Question	Correct Answer	Reject	Mark
Number			
1	D		1

Question	Correct Answer	Reject	Mark
Number			
2(a)	В		1

Question Number	Correct Answer	Reject	Mark
2(b)	В		1

Question Number	Correct Answer	Reject	Mark
2(c)	С		1

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 23 MARK SCHEME

Question Number	Correct Answer	Reject	Mark
3	В		1
4(a)	В		1
		•	
Question Number	Correct Answer	Reject	Mark
4(b)	С		1
Question Number	Correct Answer	Reject	Mark
4(c)	D		1
Question Number	Correct Answer	Reject	Mark
4(d)	A		1

Question Number	Acceptable Answers	Reject	Mark
5(a)(i)	+89.6 - [+32.7 + 165] (1)		2
	$= -108.1 \text{ J mol}^{-1} \text{ K}^{-1} / \text{ J K}^{-1} \text{ mol}^{-1}$		
	Value, sign and units (1)		
	Ignore SF except one		
	Internal TE for recognisable numbers allowed, for example:		
	ΔH^{Θ}_{at} magnesium chloride (147.7 \rightarrow -223.1)		
	Halving S° [Cl ₂] (82.5 → -25.6)		
	Correct answer with no working (2)		
	+/no sign 108.1 J mol ⁻¹ K ⁻¹ / J K ⁻¹ mol ⁻¹ (1)		

Question Number	Acceptable Answers	Reject	Mark
5(a)(ii)	(The sign is negative because)		2
	Any two from:		
	(A solid and) a gas reacting to form a solid.		
	OR		
	(Entropy decreases because) a gas reacting to form a solid.	Energy	
	There are fewer ways of arranging particles in a solid than a gas or viceversa.		
	OR		
	Decrease in disorder as solid more ordered than gas or vice versa		
	Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule)		
	OR		
	Number of mol(es)/molecules decreases		
	OR		
	Fewer/less mol(es) of products than reactants		
		'(Positive) Answer is as expected' (0)	

Question	Correct Answer		Reject	Mark
Number	A-C0 A-C0 . A-C0			
5 (b)	$\Delta S_{\text{otal}}^{\circ} = \Delta S_{\text{surroundings}}^{\circ} + \Delta S_{\text{system}}^{\circ}$			2
	OR			
	= +2152 + (-108.1)			
	= (+)2043.9			
	Value 2043.9 / 2044	(1)		
	$= (+)2040 (J \text{ mol}^{-1} \text{ K}^{-1})$			
	3SF			
	This mark conditional on correct value from (a)(i)	ie or		
	correct TE value from (a)(i)	(1)		
	Accept TE from (a)(i), for example,			
	-223.1 → +1928.9 → +1930			
	-25.6 → +2126.4 → +2130			
	Correct answer (2040, etc) with or without working scores 2			

Question Number	Correct Answer1		Reject	Mark
5 (c)	$\Delta S_{\text{urroundings}}^{\text{o}} = - \underline{\Delta H^{\text{e}}}$ 298			2
	$\Delta H^{\bullet} = -\Delta S^{\bullet}_{\text{surroundings}} \times 298$			
	OR			
	$\Delta H^{\text{e-}} = -2152 \times 298$	(1)		
	= -641.296			
	$= -641.3 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	ALLOW			
	$= -641.3 \times 10^3 $ J mol ⁻¹			
	Note			
	1640.1338 = -640.1 (if 2040/answer to part (b) used recalculate entropy change of surroundings first.)	to (2)		
	2. $\Delta H^{\bullet} = +641.3 \text{ (kJ mol}^{-1}\text{)}$	(1)		
	3. $\Delta H^{\bullet} = -\frac{\Delta S^{\bullet}_{surroundings}}{298}$	(0)		
	Ignore SF except one			

Question Number	Correct Answer	Reject	Mark
5(d)(i)	50 x 4.2 x 22.5		1
	= 4725 (J) Ignore sign		
	ALLOW		
	4.725 kJ		
	Ignore SF except one		

Question Number	Correct Answer	Reject	Mark
5(d)(ii)	There are two legitimate answers to this part. If both methods have been used, you must send the item to review under mark scheme		2
	(-)4725 ÷ 0.0300		
	= -157.5 (kJ mol ⁻¹) $/-157500$ J mol⁻¹		
	OR		
	(-)4725 ÷ 0.0500		
	= $/-94.5$ (kJ mol ⁻¹) $/-94500$ J mol⁻¹		
	ALLOW		
	TE answer (d)(i) ÷ 0.0300/0.0500		
	Ignore SF except one		
	Value (1)		
	Sign (1)		
	The mark for the negative sign is awarded for their calculation even if value is wrong, providing any energy divided by moles or energy multiplied by 1/number of moles calculation has been done.		

Question Number	Correct Answer	Reject	Mark
5(d)(iii)	There are two correct answers:		3
	Using 0.03 gives the answer of -381.75 kJ mol ⁻¹		
	Using 0.05 gives the answer of -350.25 kJ mol ⁻¹		
	Both these answers score full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	$\Delta H_{\text{solution}}$ + Lattice energy		
	$= \Delta H_{\text{hydration}} \text{Mg}^{2+} + (2)\Delta H_{\text{hydration}} \text{CI}^{-}$		
	Second mark (1)		
	$2 \Delta H_{\text{hydration}} \text{CI}^- = -2526 - 157.5 -$		
	(-1920) = -763.5		
	OR		
	$2 \Delta H_{\text{hydration}} \text{CI}^- = -2526 - 94.5 -$		
	(-1920) = -700.5		
	ALLOW		
	Any number or group of numbers minus (-1920) (1)		
	Third mark		
	$\Delta H_{\text{hydration}} \text{ CI}^{-} = -381.75 \text{ (kJ mol}^{-1}\text{)}$		
	OR		
	$\Delta H_{\text{hydration}} \text{ CI}^{-} = -350.25 \text{ (kJ mol}^{-1}\text{)}$		
	Any number, wherever it has come from,		

divided by two can score this mark, provided that the sign is consistent.	(1)	
Ignore SF except one		
Use of lattice energy – 2326 gives –281.75/–250.25 scores	(2)	
ALLOW		
TE from (d)(ii)		

Question Number	Correct Answer	Reject	Mark
5 (d)(iv)	H CI HO	Cl⁻.H ₂ O	1
	OR O-4 H O-4 H O-4 H O-4 O-4 O-4		
	 One/several water molecule(s) all correctly orientated. H^{δ+}/ hydrogen (one or two hydrogens from each 		
	 water molecule) towards chloride ion with negative charge either on chlorine or on the whole hydrated ion. 	H ^{δ-} / H ⁺ / H ⁻	
	 ALLOW A minus sign with a ring around it for the Cl⁻ Bonds shown by lines/broken lines/dotted lines/wedges 	Cl ⁸⁻ / Cl (with no charge)	

Question Number	Correct Answer	Reject	Mark
5(d)(v)	Both marks may be awarded in either part.		2
	First mark		
	(Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic .	The breaking of the lattice is	
	OR	exothermic.	
	Strong(er) forces between the $\delta +$ H and Cl ⁻		
	OR		
	Strong(er) forces between the $\delta-$ O and Mg ²⁺		
	OR		
	Strong(er) ion-dipole forces		
	OR		
	Formation of bonds releases energy		
	OR		
	Strong(er) bonds formed		
	OR		
	Enthalpy of hydration is greater than lattice energy		
	Second mark (1)		
	(Volume decreases so) shorter bonds between ion and water molecules		
	ALLOW		
	Water molecules more tightly arranged/pack better/occupy less space	Ions more tightly	
	OR	arranged	
	Water molecules more ordered/ clustered (around the ions). (1)	Ions more ordered	

Section

Question	Correct Answer		Reject	Mark
Number				
6(a)(i)	Mass of ethanoic acid = 0.04×60 .	1		2
	= (2.404 g)			
	Volume of ethanoic acid = 2.404 ÷ 1.049 =	(1)		
	$2.2917 = 2.3 \text{ (cm}^3\text{)}$			
	2.2517 – 2.3 (CIII)	(1)		
		(-)		
	Correct answer with no working	(2)		
	Ignore SF except only one			
	ALLOW			
	60.0 for molar mass which gives mas 2.4 and volume 2.288			
	$= 2.3 \text{ cm}^3$	(2)		
	OR			
	First step 1.049 \div 60/60.1 to find number of moles in 1 cm ³ = 0.017	(1)		
	Then volume = $0.04 \div 0.017$ = $2.3529 \text{ (cm}^3\text{)}$			
	But note, if whole calculation done of calculator, 60 gives 2.2879 and 61 g 2.2917.			
	If units given, they must be correct, penalise wrong units only once here.			

Question Number	Correct Answer	Reject	Mark
6 (a)(ii)	Syringe	Gas syringe	1
	ALLOW Burette	Biuret	
	Graduated/adjustable pipette	Just 'pipette'	

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 23 MARK SCHEME

Question Number	Correct Answer	Reject	Mark
6(a)(iii)	To prevent		1
6(a)(iii)	evaporation/vapour escaping		
	water vapour entering		
	OR To maintain a closed system		
	OR To maintain a closed environment		
	ALLOW		
	To prevent:		
	air oxidizing the alcohol		
	reaction with air		
	OR Due to volatility (of chemicals)		
	IGNORE		
	gas escaping		
	HCl escaping		

Question Number	Correct Answer		Reject	Mark
	First and second mark			3
6(a)(iv)	Phenolphthalein	(1)	Litmus/universal indicator	
	From colourless to (pale) pink/red	(1)	Pink to colourless	
	ALLOW Other indicators with pK _{in} in range 7.5 - 10	_		
	Some examples are:			
	Thymol blue ((base)) (yellow to blue)		Thymol blue (acid)	
	Phen ol red (yellow to red)		Phenyl red	
	Thymolphthalein (colourless to blue)		Methyl red	
	Second mark depends on correct indicate except bromothymol blue, which is incorrect but very close to range so allocation yellow to blue.			
	Third mark Sodium ethanoate is (slightly) alkaline			
	OR Ethanoic acid is a weak acid			
	OR Phenolphthalein pH range coincides with vertical section of the pH/titration curve			
	OR Titration of weak acid with strong base			
	OR Neutralisation/equivalence point is at 8 10/ any number between 8 and 10.	-		
	OR pK _{in} +/-1 lies within vertical region	(1)		
	Third mark is independent	(+)		

Question Number	Correct Answer	Reject	Mark
12 (b)(i)	$CH_3COOH+CH_3CH_2OH \rightleftharpoons$ $CH_3COOCH_2CH_3+H_2O$		1
	ALLOW		
	Single arrow		
	-CO₂H		
	-C ₂ H ₅		
	Displayed formulae		
	IGNORE state symbols even if incorrect		

Question Number	Correct Answer	Reject	Mark
6(b)(ii)	Volume of alkali reacting with ethanoic acid = $77.1-11.7 = 65.4 \text{ cm}^3$ (1)		2
	Moles of ethanoic acid = $\frac{65.4 \times 0.200}{1000}$ = 0.01308/1.308×10 ⁻² (mol)		
	(1)		
	Correct answer no working (2)		
	Ignore SF except 1		
	Allow internal TE for use of		
	Moles of ethanoic acid = $\frac{77.1 \times 0.200}{1000}$		
	= $0.01542/1.542 \times 10^{-2}$ (mol) max(1)		

Question Number	Correct Answer	Reject	Mark
4/h)/;;;)	Number of moles of ethanol =		1
6(b)(iii)	0.01308/1.308x10 ⁻² (mol)		
	TE same as (ii)		

Question Number	Correct Answer	Reject	Mark
6 (b)(iv)	Number of moles of ethyl ethanoate		1
	=0.0400-0.01308 = 0.02692 (mol)		
	Allow TE from (ii)/(iii) for example		
	0.01542 gives 0.02458		

Question Number	Correct Answer		Reject	Mark
(b)(v)	$K_{c} = \frac{[CH_{3}CO_{2}CH_{2}CH_{3}][H_{2}O]}{[CH_{3}CO_{2}H][CH_{3}CH_{2}OH]}$	(1)		2
	$= \frac{0.02692 \times 0.02692}{0.01308 \times 0.01308}$			
	= 4.23579 = 4.24	(1)		
	Ignore SF except one	(1)		
	Allow TE from (ii), (iii) and (iv) for example			
	0.01542 etc gives 2.54			
	No TE for incorrect expression of K_c			

Question Number	Correct Answer	Reject	Mark
(b)(vi)	The units cancel		1
	OR There are the same numbers of moles of		
	reactants and products		

Question Number	Correct Answer	Reject	Mark
(b)(vii)	(Concentrated) hydrochloric acid contains water		1

Question Number	Correct Answer	Reject	Mark
6 (c)(i)	First test tube esterification		2
	OR		
	addition/elimination		
	ALLOW Condensation (1)		
	Second test tube (acid) hydrolysis (1)	Alkaline hydrolysis	
	Two fully correct answers in wrong order (1) max	followed by acidification	

Question Number	Correct Answer The values are the same within	Reject Justthe same	Mark 2
6(c)(ii)	experimental error		
	OR		
	The values are concordant		
	ALLOW		
	The values are similar (1)		
	The equilibrium can be approached from either direction		
	OR		
	The reaction is reversible		
	OR		
	Any comment relating equilibrium to reversibility		
	IGNORE Dynamic equilibrium		
	OR		
	Rate of reverse reaction = rate of forward reaction (1)		

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 23 MARK SCHEME

Question Number	Correct Answer	Reject	Mark
6 (c)(iii)	(Acid) catalyst (makes it faster)	Initiates	1
	OR Provides H ⁺ (as a catalyst)	Reacts with	
	OR Protonates	Protates	
	OR Protonating agent		
	OR Donates protons		
	OR Increases H ⁺ concentration		

Q13 (a) PENALISE USE OF CH₃COOH / 'ethanoic acid' [instead of propanoic acid] once only. ALLOW 'NaOH' for 'KOH', however.

.		ъ	N4 '
Question Number	Correct Answer	Reject	Mark
7 (a)(i)	Q13 (a) PENALISE USE OF CH ₃ COOH / 'ethanoic acid' [instead of propanoic acid] once only. ALLOW 'NaOH' for 'KOH', however.		3
	1st mark: Identification of buffer		
	Any mention of buffer / buffering (region) (1)		
	IGNORE references to shape / gradient of graph		
	2nd mark: Identification of species present responsible for buffering action		
	(Both) propanoic acid and propanoate (ions) present OR (Both) propanoic acid and potassium propanoate present		
	OR (Both) a weak acid and its salt/conjugate base are present OR (Both) CH CH COOH and CH CH COOT		
	(Both) CH ₃ CH ₂ COOH and CH ₃ CH ₂ COO ⁻ present OR (Both) HA and A ⁻ are present		
	Can be awarded from an equation (1)		

3rd mark: Two routes for this mark:

1st route:

For how these species were formed OR

alternatively

2nd route:

For mention of how this buffer works, on small additions of OH⁻

1st ROUTE to 3rd mark

 $CH_3CH_2COOH + OH^- \rightarrow H_2O + CH_3CH_2COO^-$ OR

In words, **excess** CH₃CH₂COOH is left / some CH₃CH₂COOH has reacted with potassium hydroxide / KOH / OH⁻ (forming propanoate ions)

2nd ROUTE - buffering action

On addition of OH^- (in small quantities) H^+ ions react with (the added) OH^-

and

(the equilibrium)

 $CH_3CH_2COOH = CH_3CH_2COO^- + H^+$ shifts to the **right**

OR

(the reservoir of undissociated) CH₃CH₂COOH molecules react with (the added) OH⁻

NOTE:

For the 2nd route "OR" mark here, this statement/equation must be in the context of buffering action

IGNORE

References to buffering action on addition of H⁺ ions (not relevant here)

(1)

Question Number	Correct Answer	Reject	Mark
7(a) (ii)	1st scoring point: Propanoate ions present (at equivalence point) OR Potassium propanoate present (at equivalence point) (1)		3
	2nd scoring point:		
	Propanoate (ions) react with water / propanoate (ions) are hydrolysed by water / CH ₃ CH ₂ COO ⁻ ions react with water		
	ALLOW propanoate ions react with H ⁺ (from water) / the salt reacts with water (molecules)		
	(1)		
	3rd scoring point – consequential on 2 nd scoring point being awarded:		
	Forming hydroxide ions/ leaves excess of hydroxide ions / produces OH ⁻ / forming OH ⁻ / forming KOH / [OH ⁻] > [H ⁺] (1)		
	NOTE – the equation:		
	$CH_3CH_2COO^- + H_2O \rightarrow OH^- + CH_3CH_2COOH$		
	OR $CH_3CH_2COOK + H_2O \rightarrow KOH + CH_3CH_2COOH$		
	scores ALL THREE MARKS		
	NOTE Just 'weak acid – strong base titration' scores (1) only		

Question	Correct Answer	Reject	Mark
Number	LEIDET CHECK THE ETNAL ANGWED		
7(a) (iii)	[FIRST, CHECK THE FINAL ANSWER IF ANSWER pH = 12(.02), award 5 marks] Moles of acid used = 25/1000 x 0.024 OR moles of acid used = 6 x 10 ⁻⁴ (mol)		5
	and		
	Moles of alkali added = $40/1000 \times 0.032$ OR Moles of alkali added = 1.28×10^{-3} (mol)		
	Moles of excess alkali = $1.28 \times 10^{-3} - 6 \times 10^{-4}$ OR		
	Moles of excess alkali = 6.8×10^{-4} (mol) (1)		
	$[OH^{-}] = 6.8 \times 10^{-4} / (65/1000)$ = 0.01046 (mol dm ⁻³) (1)		
	Allow TE from incorrect moles of acid or alkali, provided the alkali moles are in excess		
	$[H^{+}] = 1 \times 10^{-14} / 0.01046$ = 9.56 × 10 ⁻¹³ (mol dm ⁻³) (1)		
	Allow TE from incorrect moles of excess alkali or the candidate's value of $[OH^-]$. Must use K_w value here to get $[H^+]$		
	$pH = -log 9.56 \times 10^{-13}$		
	= 12(.02) (1)		
	Can get M4 and M5 using pH + pOH = 14		
	Allow TE from incorrect [H ⁺] for M5, but their CQ pH must > 7		
	IGNORE S.F. EXCEPT 1 SF		

If fail to \div by 0.065 dm³, then pH = 10.8 scores 4 marks.

Other answers to look for if M1 and M2 have been awarded, but division by an incorrect value for the total volume of the mixture, then each of the following would score 4 overall as shown.

If ÷ by 0.025 dm³, no M3

pH = 12(.43) scores 4 marks.

If ÷ by 0.040 dm³, no M3

pH = 12(.23) scores 4 marks.

If ÷ by 0.015 dm³, no M3

pH = 12(.66) scores 4 marks.

Question Number	Correct Answer	Reject	Mark
7(b)	No, as T increases eqm moves to RHS / $K_{\rm w}$ increases / 'favours RHS' / $\Delta S_{\rm total}$ increases (1)		ß
	So $[H^+]$ ions increases / more H^+ ions $[H^+] > 1 \times 10^{-7}$		
	(1)		
	Hence pH < 7 / pH decreases (1)		
	OR reverse argument for a decrease in temperature		
	NOTE		
	If answer given is 'Yes' (i.e. candidate thinks that the pH of pure water is always 7.0), then max (1) for stating that equilibrium shifts to the right when temperature increases (since reaction is endothermic in the forward direction)		
	NOTE		
	If says K_w decreases as T increases, then max (1) for a completely logical CQ argument mentioning the effect on [H ⁺] (decreasing) and pH (increasing)		

(TOTAL FOR QUESTION 13 = 14 marks)

Section C

Question Number	Correct Answer Reje					ct	Mark	
8								2
(a)(i)								
		CH ₂ CHCHCH ₂	CO	H ₂ O	HOOC(CH ₂),	4COOH		
	Δ <i>H</i> lf	+109.9	-110.5	-285.8	-994.	3		
	/ kJ mol ⁻¹							
	<u>গ</u> /	278.7	197.6	69.9	250.0	١		
	J mol ⁻¹ K ⁻¹							
	4 value	es correct (2	2) marks		l			
	3 / 2 v	alues correc	ct (1) ma	irk				
	0 / 1 v	alues correc	ct (0) ma	arks				

Question Number	Correct Answer	Reject	Mark
8 (a)(ii)	$-994.3 - [+109.9 + (2 \times -110.5) + (2 \times -285.8)]$ (1)		2
	$= -311.6 \text{ (kJ mol}^{-1}) $ (1)		
	Allow TE from (a) NOTE If both -110.5 and -285.8 are not doubled, answer CQ = -707.9 (kJ mol ⁻¹) for 1 mark Ignore SF except 1 SF		

Question Number	Correct Answer	Rejec t	Mark
8 (a)(iii)	250(.0) - [278.7 + (2 x 197.6) + (2 x 69.9)]		2
	(1)		
	$= -563.7 (J \text{ mol}^{-1} \text{ K}^{-1})$ (1)		
	Allow TE from (a)		
	NOTE If both 197.6 and 69.9 are not doubled, answer $CQ = -296.2$ (J $mol^{-1} K^{-1}$) for 1 mark Ignore SF except 1 SF		

Question Number	Correct Answer	Reject	Mark
8	ΔS_{surr} at 298 K = $-\Delta H/T$		3
(a)(iv)	$= - (-311.6 \times 1000) / 298$ (1)		
	= (+) 1045.6 (J mol ⁻¹ K ⁻¹)		
	Allow TE from (a)(ii) e.g. $\Delta S_{surr} = (+)2375.5(0)$ (J mol ⁻¹ K ⁻¹) scores (2) if no doubling in (a)(ii)		
	(1)		
	$\Delta S_{tot} = \Delta S_{surr} + \Delta S_{sys} / \Delta S_{tot} = 1045.6 - 563.7$		
	$/ \Delta S_{tot} = (+) 481.9 (J mol^{-1} K^{-1})$		
	Allow TE from (a)(ii) and (a)(iii)		
	(1)		
	Allow correct answers given in $kJ \text{ mol}^{-1} \text{ K}^{-1}$ e.g. 0.4819 $kJ \text{ mol}^{-1} \text{ K}^{-1}$		
	Ignore SF except 1 SF		
	If candidates forget to convert ΔH into J mol ⁻¹ , then $\Delta S_{tot} = -562.7$ (J mol ⁻¹ K ⁻¹) would score (2) if correct working is included		

Question Number	Correct Answer	Reject	Mark
8 (a)(v)	(Decrease in T) 1st mark: consideration of ΔS_{system} ΔS_{system} is not (significantly) changed / is unchanged / remains (approximately) constant		3
	(1)		
	2nd mark: consideration of ΔS_{surr}		
	ΔS_{surr} or $-\Delta H/T$ is more positive / larger / greater COMMENT ALLOW 'less negative' (1)		
	3rd mark: consideration of ΔS _{total}		
	(So) increases ΔS_{tot} / makes ΔS_{tot} more positive / makes ΔS_{tot} greater (1)		
	NOTE IF no reference / an incorrect reference made to ΔS_{system} , then only the 2nd and 3rd marks can be awarded		
	NOTE If candidate states that ΔS_{surr} becomes less +ve, no M2 But if then states CQ that ΔS_{tot} decreases award M3 as a TE		

Question Number	Correct Answer		Reject	Mark
8 (b)	DIMINISHING:			2
	(Peak between) 1669 – 1645 (cm ⁻¹) (due to C=C)			
	OR			
	(Peak between) 3095 – 3010 (cm ⁻¹) (due to alkene C-H)			
		1)		
	INCREASING:			
	(Peak between) 1725 – 1700 (cm ⁻¹) (due to C=O in carboxylic acid)		1740 - 1720	
	OR			
	(Peaks due to alkane C-H bonds at)			
	EITHER 2962 - 2853 (cm ⁻¹)			
	OR			
	1485 - 1365 (cm ⁻¹)			
	ALLOW			
	(Peak between) 3300 – 2500 (cm ⁻¹) (due to O–H in carboxylic acid)		3750 - 3200	
	(1)		

Question Number	Correct Answer	Reject	Mark
8 (c)	(Makes it taste) sour / sharp / tart	fruity	1
	IGNORE 'acidic' / 'bitter'	sweet(er)	
	NOTE	none	
	Contradictory answers		
	(e.g. 'sharp and sweeter') score (0)		

Question Number	Correct Answer	Reject	Mark
8(d)	1st mark:		3
(i)	(% of oxygen =) 43.9 (%) (1)		
	2nd mark:		
	Amount of C = $49.3/12 = 4.1 \text{ (mol)}$ Amount of H = $6.8/1 = 6.8 \text{ (mol)}$ Amount of O = $43.9/16 = 2.7 \text{ (mol)}$		
	3rd mark:		
	Ratio 1.5 C : 2.5 H : 1 O (≡3 C : 5 H : 2 O)		
	ALLOW for 3rd mark:-		
	Decimal values that round up to these values (e.g. 1.497 C : 2.478 H : 1 O scores the 3rd mark)		
	(1)		
	ALLOW		
	$M_{\rm r}$ of $C_3H_5O_2 = 73$ (g mol ⁻¹)		
	(1)		
	$%C = \frac{36}{73} \times 100 = 49.3\%$		
	and		
	$%H = \frac{5}{5} \times 100 = 6.8\%$		
	(1)		
	%O = 43.9% ALLOW 43.8%		

Question Number	Correct Answ	Reject	Mark		
8(d) (ii)	For 'Chemic range or an		4		
	Feature of compound Q	Chemical shift / ppm	Splitting pattern		
	CH₃	0.1 - 1.9	Triplet		
			(1)		
			Allow (splits into) three		
	CH ₂	1.7 - 3(.0)	Quartet (1)		
		(1)	Allow quadruplet / (splits into) four		
	ОН	10(.0) - 12(.0) (1)	singlet		