0.0044 0.0181
Model3 0.0027 0.0072 0.0086 (0.0060) 0.0053 0.0191

BBB 0.0007 Model0 0.0009 0.0024 0.0029 (0.0020) 0.0018 0.0065
Model1 0.0007 0.0019 0.0023 (0.0016) 0.0013 0.0051
Model2 0.0005 0.0015 0.0019 (0.0014) 0.0011 0.0043
Model3 0.0006 0.0017 0.0020 (0.0014) 0.0013 0.0046

A 0 Model0 0.00010 0.00034 0.00043 (0.0003) 0.00024 0.00108
Model1 0.00008 0.00027 0.00034 (0.0003) 0.00018 0.00083
Model2 0.00007 0.00023 0.00030 (0.0003) 0.00016 0.00074
Model3 0.00008 0.00024 0.00031 (0.0003) 0.00016 0.00077

slightly larger standard deviations and larger 90% credible intervals. However, the modal values
are closer to the observed values than in the upper part of Table III. This probably is due to the
fact that the CFNAI mainly is an indicator for future economic activity and therefore is also highly
relevant for the coming year.
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Figure 5. Predictive densities for 2005 in the different rating categories using shifted CFNAI.
The vertical solid line indicates the observed default probability in 2005 and the vertical

dashed lines show the 90% credible interval.

Figure 6 compares fit and prediction obtained for rating category B for all models using the
shifted CFNAI and the unshifted CFNAI. The left panels of Figure 6 give the fitted (t �=2005) and
the predicted (t=2005) default probabilities, whereas the right panels of Figure 6 compare the
predicted densities for 2005. Clearly, the base model Model0 gives the worst predictions, whereas
the predictions in Model1 are better than those in Model0 for both unshifted and shifted CFNAI
specifications. However, the predictive distribution of Model2 is the most concentrated predictive
distribution with mode closest to the observed value.

The upper part of Table IV shows Brier scores and relative Brier scores for all models using
the unshifted and the shifted CFNAI. Since in rating-category A the observed default probability
is 0, we chose to divide by 10−4 instead, which is approximately the order of magnitude of the
predictive default probabilities. Brier scores using the shifted CFNAI are higher for all models,
but they are still in the range of Brier scores using the unshifted CFNAI, which means that while
using the shifted CFNAI rather than the unshifted CFNAI impairs the predictive strength of our
models; the predictions obtained using the shifted CNFAI are still reasonably good. These scores
again support that Model2 has the best predictive qualities, closely followed by Model3. The
same effects can also be observed in Table V. In the top and bottom parts, Model2 scores best
for all rating categories and for shifted and unshifted CNFAI. Moreover, in the bottom part, one
can see that scores using the non-shifted CFNAI are very close to the scores obtained using the
shifted CFNAI. This again illustrates that using the shifted CFNAI does not impair predictions
much.
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Figure 6. Left panels: fitted (t �=2005) and predicted (t=2005) default probabilities for different covariate
specifications; right panels: predictive default densities for rating category B in 2005.

Table IV. Brier scores for 2005 using 1981–2004 data with unshifted CFNAI and shifted CFNAI.

Index not shifted Brier score Relative Brier score

Model0 0.037 54
Model1 0.025 36
Model2 0.022 28
Model3 0.023 30

Index shifted Brier score Relative Brier score

Model0 0.049 86
Model1 0.032 51
Model2 0.026 37
Model3 0.027 41

We now consider the problem of predicting transition probabilities for each rating category.
In Table VI we give the observed transition probabilities. Here a rating company could use their
own rating rule. In lieu of this, we investigated the following ad hoc rating rule. To predict the
transition probabilities, we use the predicted default probabilities p2005kr for all rating categories
and for 5000 MCMC recorded values after burn-in, which constitutes a sample from the posterior
predictive distribution. We predict a default if this probability is greater than 0.5. We determine the
empirical 20, 40, 60 and 80% quantiles of p2005kr , p2005kr�0.5 over all k and r . The observation
kr is classified as A if p2005kr is less than or equal to 20% quantile, as BBB if it is between 20 and
40% quantiles, etc. These 5000 rating classifications are then used to construct the corresponding
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Table V. Top part: absolute predictive residuals |d2005,k | for k=1, . . . ,K using 1981–2004 data with
unshifted CFNAI and shifted CFNAI; bottom part: conditional predictive ordinates CPO2005,k for

k=1, . . . ,K using 1981–2004 data with unshifted CFNAI and shifted CFNAI.

Index not shifted |d2005,CCC| |d2005,B| |d2005,BB| |d2005,BBB| |d2005,A|
Model0 3.66 3.96 2.33 1.27 0.63
Model1 3.00 3.15 2.00 1.05 0.58
Model2 2.75 2.57 1.76 0.89 0.55
Model3 2.79 2.69 1.85 0.94 0.56

Index shifted |d2005,CCC| |d2005,B| |d2005,BB| |d2005,BBB| |d2005,A|
Model0 4.00 4.36 2.51 1.38 0.67
Model1 3.08 3.25 2.06 1.08 0.59
Model2 2.71 2.47 1.74 0.85 0.55
Model3 2.83 2.72 1.87 0.94 0.57

Index not shifted CPO2005,CCC CPO2005,B CPO2005,BB CPO2005,BBB CPO2005,A

Model0 0.011 0.009 0.032 0.148 0.667
Model1 0.018 0.015 0.049 0.186 0.710
Model2 0.023 0.023 0.071 0.216 0.729
Model3 0.022 0.022 0.063 0.207 0.725

Index shifted CPO2005,CCC CPO2005,B CPO2005,BB CPO2005,BBB CPO2005,A

Model0 0.012 0.010 0.034 0.137 0.640
Model1 0.022 0.018 0.058 0.185 0.698
Model2 0.027 0.025 0.081 0.220 0.730
Model3 0.025 0.023 0.070 0.207 0.719

Table VI. Observed transition probabilities from 2004 to 2005.

To A To BBB To BB To B To CCC To default

From A 0.95 0.05 0.00 0.00 0.00 0.00
From BBB 0.07 0.90 0.03 0.00 0.00 0.00
From BB 0.00 0.06 0.86 0.08 0.00 0.00
From B 0.00 0.01 0.10 0.83 0.04 0.02
From CCC 0.00 0.01 0.01 0.31 0.57 0.11

predicted posterior transition probabilities given in Table VII. From these we see that transition
probabilities are predicted reasonably accurately for the top four rating categories, whereas for CCC
and the default probability estimates are less accurate. The sum of (weighted) squared differences
gives 0.282 (0.133), 0.289 (0.136), 0.274 (0.129) and 0.276 (0.130) for Model0, Model1, Model2
and Model3, respectively. This again shows a slight preference to Model2.

Judging from the results on the predictive distributions, one would clearly prefer Model2 to
Model3. This preference is not a surprise, since one would expect the risk structure of companies
in adjacent rating categories to be more similar than that of companies with ratings further apart.
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Table VII. Predicted transition probabilities from 2004 to 2005.

To A To BBB To BB To B To CCC To default

Model0
From A 0.96 0.04 0.00 0.00 0.00 0.00
From BBB 0.04 0.89 0.07 0.00 0.00 0.00
From BB 0.00 0.07 0.88 0.05 0.00 0.00
From B 0.00 0.00 0.04 0.93 0.03 0.00
From CCC 0.00 0.00 0.00 0.02 0.98 0.02

Model1
From A 0.96 0.04 0.00 0.00 0.00 0.00
From BBB 0.03 0.89 0.07 0.00 0.00 0.00
From BB 0.00 0.06 0.89 0.05 0.00 0.00
From B 0.00 0.00 0.04 0.93 0.03 0.00
From CCC 0.00 0.00 0.00 0.02 0.98 0.01

Model2
From A 0.95 0.05 0.00 0.00 0.00 0.00
From BBB 0.05 0.87 0.08 0.00 0.00 0.00
From BB 0.00 0.08 0.86 0.06 0.00 0.00
From B 0.00 0.00 0.06 0.92 0.03 0.00
From CCC 0.00 0.00 0.00 0.02 0.98 0.01

Model3
From A 0.96 0.04 0.00 0.00 0.00 0.00
From BBB 0.04 0.88 0.08 0.00 0.00 0.00
From BB 0.00 0.08 0.86 0.06 0.00 0.00
From B 0.00 0.00 0.05 0.92 0.03 0.00
From CCC 0.00 0.00 0.00 0.02 0.98 0.01

5. SUMMARY AND DISCUSSION

We have extended the Bernoulli mixture models considered in [7] by explicitly modeling the
correlation structure between rating category and time period and studied their model fit and
predictive capability. In contrast to [7], we place special emphasis on model prediction, which we
believe is the primary focus of the data analyst. In particular, for the investigation of the predictive
ability of a model we used predictable model specifications. Further, we utilized the Brier score
and a standardized predictive residual. The results of our empirical study showed that the model
extensions are useful for both model fit and prediction. In particular, the data provide evidence that
the correlation effect between rating categories is decreasing when rating categories are further
apart despite a rather limited database and it is larger than the correlation effect induced by the
time dynamics. Model2 can also be extended to allow for rating-dependent � components or even
more general vector autoregressive models for the risk vector. This will be the topic of future
research.

For a larger data set with longer time history, one can extend the model to include dynamic
model components for exogenous variables reflecting macro-economic information. In this context
models as considered and fitted in [17] can be utilized. In addition, one could also consider different
time dynamics such as general ARMA or stochastic volatility models. Further additional fixed
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grouping variables such as industry sectors to allow for more homogeneous groups can be easily
included.

With regard to the Bayesian approach, external data sources can be easily incorporated trans-
forming this information into proper prior information. For example, if one expects the time
correlation parameter � to be close to a value �0, one can use, for example, a normal prior for �
with mean value �0 truncated to the interval (−1,1).

Because of the requirements for an IRB-based approach, it is to be expected that larger internal
databases over longer time horizons will become available, where the model extensions discussed
above will be feasible and expected to improve the default probability predictions. Finally, we like
to note that models for default probabilities are only one component for credit risk management in
addition to models for loss after default. Therefore, more realistic joint models that can be fitted
and assessed by a Bayesian approach are to be envisioned.

APPENDIX A: CONDITIONAL DISTRIBUTIONS

In this section, we will denote unconditional densities by [·] and conditional densities by [·|·].
Further, we collect the observed data Mtk and mtk for t=1, . . . ,T ; k=1, . . . ,K into the vector’s
M and m, respectively. The complete risk vector is denoted by b=(b1, . . . ,bT ). Finally, we also
make repeated use of the following fact used in [7]:

If Z=(Z1, Z2, . . . , Zm)∼Nm(l,�), where X denotes the inverse of �, then

Zr |Z−r ∼N (�̃, �̃2) with �̃=�r +
1

Xrr

K∑
s=1,s �=r

Xsr (�s−Zs) and �̃2= 1

Xrr
(A1)

A.1. Model1

The joint density is given by

[M,m,b,l,�,b,�]=
T∏
t=1

K∏
k=1

[Mtk |mtk,bt ,�k,b][b|�,�][l][�][b][�]

where [Mtk |mtk,bt ,�k,b]∝g(�k−xtb−bt )Mtk (1−g(�k−xtb−bt ))mtk−Mtk . Now, the complete
risk vector b=(b1,b2, . . . ,bT )T is multivariate normal with covariance matrix � given by �st =
cov(bs,bt )=�2�|s−t |/(1−�2),s, t�{1,2, . . . ,T }. Its inverse is tridiagonal

�−1= 1

�2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −�

−� 1+�2 −�

−� 1+�2 −�

. . .
. . .

. . .

−� 1+�2 −�

−� 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Moreover, det(�−1)=�−2T(1−�2). It then follows that the full conditional of � is

[�|�,b,l,b,m,M] ∝
√
det(�−1)exp{− 1

2b
T�−1b}[�]

∝
√
1−�2 exp{− 1

2�
−2(C1(b)�2−C2(b)�)}[�] (A2)

where C1(b)=∑T−1
t=2 b2t and C2(b)=2

∑T
t=2 btbt−1. The posterior density of � is given by

[�2|�,b,l,b,m,M]∝[b|�,�][�]∝�−T exp{−C3(b)�−2}[�]

where C3(b)= 1
2 (
∑T

t=1 b
2
t +�2

∑T−1
t=2 b21−2�

∑T
t=2 btbt−1). But now, if �2 has an Inv�(	,
)

prior then

[�2|�,b,l,b,m,M]∼ Inv�(	+T/2,
+C3(b,�))

The risk vector b|�,� is multivariate normal and for b−t =(b1,b2, . . . ,bt−1,bt+1, . . . ,bT ), t=
1,2, . . . ,T

[bt |b−t ,�,�]∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N (�b2,�
2), t=1

N (�bT−1,�
2), t=T

N

(
�

1+�2
(bt−1+bt+1),

�2

1+�2

)
otherwise

The full conditional density then is

[bt |b−t ,�,�,m,M]∝
K∏

k=1
[Mtk |mtk,bt ,�k][bt |b−t ,�,�]

where [Mtk |mtk,bt ,�k,b]∝g(�k−xtb−bt )Mtk (1−g(�k−xtb−bt ))mtk−Mtk . The full conditional
density of b is given by

[b|�,�,l,b,m,M]∝
T∏
t=1

K∏
k=1

[Mtk |mtk,bt ,�k,b][b]

The corresponding full conditionals for Model0 can easily be obtained by setting �=0.

A.2. Model2

Model2 has the joint distribution

[M,m,b,l,�,�,b,�]=
T∏
t=1

K∏
k=1

[Mtk |mtk,btk,�k,�][b|�,��][l][�][�][b][�] (A3)
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The risk vector b is again multivariate normal with zero mean vector and cov(bsk,btl)=
�kl�|t−s|/(1−�2), s, t�{1,2, . . . ,T }, k, l�{1,2, . . . ,K } so that the covariance matrix has inverse

�−1= 1

�2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� −��

−�� �(1+�2) −��

−�� �(1+�2) −��

. . .
. . .

. . .

−�� �(1+�2) −��

−�� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A4)

where

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −�

−� 1+�2 −�

−� 1+�2 −�

. . .
. . .

. . .

−� 1+�2 −�

−� 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the inverse of �/�2. This gives that det(�−1)=det(�)T(1−�2)�−2TK =�−2TK (1−�2)T(1−�2).
Now, b is again multivariate normal and it follows from (A1) that

[bt |b−t ,�,b,�,�]∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N (�b2,�), t=1

N (�bT−1,�), t=T

N

(
�

1+�2
(bt−1+bt+1),

1

1+�2
�

)
otherwise

(A5)

Again using (A1) gives that if t=1

[btk |b−tk,�,b,�,�]

∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N (�b2,k−�(�b2,k+1−b1,k+1),�
2), k=1

N (�b2,k−�(�b2,k−1−b1,k−1),�
2), k=K

N

(
�b2,k− �

1+�2
(�b2,k−1−b1,k−1+�b2,k+1−b1,k+1),

�2

1+�2

)
otherwise
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If t=T

[btk |b−tk,�,b,�,�]

∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N (�bT−1,k−�(�bT−1,k+1−bT,k+1),�
2), k=1

N (�bT−1,k−�(�bT−1,k−1−bT,k−1),�
2), k=K

N

(
�bT−1,k− �

1+�2
(�bT−1,k−1−bT,k−1+�bT−1,k+1−bT,k+1),

�2

1+�2

)
otherwise

For 1<t<T

[btk |b−tk ,�,b,�,�]∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

(
�

1+�2
(bt−1,k +bt+1,k)−�

(
�

1+�2
(bt−1,k+1+bt+1,k+1)−bt,k+1

)
,

�2

1+�2

)
, k=1

N

(
�

1+�2
(bt−1,k +bt+1,k)−�

(
�

1+�2
(bt−1,k−1+bt+1,k−1)−bt,k−1

)
,

�2

1+�2

)
, k=K

N

(
�

1+�2
(bt−1,k +bt+1,k)− �

1+�2

[
�

1+�2
(bt−1,k−1+bt+1,k−1)−bt,k−1

+ �

1+�2
(bt−1,k+1+bt+1,k+1)−bt,k+1

]
,

�2

(1+�2)(1+�2)

)
otherwise

Then [btk |b−tk,�,b,�,�,m,M]∝[btk |b−tk,�,�,�, ][Ntk |ntk,btk,�k,b]. The full conditional
distribution of � is given by

[�|�,�,b,m,M,b] ∝ [b|�,�,�][�]

∝
√
det(�−1)exp{− 1

2b
T�−1b}[�]

∝
√

(1−�2)T exp{− 1
2�

−2(S1(b,�)�+S2(b,�)�2)}
Now, if ci (u,v) denotes the coefficient of �i in uT�v, then here c1(u,v)=−(

∑K
k=2 ukvk−1+

uk−1vk) and c2(u,v)=∑K−1
k=2 ukvk . Then for i=1,2

Si (b,�)=
T−1∑
t=2

(ci (bt ,bt )(1+�2))+ci (b1,b1)+ci (bT ,bT )−2�
T∑
t=2

ci (bt ,bt ) (A6)

The full conditional distribution of � can be determined as in (A2)

[�|�,b,�,l,b,m,M] ∝
√
det(�−1)exp{− 1

2b
T�−1b}[�]

∝
√
1−�2 exp{− 1

2�
−2(C1(b,�)�2−C2(b,�)�)}[�]
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where C1(b,�)=∑T−1
t=2 btT�bt and C2(b)=∑T

t=2b
T
t �bt−1+bTt−1�bt. The posterior density of

�2 is given by

[�2|�,b,�,l,b,m,M] ∝ [b|�,�,�][�]∝
√
det(�)−1 exp{− 1

2b
T�−1b}[�]

∝ �−TK exp{−C3(b,�,�)�−2}[�]
where

C3(b,�,�)= 1

2

(
T∑
t=1

bTt �bt+�2
T−1∑
t=2

bTt �bt−�
T∑
t=2

(bTt �bt−1+bTt−1�bt)

)

Then, if �2 has an Inv�(	,
) prior

[�2|�,b,�,l,b,m,M]∼ Inv�(	+T K/2,
+C3(b,�,�))

The posterior densities for b and l can be found similar to those in Model1.

A.3. Model3

Model3 again has joint density (A3). Here, the covariance matrix has inverse as in (A4), where �
is the inverse of �(1−�2)/�2 with � defined in (6), i.e.

�= 1+3�

1+3�−4�2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1    

 1   

  1  

   1 

    1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with = −�

1+3�
(A7)

This then gives

det(�−1)=det(�)T(1−�2)�−2T K =
(

(1−)4(1+4)

(
1+3�

1+3�−4�2

)K
)T

�−2T K (1−�2)

(A5) and (A1) hold exactly as for Model2 and with � as above [btk |b−tk,�,b,�,�] can be
determined. For t=1

[btk |b−tk,�,b,�,�]∼N

(
�b2,k+

∑
s �=k

(�b2,s−b1,s),
1+3�−4�2

1+3�
�2
)

For t=T

[btk |b−tk,�,b,�,�]∼N

(
�bT−1,k+

∑
s �=k

(�bT−1,s−bT,s),
1+3�−4�2

1+3�
�2
)
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For 1<t<T

[btk |b−tk,�,b,�,�] ∼ N

(
�

1+�2
(bt−1,k+bt+1,k)

+
∑
s �=k

(
�

1+�2
(bt−1,s+bt+1,s)−bt,s

)
,�2

1

1+�2
1+3�−4�2

1+3�

)

The full conditional density of � is determined by

[�|�,�,b,m,M,b]

∝[b|�,�,�][�]∝
√
det(�−1)exp{− 1

2b
T�−1b}[�]

∝
(

1

1+4�

1

(1−�)4

)T/2

exp

{
− 1

2�2

(
1+3�

1+3�−4�2
S1(b,�)−S2(b,�)

�

1+3�−4�2

)}

Now, if ci (u,v) this the coefficient of i in uT(1+3�−4�2)/(1+3�)�v for � defined in (A7),
then here c1(u,v)=∑k ukvk and c2(u,v)=∑k �=l ukvl . Then for i=1,2, Si is again defined by
(A6). Since the full conditional distributions of �, b, � and l do not depend on the actual form of
�, these full conditional distributions are the same as those in Model2.
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