| 1) | | |---|------------------| | 1. amino acids ; | | | 2. peptide; | | | 3. condensation / polymerisation ; | | | 4. amino / amine / NH ₃ ⁺ / NH ₂ ; | | | 5. carboxyl / carboxylic (acid) / COC |) / COOH ; | | [Accept answers for 4 and 5 the opposit | e way round] (5) | | Answer | Marl | |--|------| | ALLOW Mps in context of clearly labelled diagram | | | 1. globular / eq ; | | | 2. reference to active site ; | | | 3. reference to specific shape of active site ; | | | reference to {bonds /named bond / interaction
/ eq} between R groups; | | | credit correctly named {bond/interaction} e.g.
disulphide bond, hydrogen bonds, hydrophobic
interactions (between R groups); | (3) | | (primary structure) {position / sequence /
order /eq} of the {amino acids / R groups} /
eq; | | | idea that this determines the {positioning /
type} of the {bonds / folding / eq}; | | | determining the {shape / properties} of the active site / eq; | | | idea of interaction of active sites and substrates e.g. enzyme substrate complex forms; | | | idea of {polar / hydrophilic} on the outside of enzymes / {non polar / hydrophobic} on the inside / eq; (| 3) | | 6. reference to solubility ; | | | 2)
(a)(i) | D; | (1) | | | |--------------|-------------|--|-----|-----| | (a)(ii) | С; | (1) | | | | (a)(iii) | Α; | (1) | | | | (b) | | increase in temperature increases the eability / eq ; | | | | | relate | a of change in {colour / permeability}
d to {42 °C / 64 °C}
o change up to 42 °C ; | (2) | | | c)(i) | Any two | from: | < | | | | 1. ref
; | erence to pre-treatment e.g. rinsing method | | | | | | ze / mass / surface area / volume / shape}
etroot ; | | | | | 3. be | etroot storage conditions / eq ; | | | | | 4. {sa | ame / type / species / eq} beetroot ; | | | | | 5. {a | ge of beetroot / storage time} ; | | | | | 6. (in | cubation) time / eq ; | | | | | | olume / concentration / eq} of {water / on}(added to beetroot); | | | | | 8. pH | ; | (2) | | | (c)(ii) | | | | | | (c)(ii) | 1. r | reference to repeats / replicates / eq ; | | | | | {ob
acc | dea that (colorimeter / readings) are
ojective / quantitative / not qualitative /
urate / provide numbers / more precise
asured not judged / eq}; | | (2) | | (c)(iii) | (pink colour due to) {pigment / dye /bet eq}; | alain / | | |-----------|---|--------------|-----| | ! | 2. idea that this is released when {cells / vamembranes} are damaged; | acuoles/ | | | | 3. and had not been washed off / eq ; | | | | | ACCEPT converse argument when clear | | (2) | | (c)(iv) | idea that the second experiment shows that permeability increases between {5 / 22} °C °C / in first experiment 5 °C has an effect / OR idea that the second experiment's results at quantified; | and 42
eq | (1) | | 2) | | | | | 3)
(a) | Any 3 of the following: | | | | (a) | 1. consists of (a) glucose ; | | | | | 2. (joined by 1,4 / 1,6) glycosidic bonds; | | | | | 3. branched structure / eq ; | | | | | 4. idea of compact structure ; | | | | | Any 3 of the following: | | | | | idea that it is {easily / rapidly / eq}
hydrolysed; | | | | | (leading to) more {glucose / eq} in a smaller
space (in a cell)/ eq; | | | | | 7. idea of low solubility ; | | | | | 8. it does not diffuse out of cells /eq; | (4) | | | | 9. it has no osmotic effect / eq ; | | | | (b)(i) | increasing intensity {increases carbohydrate
use / decreases fat use / eq} / eq; | | | | ! | {low intensity exercise / intensity below {39 /
40} au} uses more energy derived from fats /
eq; | | | | | OR {high intensity exercise / intensity above {39 / 40} au} uses more energy derived from carbohydrates / eq; | | | | | at {39 / 40} au both sources of energy used
equally / eq; | | | | | credit correct manipulation of figures to
compare energy usage; | (3) | | ## CHERRY HILL TUITION EDEXCEL (B) BIOLOGY AS PAPER 3 MARK SCHEME | (b)(ii) | idea that this diet is suitable for {a high
intensity / eq} event; | | |---------|---|-----| | | credit suitable example of athletic event e.g.
any endurance or power event; | | | | 3. reference to more carbohydrate being used (than fat) above {39 / 40} a.u. / eq; | | | | reference to carbohydrate being stored as glycogen; | | | | 5. idea of {maximum / more / lots of} glycogen (stored); | | | | idea that breakdown of glycogen provides energy (for the event); | (3) | | 4) | | | | (a)(i) | different tissues have different activities of catalase / eq ; | | | | 2. Z has highest (activity) / eq ; | | | | 3. Y has the lowest (activity) / X and Y have very similar levels / eq ; | | | | 4. credit correct manipulation of figures e.g. Z has
12 more than Y / Z has 11 more than X ; | (3) | | a)(ii) | idea activity in mussel E is not higher than M in all tissues; | | | | mussel E has lower (activity) in tissue X / eq OR (activity) is the same in tissue Y / eq OR mussel E has higher (activity) in tissue Z / eq; | | | | 3. mussel E has more (overall activity)/ eq ; | | | | credit correct comparative manipulation of figures; | | | | Idea that both mussels have tissues with same
order of activity e.g. Y X Z; | (2) | | | | | | | i | | | |---------|------------------------|--|-----| | (b) | 1. referenc | e to measuring volume of oxygen ; | | | | in unit ti | reference to time e.g. oxygen produced
me, time taken to produce same
of oxygen ; | 1 | | | 3. idea of r | neasuring the initial rate of reaction ; | | | | | e to controlled variable in relation to the
e.g. age, part of mussel, mass, surface | e | | | the expe | e to a controlled variable in relation to
criment e.g. volume of hydrogen
c, temperature, concentration, pH; | | | | 6. suitable | reference to repeats ; | (4) | | 5) | | | | | (a) | 1. a bar sh | owing 2% ; | | | | 2. a bar sh | owing 16% ; | | | | | sity (dark) and overweight (light)
dentified / eq ; | | | 1363 | | | | | b)(i) | A ; | (1) | | | b)(ii) | D; | (1) | | | b)(iii) | A ; | (1) | | | (b)(iv) | <u> </u> | | | | | Either C or A | | | | | overweight and | the bar chart presented, detailing
dobesity percentage of population by
rent countries, can be interpreted as | | | | (followi | as a subset of being overweight
ng through the information in the
n stem for 8(a)) | | | | A - overwe
(If cand | ight and obese as discrete categories
didates only refer to the bar chart and
the information in the stem of
n 8(a)). | (1) | | | 1 | | | |------------|--|------|----------| | (c) | 1. graph shows percentages ; | | | | | population size is not known e.g. sample size
not known / the actual number of males and
females who are obese will depend on the
population size of each gender / eq; | | | | | there may be a different number of males to
females / eq; | (2) | <u>_</u> | | (d)(i) | (relationship between two variables is such that) a change in one of the variables is reflected by a change in the other variable / eq ; | (1) | <u>_</u> | | (d)(ii) | 1. the (consumption of) corn syrup goes up / eq ; | | | | | 2. (this is) before the increase in obesity / eq; | | | | ! | reference to the (consumption of) dextrose
falling with time e.g. during the 1970s; | | | | | reference to the consumption of glucose
staying fairly constant; | | | | | | (3) |) | | 6) | | | | | (a)(i) | idea that a monosaccharide consists of on
{sugar / named sugar / eq} (unit) where
a disaccharide consists of two (sugar units) | eas | | | | idea that disaccharide has a glycosidic bor
(whereas monosaccharide does not); | nd | | | | general formula for a monosaccharide is
C_nH_{2n}O_n whereas formula for disaccharide
C_nH_{2n-2}O_{n-1} / eq ; | is | (2) | | (a)(ii) | | | | | | amylose is {straight chained / unbranched eq} whereas amylopectin is branched; | d / | | | | amylose {coiled / eq} (whereas amyloped is not) / eq; | tin | | | | amylose has 1-4 (glycosidic) bonds where
amylopectin has 1-4 and 1-6 (glycosidic)
bonds; | as | (2) | | b) | idea of carbohydrates providing a source energy; | of | | | | if the {energy / carbohydrate / eq} inpu
greater than the {energy output /
carbohydrate use / eq} (weight will be
gained) / eq; | t is | (2) | | | 3. idea of excess carbohydrate converted to | fat | (2) | ## CHERRY HILL TUITION EDEXCEL (B) BIOLOGY AS PAPER 3 MARK SCHEME | 7) | | | |-------------------|---|-----| | (a) | reference to enzyme increasing the rate of
reaction (higher than the rate if no enzyme
present); | | | | idea that the rate of reaction with the enzyme
present is non-linear; | | | | Idea that increase in (initial) rate of reaction is
same with or without enzyme present above
(substrate concentration) of {10 / 12}; | | | | credit correct manipulation of figures (in
relation to the effect of the enzyme); | (2) | | | | | | (b)(i) | ester; | (1) | | (b)(i)
(b)(ii) | ester ; Any two from: | (1) | | (b)(ii) | | (1) | | <u> </u> | Any two from: | (1) | | (b)(ii) | Any two from: 1. fatty acid (s) / carboxylic acid(s) | (1) | | (b)(ii) | Any two from: 1. fatty acid (s) / carboxylic acid(s) 2. glycerol / propan1,2,3 triol | (1) | ## (c) Take into account quality of written communication when awarding the following points. 1. reference to use of a range of substrate (triglyceride) concentrations; 2. idea of mixing (enzyme and substrate); 3. identification of a suitable dependent variable e.g. pH; 4. description of how to measure the dependent variable e.g. use of pH indicator; 5. reference to measuring time; 6. description of how to calculate (initial) rate of reaction; 7. idea of repeating experiment without the enzyme; 8. idea of control of enzyme (lipase) concentration (5) 9. reference to one other named controlled variable (e.g. temperature, type of triglyceride, volume of solutions); reference to {replicates / repeats} (using the same triglyceride concentration);