Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (a)}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
2(b)	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (c)}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		$\mathbf{1}$

4(a)	B		1

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (b)}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4(c)	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4(d)	A		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
5(a)(ii)	(The sign is negative because) Any two from: - (A solid and) a gas reacting to form a solid. OR (Entropy decreases because) a gas reacting to form a solid. - There are fewer ways of arranging particles in a solid than a gas or viceversa. OR Decrease in disorder as solid more ordered than gas or vice versa - Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule) OR Number of mol(es)/molecules decreases OR Fewer/less mol(es) of products than reactants	Energy...	2
		'(Positive) Answer is as expected...' (0)	

Question Number	Correct Answer	Reject	Mark
5(b)	$\Delta \mathrm{S}_{\text {otal }}^{\circ}=\Delta S_{\text {surroundings }}^{\ominus}+\Delta S_{\text {system }}^{\ominus}$ OR $\begin{align*} & =+2152+(-108.1) \\ & =(+) 2043.9 \tag{1} \end{align*}$ Value 2043.9 / 2044 $=(+) 2040\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ 3SF This mark conditional on correct value or correct TE value from (a)(i) (1) Accept TE from (a)(i), for example, $\begin{aligned} & -223.1 \rightarrow+1928.9 \rightarrow+1930 \\ & -25.6 \rightarrow+2126.4 \rightarrow+2130 \end{aligned}$ Correct answer (2040, etc) with or without working scores 2		2

Question Number	Correct Answer1	Reject	Mark
5(c)	$\begin{align*} & \Delta S_{\text {surroundings }}^{\circ}=-\frac{\Delta H^{\ominus}}{298} \\ & \Delta H^{\ominus}=-\Delta S_{\text {surroundings }}^{\ominus} \times 298 \\ & \text { OR } \\ & \begin{aligned} \Delta H^{\circ-} & =-2152 \times 298 \\ & =-641.296 \\ & =-641.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned} \tag{1} \end{align*}$ ALLOW $=-641.3 \times 10^{3} \mathbf{~ m ~ m o l}^{-\mathbf{1}}$ Note 1. $-640.1338=-640.1$ (if 2040/answer to part (b) used to recalculate entropy change of surroundings first.) 2. $\Delta H^{\circ}=+641.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3. $\Delta H^{\ominus}=-\frac{\Delta S_{\text {surroundings }}}{298}$ Ignore SF except one		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{5 (d) (i)}$	$50 \times 4.2 \times 22.5$		$\mathbf{1}$
	$=4725(\mathrm{~J})$ Ignore sign		
	ALLOW		
	4.725 kJ		
	Ignore SF except one		

Question Number	Correct Answer	Reject	Mark
5(d)(ii)	There are two legitimate answers to this part. If both methods have been used, you must send the item to review under mark scheme $\begin{aligned} & (-) 4725 \div 0.0300 \\ & =-157.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-157500 \mathrm{~J} \mathrm{~mol}^{-\mathbf{1}} \end{aligned}$ OR $\begin{aligned} & (-) 4725 \div 0.0500 \\ & =/-94.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-94500 \mathbf{J ~ m o l}^{-\mathbf{1}} \end{aligned}$ ALLOW $\text { TE answer }(\mathrm{d})(\mathrm{i}) \div 0.0300 / 0.0500$ Ignore SF except one Value Sign The mark for the negative sign is awarded for their calculation even if value is wrong, providing any energy divided by moles or energy multiplied by 1 /number of moles calculation has been done.		2

Question Number	Correct Answer	Reject	Mark
5(d)(iii)	There are two correct answers:		3
	Using 0.03 gives the answer of -381.75 kJ mol^{-1}		
	Using 0.05 gives the answer of -350.25 kJ mol^{-1}		
	Both these answers score full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	$\Delta H_{\text {solution }}+$ Lattice energy		
	$\begin{equation*} =\Delta H_{\text {hydration }} \mathrm{Mg}^{2+}+(2) \Delta H_{\text {hydration }} \mathrm{Cl}^{-} \tag{1} \end{equation*}$		
	Second mark		
	$2 \Delta H_{\text {hydration }} \mathrm{Cl}^{-}=-2526-157.5-$		
	$(-1920)=-763.5$		
	OR		
	$2 \Delta H_{\text {hydration }} \mathrm{Cl}^{-}=-2526-94.5-$		
	$(-1920)=-700.5$		
	ALLOW		
	Any number or group of numbers minus (-1920)		
	Third mark		
	$\Delta H_{\text {hydration }} \mathrm{Cl}^{-}=-381.75\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		
	OR		
	$\Delta H_{\text {hydration } \mathrm{Cl}^{-}}=-350.25\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		
	Any number, wherever it has come from,		

| | divided by two can score this mark,
 provided that the sign is consistent. | | |
| :--- | :--- | :--- | :--- | :--- |
| Ignore SF except one | (1) | | |
| Use of lattice energy -2326 gives | | | |
| $-281.75 /-250.25$ scores | (2) | | |
| ALLOW | | | |
| TE from (d)(ii) | | | |

Question Number	Correct Answer	Reject	Mark
5 (d)(iv)	OR - One/several water molecule(s) all correctly orientated. - $\mathrm{H}^{\delta+}$ / hydrogen (one or two hydrogens from each water molecule) towards chloride ion - with negative charge either on chlorine or on the whole hydrated ion. ALLOW - A minus sign with a ring around it for the Cl^{-} - Bonds shown by lines/broken lines/dotted lines/wedges	$\mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}^{\mathrm{\delta}-} / \mathrm{H}^{+} /$ $\mathrm{Cl}^{\text {b- }} / \mathrm{Cl}$ (with no charge)	1

Question Number	Correct Answer	Reject	Mark
5(d)(v)	Both marks may be awarded in either part.		2
	First mark		
	(Temperature increases) because the reaction/process/dissolving/hydration of ions is exothermic.	The breaking of the lattice	
	OR	exothermic.	
	Strong(er) forces between the $\delta+\mathrm{H}^{\text {and }} \mathrm{Cl}^{-}$		
	OR		
	Strong(er) forces between the $\delta-\mathrm{O}$ and Mg^{2+}		
	OR		
	Strong(er) ion-dipole forces		
	OR		
	Formation of bonds releases energy		
	OR		
	Strong(er) bonds formed		
	OR		
	Enthalpy of hydration is greater than lattice energy		
	Second mark		
	(Volume decreases so) shorter bonds between ion and water molecules		
	ALLOW		
	Water molecules more tightly arranged/pack better/occupy less space	Ions more tightly arranged	
	Water molecules more ordered/ clustered (around the ions).	Ions more ordered	
	(1)		

Section

Question	Correct Answer	Reject	Mark
Number $6(a)(i)$	Mass of ethanoic acid $=0.04 \times 60.1$		2
	$\begin{equation*} =(2.404 \mathrm{~g}) \tag{1} \end{equation*}$ Volume of ethanoic acid $=2.404 \div$ $1.049=$ $2.2917=2.3\left(\mathrm{~cm}^{3}\right)$ Correct answer with no working Ignore SF except only one ALLOW 60.0 for molar mass which gives mass 2.4 and volume 2.288 $\begin{equation*} =2.3 \mathrm{~cm}^{3} \tag{2} \end{equation*}$ OR First step $1.049 \div 60 / 60.1$ to find number of moles in $1 \mathrm{~cm}^{3}=0.017$ Then volume $=0.04 \div 0.017$ $=2.3529\left(\mathrm{~cm}^{3}\right)$ But note, if whole calculation done on calculator, 60 gives 2.2879 and 61 gives 2.2917. If units given, they must be correct, but penalise wrong units only once here.		

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a) (i i)}$	Syringe	Gas syringe	$\mathbf{1}$
	ALLOW Burette Graduated/adjustable pipette	Biuret	

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a) (i i i)}$	To prevent... evaporation/vapour escaping water vapour entering OR To maintain a closed system OR To maintain a closed environment ALLOW To prevent: air oxidizing the alcohol reaction with air OR Due to volatility (of chemicals) IGNORE n..gas escaping ...HCl escaping	$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark
6(a)(iv)	First and second mark		3
	Phenolphthalein (1)	Litmus/universal indicator	
	From colourless to (pale) pink/red	Pink to colourless	
	ALLOW Other indicators with $\mathrm{pK}_{\text {in }}$ in range 7.5 10		
	Some examples are:		
	Thymol blue ((base)) (yellow to blue)	Thymol blue (acid)	
	Phenol red (yellow to red)	Phenyl red Methyl red	
	Thymolphthalein (colourless to blue)		
	Second mark depends on correct indicator except bromothymol blue, which is incorrect but very close to range so allow colour yellow to blue.		
	Third mark		
	Sodium ethanoate is (slightly) alkaline		
	OR		
	Ethanoic acid is a weak acid		
	OR		
	Phenolphthalein pH range coincides with vertical section of the $\mathrm{pH} /$ titration curve		
	Titration of weak acid with strong base		
	Neutralisation/equivalence point is at 8$10 /$ any number between 8 and 10.		
	OR $\mathrm{pK}_{\text {in }}+/-1$ lies within vertical region		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2 (b) (i) ~}$	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$		$\mathbf{1}$
	ALLOW		
	Single arrow		
	$-\mathrm{CO}_{2} \mathrm{H}$		
	$-\mathrm{C}_{2} \mathrm{H}_{5}$		
	Displayed formulae		

Question Number	Correct Answer	Reject	Mark
6(b)(ii)	Volume of alkali reacting with ethanoic acid $=77.1-11.7=65.4 \mathrm{~cm}^{3}$ Moles of ethanoic acid $=\frac{65.4 \times 0.200}{1000}$ $\begin{equation*} =0.01308 / 1.308 \times 10^{-2}(\mathrm{~mol}) \tag{1} \end{equation*}$ Correct answer no working (2) Ignore SF except 1 Allow internal TE for use of Moles of ethanoic acid $=\frac{77.1 \times 0.200}{1000}$ $=0.01542 / 1.542 \times 10^{-2}(\mathrm{~mol}) \quad \max (1)$		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (b) (i i i) ~}$	Number of moles of ethanol = $0.01308 / 1.308 \times 10^{-2}(\mathrm{~mol})$ TE same as (ii)	$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark
6 (b)(iv)	Number of moles of ethyl ethanoate		$\mathbf{1}$
	$=0.0400-0.01308=0.02692(\mathrm{~mol})$		
	Allow TE from (ii)/(iii) for example		

Question Number	Correct Answer	Reject	Mark
(b) (v)	$K_{\mathrm{C}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]}$ (1)		2
	$=\frac{0.02692 \times 0.02692}{0.01308 \times 0.01308}$		
	$=4.23579=4.24$		
	Ignore SF except one		
	Allow TE from (ii), (iii) and (iv) for example		
	0.01542 etc gives 2.54		
	No TE for incorrect expression of K_{c}		

Question Number	Correct Answer	Reject	Mark
$\mathbf{(b) (v i) ~}$	The units cancel OR There are the same numbers of moles of reactants and products		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
(b)(vii)	(Concentrated) hydrochloric acid contains water		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
6 (c)(i)	First test tube esterification OR addition/elimination ALLOW Condensation Second test tube (acid) hydrolysis (1) Two fully correct answers in wrong order	Alkaline hydrolysis followed by acidification	2

Question Number	Correct Answer The values are the same within	Reject Just...the same	$\begin{aligned} & \text { Mark } \\ & \mathbf{2} \\ & \hline \end{aligned}$
6(c)(ii)	experimental error OR The values are concordant ALLOW The values are similar The equilibrium can be approached from either direction OR The reaction is reversible OR Any comment relating equilibrium to reversibility IGNORE Dynamic equilibrium OR Rate of reverse reaction = rate of forward reaction		

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 23 MARK SCHEME

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$ (c)(iii)	(Acid) catalyst (makes it faster) OR Provides H^{+}(as a catalyst) OR Protonates... OR Protonating agent... OR Donates protons OR Increases H^{+}concentration	Initiates	$\mathbf{1}$

Q13 (a) PENALISE USE OF CH ${ }_{3} \mathbf{C O O H} /$ 'ethanoic acid' [instead of propanoic acid] once only. ALLOW 'NaOH' for 'KOH', however.

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 7 \\ & (\mathrm{a})(\mathrm{i}) \end{aligned}$	Q13 (a) PENALISE USE OF $\mathrm{CH}_{3} \mathrm{COOH} /$ 'ethanoic acid' [instead of propanoic acid] once only. ALLOW 'NaOH' for 'KOH', however. 1st mark: Identification of buffer Any mention of buffer / buffering (region) IGNORE references to shape / gradient of graph 2nd mark: Identification of species present responsible for buffering action (Both) propanoic acid and propanoate (ions) present OR (Both) propanoic acid and potassium propanoate present OR (Both) a weak acid and its salt/conjugate base are present OR (Both) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$ present OR (Both) HA and A^{-}are present Can be awarded from an equation		3

Question Number	Correct Answer	Reject	Mark
7(a) (ii)	1st scoring point: Propanoate ions present (at equivalence point) OR Potassium propanoate present (at equivalence point)		(1)

Question Number	Correct Answer	Reject	Mark
$\begin{gathered} \text { 7(a) } \\ \text { (iii) } \end{gathered}$	[FIRST, CHECK THE FINAL ANSWER IF ANSWER pH = 12(.02), award 5 marks] Moles of acid used $=25 / 1000 \times 0.024$ OR moles of acid used $=6 \times 10^{-4}(\mathrm{~mol})$ and Moles of alkali added $=40 / 1000 \times 0.032$ OR Moles of alkali added $=1.28 \times 10^{-3}(\mathrm{~mol})$ Moles of excess alkali $=1.28 \times 10^{-3}-6 \times 10^{-4}$ OR $\begin{equation*} \text { Moles of excess alkali }=6.8 \times 10^{-4}(\mathrm{~mol}) \tag{1} \end{equation*}$ $\begin{align*} & {\left[\mathrm{OH}^{-}\right]=6.8 \times 10^{-4} /(65 / 1000)} \\ & =0.01046\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ Allow TE from incorrect moles of acid or alkali, provided the alkali moles are in excess $\begin{align*} {\left[\mathrm{H}^{+}\right] } & =1 \times 10^{-14} / 0.01046 \\ & =9.56 \times 10^{-13}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ Allow TE from incorrect moles of excess alkali or the candidate's value of $\left[\mathrm{OH}^{-}\right]$. Must use K_{w} value here to get $\left[\mathrm{H}^{+}\right]$ $\begin{align*} & \mathrm{pH}=-\log 9.56 \times 10^{-13} \\ & =12(.02) \tag{1} \end{align*}$ Can get M4 and M5 using $\mathrm{pH}+\mathrm{pOH}=14$ Allow TE from incorrect $\left[\mathrm{H}^{+}\right]$for M5, but their CQ pH must > 7 IGNORE S.F. EXCEPT 1 SF		5

NOTE If fail to \div by $\mathbf{0 . 0 6 5} \mathbf{~ d m}^{\mathbf{3}}$, then $\mathrm{pH}=10.8$ scores 4 marks. Other answers to look for if M1 and M2 have been awarded, but division by an incorrect value for the total volume of the mixture, then each of the following would score 4 overall as shown. If \div by $0.025 \mathbf{~ d m}^{3}$, no M3 $\mathrm{pH}=12(.43)$ scores 4 marks. If \div by $0.040 \mathbf{~ d m}^{3}$, no M3 $\mathrm{pH}=12(.23)$ scores 4 marks. If \div by $0.015 \mathbf{~ d m}^{3}$, no M3 $\mathrm{pH}=12(.66)$ scores 4 marks.		

Question Number	Correct Answer	Reject	Mark
7(b)	No, as T increases eqm moves to RHS / K_{w} increases / 'favours RHS' / $\Delta \mathrm{S}_{\text {total }}$ increases So $\left[\mathrm{H}^{+}\right]$ions increases / more H^{+}ions $\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}$ Hence $\mathrm{pH}<7 / \mathrm{pH}$ decreases OR reverse argument for a decrease in temperature NOTE If answer given is 'Yes' (i.e. candidate thinks that the pH of pure water is always 7.0), then max (1) for stating that equilibrium shifts to the right when temperature increases (since reaction is endothermic in the forward direction) NOTE If says K_{w} decreases as T increases, then \max (1) for a completely logical CQ argument mentioning the effect on $\left[\mathrm{H}^{+}\right]$ (decreasing) and pH (increasing)		3

(TOTAL FOR QUESTION 13 = 14 marks)

Section C

Question Number	Correct Answer					Mark
$\begin{aligned} & 8 \\ & (a)(i) \end{aligned}$						2
		$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$	co	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$	
	ΔH_{f}	+109.9	-110.5	-285.8	-994.3	
	$\underset{\mathrm{mol}^{-1}}{/ \mathrm{kJ}}$					
	$S_{\text {l }} /$	278.7	197.6	69.9	250.0	
	4 values correct (2) marks 3 / 2 values correct (1) mark 0 / 1 values correct (0) marks					

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 8 \tag{1}\\ & (\mathrm{a})(\mathrm{ii}) \end{align*}$	$\begin{align*} & -994.3-[+109.9+(2 \times-110.5)+(2 \times \\ & -285.8)] \\ & =-311.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Allow TE from (a) NOTE If both -110.5 and -285.8 are not doubled, answer $\mathrm{CQ}=-707.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ for 1 mark Ignore SF except 1 SF		2

Question Number	Correct Answer	Rejec t	Mark
$\begin{array}{\|l\|} \hline 8 \tag{1}\\ (a)(i i i) \end{array}$	$250(.0)-[278.7+(2 \times 197.6)+(2 \times 69.9)]$ $\begin{equation*} =-563.7\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \tag{1} \end{equation*}$ Allow TE from (a) NOTE If both 197.6 and 69.9 are not doubled, answer $\mathrm{CQ}=-296.2\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ for $\mathbf{1}$ mark Ignore SF except 1 SF		2

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 8 \tag{1}\\ & (a)(i v) \end{align*}$	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }} \text { at } 298 \mathrm{~K}=-\Delta \mathrm{H} / \mathrm{T} \\ & =-(-311.6 \times 1000) / 298 \\ & =(+) \mathbf{1 0 4 5 . 6}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{aligned}$ Allow TE from (a)(ii) $\text { e.g. } \Delta S_{\text {surr }}=(+) 2375.5(0)\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ scores (2) if no doubling in (a)(ii) $\begin{align*} & \Delta \mathrm{S}_{\mathrm{tot}}=\Delta \mathrm{S}_{\text {surr }}+\Delta \mathrm{S}_{\mathrm{sys}} / \Delta \mathrm{S}_{\mathrm{tot}}=1045.6-563.7 \tag{1}\\ & / \Delta \mathrm{S}_{\mathrm{tot}}=(+) \mathbf{4 8 1 . 9}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \end{align*}$ Allow TE from (a)(ii) and (a)(iii) Allow correct answers given in $\mathbf{k J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$ e.g. $0.4819 \mathbf{~ k J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$ Ignore SF except 1 SF If candidates forget to convert ΔH into $\mathrm{J} \mathrm{mol}^{-1}$, then $\Delta \mathrm{S}_{\text {tot }}=-562.7\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ would score (2) if correct working is included		3

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 8 \\ & (a)(v) \end{aligned}$	(Decrease in T) 1st mark: consideration of $\boldsymbol{\Delta} \mathbf{S}_{\text {system }}$ $\Delta \mathrm{S}_{\text {system }}$ is not (significantly) changed / is unchanged / remains (approximately) constant 2nd mark: consideration of $\Delta S_{\text {surr }}$ $\Delta \mathrm{S}_{\text {surr }}$ or $-\Delta \mathrm{H} / \mathrm{T}$ is more positive / larger / greater COMMENT ALLOW 'less negative' 3rd mark: consideration of $\boldsymbol{\Delta} \mathrm{S}_{\text {total }}$ (So) increases $\Delta \mathrm{S}_{\text {tot }} /$ makes $\Delta \mathrm{S}_{\text {tot }}$ more positive / makes $\Delta \mathrm{S}_{\text {tot }}$ greater NOTE IF no reference / an incorrect reference made to $\Delta \mathrm{S}_{\text {system, }}$, then only the 2 nd and 3 rd marks can be awarded NOTE If candidate states that $\Delta \mathrm{S}_{\text {surr }}$ becomes less +ve, no M2 But if then states $C Q$ that $\Delta \mathrm{S}_{\text {tot }}$ decreases award M3 as a TE		3

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 (c)}$	(Makes it taste) sour / sharp / tart	fruity	$\mathbf{1}$
IGNORE 'acidic' / 'bitter' NOTE Contradictory answers (e.g. 'sharp and sweeter') score (0)	sweet(er)	none	

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & \text { 8(d) } \\ & \text { (i) } \end{aligned}$	1st mark:		3
	(\% of oxygen = 43.9 (\%)		
	(1)		
	2nd mark:		
	Amount of $\mathrm{C}=49.3 / 12=4.1(\mathrm{~mol})$		
	Amount of $\mathrm{H}=6.8 / 1=6.8(\mathrm{~mol})$		
	Amount of $\mathrm{O}=43.9 / 16=2.7(\mathrm{~mol})$		
	3rd mark:		
	$\begin{aligned} & \text { Ratio } \mathbf{1 . 5} \mathbf{~ C ~ : ~} 2.5 \text { H: } \mathbf{1} 0 \\ & (\equiv 3 \mathrm{C}: 5 \mathrm{H}: 2 \mathrm{O}) \end{aligned}$		
	ALLOW for 3rd mark:-		
	Decimal values that round up to these values (e.g. 1.497 C: 2.478 H: 10 scores the 3rd mark)		
	(1)		
	ALLOW		
	M_{r} of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=73\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$		
	$\begin{aligned} & \% C=\frac{36}{73} \times 100=49.3 \% \\ & \text { and } \end{aligned}$		
	$\% H=\frac{5}{73} \times 100=6.8 \%$		
	(1)		
	$\begin{aligned} & \% O=43.9 \% \\ & \text { ALLOW 43.8\% } \end{aligned}$		
	(1)		

