

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE AS Mathematics Statistics & Mechanics (8MA0/02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018

Publications Code 8MA0_02_1806_MS

All the material in this publication is copyright

© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

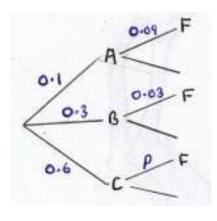
- 1. The total number of marks for the paper is 60.
- 2. These mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

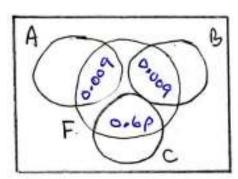
3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** benefit of doubt
- **ft** follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** ignore subsequent working
- awrt answers which round to
- **SC**: special case
- **o.e.** or equivalent (and appropriate)
- **d** or **dep** dependent
- **indep** independent
- **dp** decimal places
- **sf** significant figures
- * The answer is printed on the paper or ag- answer given

4. All M marks are follow through.


A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.


- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which</u> <u>response they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed</u> <u>out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

Section A: Statistics

Qu	Scheme	Marks	AO	
1 (a)	Positive (correlation)	B1	1.2	
	7	(1)	2.4	
(b)	Every extra point gives £4.5(0) more on pay (o.e.)	B1 (1)	3.4	
(c)	e.g. For points < 11 it would give pay < 0 which is ridiculous	B1 (1)	2.4	
		(3 ma	rks)	
	Notes	(0 1111)		
(a)	B1 for "positive". Allow an interpretation e.g. "as points increase pay increase Read whole answer: contradictory comments such as "posit as points increase pay decreases" scores B0		ation,	
(b)	B1 for any correct comment conveying idea of £s per point and including a correct value; must have idea of rate. Can condone missing £ sign. Accept 4.5 e.g. "every 10 points earns an extra (or increase) of £45" is B1 BUT "every point earns £4.5(0)" is B0 doesn't have idea of rate			
(c)	B1 for a suitable comment mentioning "points" or "pay" (o.e. e.g. "amount") or commenting on "small sample" or "range of points" used to find line The following examples would score B1 Can say that <i>n</i> points (for <i>n</i> < 10.4) would give negative pay so not suitable Any comment suggesting that some jobs would end up with negative pay Don't know the range of points used to find the regression line A small sample of size 8 may not be representative to cover all jobs			
	B0 for a focus on "qualifications" or "hours" worked only The following examples would score B0 Some jobs require no (or low) skills or qualifications (need)	d negative	e pay)	

Qu	Scheme	Marks	AO			
2 (a)	$[\operatorname{Let} p = \operatorname{P}(F \mid C)]$					
	Tree diagram or some other method to find an equation for p	M1	2.1			
	$0.1 \times 0.09 + 0.3 \times 0.03 + 0.6 \times p = 0.06$	A1	1.1b			
	p = 0.07 i.e. $7%$	A1	1.1b			
(b)	$a = B(B \text{ and } E) = 0.2 \times 0.02 = 0.000$ but	(3)				
(b)	e.g. $P(B \text{ and } F) = 0.3 \times 0.03 = 0.009$ but $P(B) \times P(F) = 0.3 \times 0.06 = 0.018$	B1	2.4			
		ы	2.4			
	These are not equal so not independent	(1)				
		(4 mark	(2)			
	Notes	(1111111				
(a)	M1 for selecting a suitable method to find the missing probab	ility				
	e.g. sight of tree diagram with 0.1, 0.3, 0.6 and 0.09, 0.03, p suitably					
	placed					
	e.g. sight of VD with 0.009 for $A \cap F$ and $B \cap F$ and 0.6p suitably					
	placed					
	or attempt an equation with at least one correct numerical and					
	one " p " product (not necessarily correct) on LHS or for sight of $0.06 - (0.009 + 0.009)$ (o.e. e.g. $6 - 1.8 = 4.2\%$)					
	1^{st} A1 for a correct equation for p (May be implied by a correct answer)					
	or for the expression $\frac{0.06 - (0.009 + 0.009)}{0.6}$ (o.e.)					
	2 nd A1 for 7% (accept 0.07)					
	Correct Ans: Provided there is no incorrect working seen award					
	e.g. may just see tree diagram with 0.07 for p (probably from tria	al and imp	prov')			
(b)	B1 for a suitable explanationmay talk about 2 nd branches o	n tree dia	aram			
	and point out that $0.03 \neq 0.06$ but need some supporting	ii ticc ula	51 a111			
	calculation/words					
	Can condone incorrect use of set notation (it is not on AS	spec) pro	ovided			
	the rest of the calculations and words are correct.					

Qu	Scheme	Marks	AO		
3 (a)	Let $N =$ the number of games Naasir wins $N \sim B(15, \frac{1}{3})$	M1	3.3		
(i)	P(N=2) = 0.059946 awrt 0.0599	A 1	1.1b		
(ii)	$P(N > 5) = 1 - P(N \le 5) = 0.38162$ awrt	A1	1.1b		
	0.382	(2)			
(b)	$H_0: p = \frac{1}{3}$ $H_1: p > \frac{1}{3}$	(3) B1	2.5		
(0)	Let $X =$ the number of games Naasir wins $X \sim B(32, \frac{1}{3})$				
	P(X \geqslant 16) = 1 – P(X \leqslant 15) = 0.03765 (< 0.05)	M1 A1	3.3		
	[Significant result so reject H_0 (the null model) and conclude:]		3.4		
	There is evidence to support Naasir's claim (o.e.)	A1	3.5a		
		(4)			
		(7 mark	(s)		
()	Notes				
(a)	M1 for selecting a binomial model with correct n and p	, 1			
	Award for sight of B(15, $\frac{1}{3}$) (o.e. e.g. in words) or implied by	1 correct	Į.		
	answer 1st A1 for awrt 0.0599 (from a calculator). Allow 0.05995				
	2 nd A1 for awrt 0.382 (from a calculator)				
(b)	B1 for correctly stating both hypotheses in terms of p or π				
	Accept $p = 0.3$ or any exact equivalent. $H_1: p \ge \frac{1}{3}$ is B0				
	M1 for selecting a suitable model to use for the test. Award for sight of P(32 1) (e.g. a.g. in words) or implied by 0.03765				
	Award for sight of B(32, $\frac{1}{3}$) (o.e. e.g. in words) or implied by 0.03765 Can also allow M1 for P($X \le 15$) = 0.962 or better or P($X \le 14$) = 0.922 or				
	better				
	1 st A1 for use of the model to calculate an appropriate probabil	ity using	calc.		
	Sight of $P(X \ge 16)$ and answer awrt 0.0377	, .			
ALT	CR May use CR so award 1 st A1 for CR of $X \ge 16$ must have	ve seen so	me		
	probabilities though: 1 of $P(X \le 15) = 0.9623$ or $P(X \le 14) = 0.9224$ or				
	0.9223				
	2nd A.1. for conclusion in contact that there is support for Naccin	'a alaim			
	2 nd A1 for conclusion in context that there is support for Naasir Must mention " <u>Naasir</u> " or " <u>his</u> " and " <u>claim</u> " or " <u>method</u>				
	or e.g. probability of winning a game is $> \frac{1}{3}$ or has inc				
	Dependent on M1 and 1 st A1 but can ignore hypotheses		elow		
	If you see $P(X \ge 16) = 0.0376$ followed by a correct contextual				
	then please award A0A1				
SC	Use of 0.3 for $\frac{1}{3}$				
	If used 0.3 instead of $\frac{1}{3}$ in (a) and score M0A0A0 can condone	use of 0.3	in (b)		
	1^{st} A1 ft needs $P(X \ge 16) = 0.0138$				
	or CR of $X \ge 15$ and sight of 1 of $P(X \ge 15) = 0.0327$ or $P(X \ge 14) =$				
	0.0694				

 2^{nd} A1 as before with 0.3 instead $\frac{1}{3}$ (if appropriate)

	0.1	N/ 1	4.0
Qu	Scheme	Marks	AO
4 (a)	$\bar{x} = 10.2 (2222)$ awrt	B1	1.1b
	10.2		
	1002	(1)	
(b)	- 2 17 (20227)	B1ft	1.1b
(0)	$\sigma_x = 3.17 (20227)$ awrt	DIII	1.10
	<u>3.17</u>		
	Sight of "knots" <u>or</u> "kn" (condone knots/s	B1	1.2
	etc)		
		(2)	
(c)	October since	B1	2.2b
()	it is windier in the autumn <u>or</u> month of the hurricane <u>or</u>	7.4	
	latest month in the year	B1	2.4
	intest intollin in the year	(2)	
(d)(i)	They represent <u>outliers</u>	B1 (2)	1.2
(u)(1)	They represent outriers	Di	1.2
(;;)	V has law madian so awast lawish maan (but outlier so > 7)		
(ii)	Y has low median so expect lowish mean (but outlier so > 7)	N / 1	24
	and YI I YOU I I I I I I I I I I I I I I I I I I I	M1	2.4
	Y has big range/IQR or spread so expect larger st.dev		2 21
	Suggests B	A1	2.2b
		(3)	
		(8 mark	(s)
	Notes		
	_ 184 , 20622		
NB	$\bar{x} = \frac{184}{18}$ and $\sigma_x = \sqrt{\frac{2062}{18} - \bar{x}^2}$		

V 18

- (a) **B**1 for $\bar{x} = 10.2$ (allow exact fraction)
- (b) 1st B1ft allow 3.2 from a correct expr' accept s = 3.26(3984...)[ft use of

Treating n/a as 0 May see n = 31 or $\bar{x} = 5.9354...$ which is B0 in (a) but here

- (b) it gives $\sigma_x = 5.59(34...)$ or s = 5.6858... (awrt 5.69) and scores 1st
- 2nd B1 accept kn accept in (a) or (b) (allow nautical miles/hour)
- 1st B1 choosing October but accept September.

2nd B1 for stating that (Camborne) is windier in autumn/winter months "because it is winter/autumn/windier/colder in "month" "Sep ≤ "month" ≤

scores B1B1 for "month" = Sep or Oct and B0B1 for other months in range

- B1 for outlier or the idea of an extreme value allow "anomaly" (d)(i)
 - M1 for a comment relating to location that mentions both median and mean (ii) and a comment relating to spread that mentions both range/IQR and standard deviation and leads to choosing B, C or D

	Choosing A or E is M0
	Incorrect/false statements score M0 e.g. $Q_3 = (\text{mean} + \sigma)$ or identify $Q_2 =$
	mean
	or Y has small spread
ALT	Use of outliers: outlier is (mean + 3σ) (B = 19.9), (C = 18.95), (D = 20.2)
	Must see at least one of these values and compare to Y 's outlier[leads to D or
	$\begin{bmatrix} B \end{bmatrix}$
	A1 for suitable inference i.e. B (accept D or B or D) M1 must be scored

Qu	Scheme	Marks	AO
5 (a)	P(X=4) = P(X=2) so $P(X=4) = 0.35$	M1	2.1
	P(X=1) = P(X=3) and $P(X=1) + P(X=3) = 1 - 0.7$		
	So	A1	1.1b
	x 1 2 3 4 P(Y) 0.15 0.25 0.15 0.25		
	P(X=x) 0.15 0.35 0.15 [0.35]	(2)	
(b)	Let $A =$ number of spins that land on 4 $A \sim B(60, "0.35")$	B1ft (2)	3.3
()	$[P(A > 30) =] 1 - P(A \le 30)$	M1	3.4
	$[\Gamma(A > 50) -] \Gamma - \Gamma(A \le 50)$ = 1 - 0.99411 = awrt 0.00589	A1	1.1b
	-1-0.77411 awit 0.00307	(3)	1.10
(c)	V $V \le A$ \Rightarrow 12 $V \le A$ or 12 $V^2 \le AV$ (since $V \ge 0$) as		2 1 -
	$Y - X \leqslant 4 \implies \frac{12}{X} - X \leqslant 4 \text{ or } 12 - X^2 \leqslant 4X \text{ (since } X > 0) \text{ o.e.}$	M1	3.1a
	i.e. $0 \le X^2 + 4X - 12 \implies 0 \le (X+6)(X-2)$ so $X \ge 2$	M1	1.1b
	$P(Y - X \le 4) = P(X \ge 2) = 0.35 + 0.15 + 0.35 = 0.85$	A1	3.2a
		(3)	
		(8 marks	s)
	Notes		
(a)	M1 for using the given information to obtain $P(X = 4)$	4) 0.25	
	Award for statement $P(X = 4) = P(X = 2)$ or writing $P(X = A)$ for getting fully correct distribution (any form that clearly in		robs)
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	_	
	e.g. can be list $P(X = 1) = 0.15$, $P(X = 3) =$ etc or as a probability function $P(X = x) =$	$\begin{cases} 0.15 & x = 0.15 \end{cases}$	= 1, 3
	[Condone missing $P(X=2)$ as this is given in QP]	[0.35 x =	= 2,4
			_
(b)	B1 for selecting a suitable model, sight of B(60, their 0.35) of the state $P(V = 1)$ from part (a)	o.e. in wor	ds
	f.t. their $P(X = 4)$ from part (a). Can be implied by $P(A \le 30) = \text{awrt } 0.9941$ or final answer	r = axvrt 0	00580
	M1 for using their model and interpreting "more than half"	awit o.	00307
	Need to see $1 - P(A \le 30)$. Can be implied by awrt 0.00	0589	
	Can ignore incorrect LHS such as $P(A \ge 30)$		
	A1 for awrt 0.00589		
(c)	<i>C</i> 1 1 ====		
AIT		ity statem	ent.
ALI	<u> </u>	<i>1</i> 1 1	
		, ,	. 1.
			-
ALT			-A
	•		tb'n)
	A1 for interpreting the inequality and solving the problem i.e		
(c) ALT	A1 for awrt 0.00589 $1^{st} M1 ext{ for translating the prob. problem into a correct mathema Just an inequality in 1 variable. May be inside a probability of values: $	4, 1, -1 llow 1 or 2 es of X or Y ed f their dis	ent. 2 slips - X

. . . .

Section B: Mechanics

Question	Scheme	Marks	AOs
6.	Equation in <i>t</i> only	M1	2.1
	$2 = 9t \frac{1}{2} 10t^2$	A1	1.1b
	$5t^2$ 9t $2=0=(5t+1)(t$ 2)	DM1	1.1b
	T = 2 (only)	A1	1.1b
		(4)	

(4 marks)

Notes:

M1: Complete method to give equation in *t* only. This mark is for a complete method for the TOTAL time i.e. for finding sufficient equations, with usual rules, correct no. of terms in each equation but condone sign errors and *g* does not need to be substituted

A1: A correct equation **or** correct equations (e.g. if they find the speed, 11 ms⁻¹, when the ball strikes the ground and then use that to find the total time **or** if they split the time (e.g. 0.9s up and 1.1s down or 0.9s + 0.9s + 0.2s))

N.B. g = 10 must be substituted in all equations used.

DM1: Dependent on first M1, for solving a 3 term quadratic to find *T* or for solving their equations to find *T* or for solving their equations and adding their split times to find *T*

A1: T = 2 only (i.e. A0 if they give two times)

N.B. If solving a <u>correct</u> quadratic, the DM1 can be implied by a correct answer i.e. the method does not need to be shown, but if there is no method shown and the answer is wrong then award DM0 A0.

Question	Scheme	Marks	AOs
7(a) (i)	24 (m s ⁻¹)	B1	1.1b
(ii)	48 (s)	B1	1.1b
(iii)	shape	B1	1.1b
		(3)	
(b)	Equating area under graph to 4800 to give equation in one unknown	M1	3.1b
	$\frac{1}{2}(T+T+80+48) 24 = 4800 \mathbf{OR}$ $(\frac{1}{2} \times 80 \times 24) + 24T + (\frac{1}{2} \times 48 \times 24) = 4800 \mathbf{oe}$	A1ft	1.1b
	T = 136 so total time is 264 (s)	A1	1.1b
		(3)	
(c)	Either: a smooth change from acceleration to constant velocity or from constant velocity to deceleration. Or have train accelerating and/or decelerating at a variable rate Do not accept e.g. Comments on air resistance or resistive forces, straightness of track, horizontal track, friction, length of train, mass of train, not having train moving with constant velocity. Bo if either an incorrect extra is included or an incorrect reason for a valid improvement is included. N.B. Variable acceleration due to air resistance is B0 BUT Variable acceleration due to variable air resistance is B1	B1	3.5c
		(1)	
	I	(7 n	narks)

Notes:

(a)

- (i) B1: 24 (m s⁻¹)Must be stated i.e. not just inserted on the graph
- (ii) B1: 48 (s) (Allow 48 changed to 48) Must be stated i.e. not just inserted on the graph
- (iii) **B1:** A trapezium starting at the origin and ending on the *t*-axis.

(b)

M1: Complete method to find area of trapezium using trapezium rule with correct structure or using two triangles and a rectangle and equate to 4800 to give equation in *one* unknown

N.B.
$$\frac{1}{2}(T+80+48)\times 24 = 4800$$
 is M0 (equivalent to using three triangles)

OR they may use *suvat* on one or more sections (must have a = 0 for middle section) and equate total distance travelled to 4800 to give equation in *one* unknown

A1ft: For a correct equation in their unknown **ft** on their 24 and 48 (but must be positive times)

A1: For 264 (s)

(c)

B1:

Either: Include time to change from constant accln to constant velocity and/or time to change from constant velocity to constant deceleration oe

Or: Have train accelerating and/or decelerating at a variable rate

Question	Scheme	Marks	AOs
8(a)	Multiply out and differentiate <i>wrt</i> to time (or use of product rule i.e. must have two terms with correct structure)		1.1a
	$v = 2t^3 3t^2 + t$	A1	1.1b
	$2t^3$ $3t^2 + t = 0$ and solve: $t(2t \ 1)(t \ 1) = 0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t = 0, \frac{1}{2}$, 1 and 2: $(0, \frac{1}{32}, 0, 2)$		2.1
	Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1
	$2\frac{1}{16}$ (m) oe or 2.06 or better	A1	1.1b
		(3)	
(c)	$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4
		(2)	

(10 marks)

Notes:

(a)

M1: Must have 3 terms and at least two powers going down by 1

A1: A correct expression

DM1: Dependent on first M, for equating to zero and attempting to solve a <u>cubic</u>

A1: Any two of the three values (Two correct answers can imply a correct method)

A1: The third value

(b)

M1: For attempting to find the values of x (at least two) at their t values found in (a) or at t=2 or equivalent e.g. they may integrate their v and sub in at least two of their t values

M1: Using a correct strategy to combine their distances (must have at least 3 distances)

A1: $2\frac{1}{16}$ (m) oe or 2.06 or better

(c)

M1: Identify strategy to solve the problem such as:

- (i) writing x as $\frac{1}{2}$ × perfect square
- (ii) or using x values identified in (b).
- (iii) or using calculus i.e. identifying min points on x-t graph.
- (iv) or using x-t graph.

A1 cso: Fully correct explanation to show that $x \ge 0$ i.e. never negative

Question	Scheme	Marks	AOs
9(a)	Equation of motion for P	M1	3.3
	$2mg T = 2m \frac{5g}{7}$	A1	1.1b
	$T = \frac{4mg}{7}$	A1	1.1b
		(3)	
(b)	Since the string is modelled as being inextensible	B1	3.4
		(1)	
(c)	Equation of motion for Q OR for whole system	M1	3.3
	$T kmg = km \frac{5g}{7}$ OR $2mg - kmg = (km + 2m)\frac{5g}{7}$	A1	1.1b
	$\frac{4mg}{7}$ $kmg = km$ $\frac{5g}{7}$ oe and solve for k	DM1	1.1b
	$k = \frac{1}{3} \text{ or } 0.333 \text{ or better}$	A1	1.1b
		(4)	
(d)	e.g The model does not take account of the mass of the string (see notes below for alternatives)	B1	3.5b
		(1)	

(9 marks)

Notes: Condone both equations of motion appearing in (a) if used in (c)

(a)

M1: Resolving vertically for P with usual rules, correct no. of terms but condone sign errors and a does not need to be substituted (N.B. inconsistent omission of m is M0). Allow ma on RHS for M1

A1: A correct equation (allow if they use 7 instead of $\frac{5g}{7}$)

A1: A correct answer of form cmg, where $c = \frac{4}{7}$ oe or 0.57 or better

(b)

B1: String is inextensible. N.B. B0 if any extras (wrong or irrelevant) given

(c)

M1: Resolving vertically for Q or for a whole system equation, with usual rules, correct no. of terms but condone sign errors and neither T nor a does need to be substituted

(N.B. inconsistent omission of *m* is M0 and M0 if *k* is omitted from LHS or RHS or both.)

A1: A correct equation (allow if they use 7 instead of $\frac{5g}{7}$)

DM1: Sub for T using their answer from (a), if necessary, and solve to give a <u>numerical</u> value of k (i.e. m's must cancel)

A1: $k = \frac{1}{3}$ or 0.333 or better.

(d)

B1: e.g. Pulley may not be smooth

Pulley may not be light

Particles may not be moving freely e.g. air resistance

Balls may not be particles

String may not be light

String may not be inextensible

(but allow converses in all cases e.g. 'pulley smooth')

N.B. B0 if <u>any extra incorrect answer</u> is given BUT ignore incorrect consequence of a correct answer.

Also note: B0 : Use of a more accurate value of g