

issued by an Accredited Testing Laboratory

Contact person David Busk Electronics +45 28 83 17 01 David.Busk@sp.se

Reference Date 2015-04-30 4P03111 Page 1 (124)

NEDA 1002 ISO/IEC 17025

Northern Solutions AS Steinalderveien 2E 1407 Vinterbro Norway

Type approval test of EMES60 System

(2 appendices)

SP Technical Research Institute of Sweden **Electronics**

Performed by

1 BR

David Busk

Examined by

Kennet Palm

SP Technical Research Institute of Sweden

Postal address SP Denmark A/S A. C. Meyers Vænge 15 A. C. Meyers Vænge 15 +46 33 13 55 02 2450 Copenhagen SV Denmark

Office location SP Denmark A/S 2450 Copenhagen SV Denmark

Phone / Fax / E-mail +45 80 25 09 55 info@sp.se

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

ŠP part of the SP Group

Date Reference 4P03111

^{Page} 2 (124)

Report no.:	4P03111	Report d	ate:	2015-04-30
Test started:	2014-06-26			2015-02-20
Number of pages:	124			Leonid Boldyrev
Test laboratories:	SP Denmark A/S A. C. Meyers Vænge 15 2450 Copenhagen SV Denmark SP Technical Research Institute of Sweden Brinellgatan 4 SE-504 62 Borås			Northern Solutions AS Steinalderveien 2E 1407 Vinterbro Norway
Test specimens:	Display unit echosounder P	anel PC	Serial no	o.: EMES60D2014001
rest specimens.	Display unit echosounder Parlei PCSerial no.: EMES60D2014001Universal Dual Marine InterfaceSerial no.: EMES60IO2014001EMES60 Sensor Dual Power SupplySerial no.: EMES60PW2014001EMES60 Dual SensorSerial no.: EMES60S2014001			b.: EMES60IO2014001 b.: EMES60PW2014001
Test specifications:	IEC 60045 Fourth adition	2002 - Marit	timo navio	nation and
	IEC 60945, Fourth edition, 2002 - Maritime navigation and radiocommunication equipment and systems - General requirements - Methods of testing and required test results.The tests relevant for the test specimens are listed in <i>section 1.1.2</i>			eneral requirements -
Documentation:	This test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory.			
	The complete test documentation is archived for 10 years at the testing laboratory.			
Test results:	The test specimen complies	s with all rel	evant par	ts of the test specifications.
	The test results relate only t	y to the specimen tested.		ed.
_				
Test personnel:	David Busk		Bo Sche	
	Stig Larsen		Dengt A	ndersson

CONTENTS

1	SUMMARY	4
1.1 1.2 1.3 1.4 1.5 1.6	Test plan Test specimens Auxiliary equipment Test set-up Functional test procedure Performance criterion	
2	ELECTROMAGNETIC COMPATIBILITY	22
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11		35 46 50 60 68 72 78 80 82
3	ENVIRONMENTAL	86
3.1 3.2 3.3 3.4 3.5	Dry Heat, Functional Dry Heat, Storage Low temperature Damp Heat Vibration	
4	SUPPLEMENTARY TESTS	114
4.1 4.2	Compass safe distance Protection against accidental access to dangerous voltages	
5	MEASURING UNCERTAINTIES	124
5.1 5.2 5.3 5.4	EMC Climatic test Mechanical tests Supplementary tests	124 124

Appendices

Appendix 1: Dual Marine Interface Test conditions, "Dual Marine Interface". Appendix 2: Supplemental info for Interface and Power Supply Units, "EMC Modifications".

SUMMARY 1

Test plan 1.1

1.1.1 Test plan - Overview

Test name	Display Unit	Interface Unit	PS Unit	Sensor Unit
Electromagnetic compatibility				·
Radiated emission	Х	Х	Х	NR
Conducted emission	NR	Х	Х	NR
Radiated radio frequency interference	Х	Х	Х	NR
Conducted radio frequency interference	Х	Х	Х	Х
Burst / Fast transients	Х	Х	Х	Х
Surge / Slow transients	NR	Х	Х	NR
Electrostatic discharge	Х	Х	Х	NR
Power supply failure	NR	Х	Х	NR
Extreme power supply	NR	Х	Х	NR
Power supply variations (transient)	NR	Х	Х	NR
Power supply excessive conditions	NR	Х	Х	NR
Environmental				·
Low temperature	Х	X	Х	NR
Dry heat, functional	Х	Х	Х	NR
Dry heat, storage	NR	NR	NR	Х
Damp heat, cyclic	Х	Х	Х	NR
Insulation resistance	Х	Х	Х	Х
Vibration	Х	Х	Х	Х
Corrosion (Salt mist)	NR	NR	NR	NR
Supplementary tests				·
Visual inspection and performance test	Х	Х	Х	Х
Compass safe distance	Х	X	Х	NR
Protection against access to dangerous voltage	Х	x	Х	x
X-radiation	NR	NR	NR	NR

The test specification and the functional test procedure by Northern Solutions A/S are enclosed ٠ in appendix 1.

1.1.2 Test plan – Display Unit

Test specification	Name of the test	Test	Result	
Electromagnetic compatibility				
IEC 60945, section 9.3	Radiated emission	Х	PASSED	
IEC 60945, section 9.2	Conducted emission	NR	-	
IEC 60945, section 10.4	Radiated radio frequency interference	Х	PASSED	
IEC 60945, section 10.3	Conducted radio frequency interference	Х	PASSED	
IEC 60945, section 10.5	Bursts / Fast transients	Х	PASSED	
IEC 60945, section 10.6	Surge / Slow transients	NR	-	
IEC 60945, section 10.9	Electrostatic discharge	Х	PASSED	
IEC 60945, section 10.8	Power supply failure	NR	-	
IEC 60945, section 7.1	Extreme power supply	NR	-	
IEC 60945, section 10.7	Power supply variations (transient)	NR	-	
IEC 60945, section 7.2	Power supply excessive conditions	NR	-	
Environmental				
IEC 60945, section 8.4	Low temperature	Х	PASSED	
IEC 60945, section 8.2	Dry heat, functional	Х	PASSED	
IEC 60945, section 8.2	Dry heat, storage	NR	-	
IEC 60945, section 8.3	Damp heat	Х	PASSED	
IEC 60945, section 8.7	Vibration	Х	PASSED	
IEC 60945, section 8.12	Corrosion (Salt Mist)	NR	-	
	Supplementary tests			
IEC 60945, section 8.1	Visual inspection and performance test	Х	PASSED	
IEC 60945, section 11.2	Compass safe distance	Х	PASSED	
IEC 60945, section 12.1	Protection against access to dangerous voltage	Х	PASSED	
IEC 60945, section 12.4	X-radiation	NR	-	
PASSED The test specimen complies with the essential requirements in the standard. FAILED The test specimen does not comply with the essential requirements in the standard. NR The test is not relevant for the test specimen or has been waived by the manufacturer.				

The test is performed.

Х

Measurement uncertainties are listed on the last page. •

1.1.3 Test plan – Interface Unit

Test specification	Name of the test	Test	Result	
Electromagnetic compatibility				
IEC 60945, section 9.3	Radiated emission	Х	PASSED	
IEC 60945, section 9.2	Conducted emission	Х	PASSED	
IEC 60945, section 10.4	Radiated radio frequency interference	Х	PASSED	
IEC 60945, section 10.3	Conducted radio frequency interference	Х	PASSED	
IEC 60945, section 10.5	Bursts / Fast transients	Х	PASSED	
IEC 60945, section 10.6	Surge / Slow transients	Х	PASSED	
IEC 60945, section 10.9	Electrostatic discharge	Х	PASSED	
IEC 60945, section 10.8	Power supply failure	Х	PASSED	
IEC 60945, section 7.1	Extreme power supply	Х	PASSED	
IEC 60945, section 10.7	Power supply variations (transient)	Х	PASSED	
IEC 60945, section 7.2	Power supply excessive conditions	Х	PASSED	
Environmental				
IEC 60945, section 8.4	Low temperature	Х	PASSED	
IEC 60945, section 8.2	Dry heat, functional	Х	PASSED	
IEC 60945, section 8.2	Dry heat, storage	Х	PASSED	
IEC 60945, section 8.3	Damp heat	Х	PASSED	
IEC 60945, section 8.7	Vibration	Х	PASSED	
IEC 60945, section 8.12	Corrosion (Salt Mist)	NR	-	
	Supplementary tests			
IEC 60945, section 8.1	Visual inspection and performance test	Х	PASSED	
IEC 60945, section 11.2	Compass safe distance	Х	PASSED	
IEC 60945, section 12.1	Protection against access to dangerous voltage	Х	PASSED	
IEC 60945, section 12.4	X-radiation	NR	-	
PASSEDThe test specimen complies with the essential requirements in the standard.FAILEDThe test specimen does not comply with the essential requirements in the standard.NRThe test is not relevant for the test specimen or has been waived by the manufacturer.				

The test is performed.

Х

Measurement uncertainties are listed on the last page. •

1.1.4 Test plan – Power Supply Unit

Test specification	Name of the test	Test	Result	
Electromagnetic compatibility				
IEC 60945, section 9.3	Radiated emission	Х	PASSED	
IEC 60945, section 9.2	Conducted emission	Х	PASSED	
IEC 60945, section 10.4	Radiated radio frequency interference	Х	PASSED	
IEC 60945, section 10.3	Conducted radio frequency interference	Х	PASSED	
IEC 60945, section 10.5	Bursts / Fast transients	Х	PASSED	
IEC 60945, section 10.6	Surge / Slow transients	Х	PASSED	
IEC 60945, section 10.9	Electrostatic discharge	Х	PASSED	
IEC 60945, section 10.8	Power supply failure	Х	PASSED	
IEC 60945, section 7.1	Extreme power supply	Х	PASSED	
IEC 60945, section 10.7	Power supply variations (transient)	Х	PASSED	
IEC 60945, section 7.2	Power supply excessive conditions	Х	PASSED	
Environmental				
IEC 60945, section 8.4	Low temperature	Х	PASSED	
IEC 60945, section 8.2	Dry heat, functional	Х	PASSED	
IEC 60945, section 8.2	Dry heat, storage	Х	PASSED	
IEC 60945, section 8.3	Damp heat	Х	PASSED	
IEC 60945, section 8.7	Vibration	Х	PASSED	
IEC 60945, section 8.12	Corrosion (Salt Mist)	NR	-	
	Supplementary tests			
IEC 60945, section 8.1	Visual inspection and performance test	Х	PASSED	
IEC 60945, section 11.2	Compass safe distance	Х	PASSED	
IEC 60945, section 12.1	Protection against access to dangerous voltage	Х	PASSED	
IEC 60945, section 12.4	X-radiation	NR	-	
PASSED The test specimen complies with the essential requirements in the standard. FAILED The test specimen does not comply with the essential requirements in the standard. NR The test is not relevant for the test specimen or has been waived by the manufacturer.				

The test is performed.

Х

Measurement uncertainties are listed on the last page. •

1.1.5 Test plan – Sensor Unit

Test specification	Name of the test	Test	Result		
	Electromagnetic compatibility				
IEC 60945, section 9.3	Radiated emission	NR	-		
IEC 60945, section 9.2	Conducted emission	NR	-		
IEC 60945, section 10.4	Radiated radio frequency interference	NR	-		
IEC 60945, section 10.3	Conducted radio frequency interference	Х	PASSED		
IEC 60945, section 10.5	Bursts / Fast transients	Х	PASSED		
IEC 60945, section 10.6	Surge / Slow transients	NR	-		
IEC 60945, section 10.9	Electrostatic discharge	NR	-		
IEC 60945, section 10.8	Power supply failure	NR	-		
IEC 60945, section 7.1	Extreme power supply	NR	-		
IEC 60945, section 10.7	Power supply variations (transient)	NR	-		
IEC 60945, section 7.2	Power supply excessive conditions	NR	-		
	Environmental				
IEC 60945, section 8.4	Low temperature	NR	-		
IEC 60945, section 8.2	Dry heat, functional	NR	-		
IEC 60945, section 8.2	Dry heat, storage	Х	PASSED		
IEC 60945, section 8.3	Damp heat	NR	-		
IEC 60945, section 8.7	Vibration	Х	PASSED		
IEC 60945, section 8.12	Corrosion (Salt Mist)	NR	-		
	Supplementary tests				
IEC 60945, section 8.1	Visual inspection and performance test	Х	PASSED		
IEC 60945, section 11.2	Compass safe distance	NR	-		
IEC 60945, section 12.1	Protection against access to dangerous voltage	Х	PASSED		
IEC 60945, section 12.4	X-radiation	NR			
PASSED The test specimen complies with the essential requirements in the standard. FAILED The test specimen does not comply with the essential requirements in the standard. NR The test is not relevant for the test specimen or has been waived by the manufacturer.					

The test is performed.

Х

Measurement uncertainties are listed on the last page. •

^{Page} 9 (124)

1.2 Test specimens

1.2.1 Display Unit

Manufacturer	Northern Solutions A/S	
Туре	Display unit echosounder Panel PC	
Serial no.	EMES60D2014001	
Details	tails Display Left	
Supply voltage	upply voltage 24V supplied by the Universal Dual Marine Interface	
Operational mode	Displays 'echosounder' and is connected to the 'left side' of the EMES	
operational mode	system	

I/O cables Display Unit

I/O Port Cable	Туре	Length	Shielding
Display unit cable	3 twisted individually screened pairs in common screen	10 m	Shielded

Photo 1. Display Unit front.

Photo 2. Display Unit back.

1.2.2 Interface Unit

Manufacturer	Northern Solutions A/S
Туре	Universal Dual Marine Interface
Serial no.	EMES60IO2014001
Details	-
Supply voltage	Two 230/115 VAC inputs and two 24 VDC inputs
Operational mode	Normal

I/O cables test Interface Unit

I/O Port Cable	Туре	Length	Shielding
Power AC Left	3 wire	3 m	Shielded
Power AC Right	3 wire	3 m	Shielded
Power DC Left	2 wire	3 m	Shielded
Power DC Right	2 wire	3 m	Shielded
Display unit cable	3 twisted individually screened pairs in common screen	10 m	Shielded
Interface cable	4 twisted individually screened pairs in common screen	10 m	Shielded
ANAOUT	2 wire	10 m	Shielded
OPT10UT	2 wire	10 m	Shielded
DIG1IN	2 wire	10 m	Shielded
RELAYOUT	3 wire	10 m	Shielded

Only Power AC Left and Power DC Left are tested as both side are identical.

Photo 3. Interface Unit chassis.

Photo 4. Interface Unit interior.

Modifications to test specimen

Date: 2015-02-20:

To comply with the limits in the conducted emission test, the client inserted a Schaffner filter of type: FN409 at the DC input power port. The filter is deemed not to have any effect on previous performed tests other than improving results.

See *appendix 2* for a description of the modifications by the client.

ŝP

1.2.3 Power Supply Unit

Manufacturer	Northern Solutions A/S
Туре	EMES60 Sensor Dual Power Supply
Serial no.	EMES60PW2014001
Details	-
Supply voltage	Two 230/115 VAC inputs and two 24 VDC inputs
Operational mode	Normal

I/O cables to Power Supply Unit

I/O Port Cable	Туре	Length	Shielding
Power AC Left	3 wire	3 m	Shielded
Power AC Right	3 wire	3 m	Shielded
Power DC Left	2 wire	3 m	Shielded
Power DC Right	2 wire	3 m	Shielded
EMES60 sensor cable	6 twisted individually screened pairs in common screen	10 m	Shielded
Interface cable	4 twisted individually screened pairs in common screen	10 m	Shielded

Only Power AC Left and Power DC Left are tested as both side are identical.

Photo 5. Power Supply Unit chassis.

Photo 6. Power supply Unit interior.

Modifications to test specimen

Date: 2014-11-25:

To comply with the limits in the radiated emission test, the client inserted a NEC/TOKIN filter of type: SH_102 at the DC input power port. The filter is used in all other performed tests except for conducted emission test where a Schaffner filter was used. See *appendix 2* for a description of the modifications by the client.

Date: 2015-02-20:

To comply with the limits in the conducted emission test, the client exchanged the NEC/TOKIN SH_102 filter with a Schaffner filter of type: FN409 at the DC input power port. The filter is deemed not to have any effect on previous performed tests other than improving results.

See appendix 2 for a description of the modifications by the client.

Page 14 (124)

1.2.4 Sensor Unit

Manufacturer	Northern Solutions A/S	
Туре	EMES60 Dual Sensor	
Serial no.	EMES60S2014001	
Details	-	
Supply voltage	24 V supplied by the EMES60 Sensor Dual Power Supply	
Operational mode	Normal	

I/O cables Sensor Unit

I/O Port Cable	Туре	Length	Shielding
EMES60 sensor cable	6 twisted individually screened pairs in common screen	10 m	Shielded

Photo 7. Sensor Unit.

1.3 Auxiliary equipment

1.3.1 Display Unit (Right)

Manufacturer	Northern Solutions A/S	
Туре	Display unit speedlog Panel PC	
Serial no.	EMES60D2014002	
Details	Display Right	
Supply voltage	24 V supplied by the Universal Dual Marine Interface	
Operational mode	Displays a 'speedlog' and is connected to the 'right side' of the EMES	
Operational mode	system. Used to check the functionality of the speedlog in the Sensor Unit	

I/O cables Display Unit (Right)

I/O Port Cable	Туре	Length	Shielding
Display unit cable	3 twisted individually screened pairs in common screen	10 m	Shielded

1.3.2 Voltmeter 1 / Amperemeter

Manufacturer	Hewlett Packard
Туре	34401A
SP ID Tag	14885
Details	-
Supply voltage	230 VAC
Operational mode	Used as voltmeter and amperemeter – connected to port: ANAOUT

1.3.3 Voltmeter 2

Manufacturer	Hewlett Packard	
Туре	34401A	
SP ID Tag	14880	
Details	-	
Supply voltage	230 VAC	
Operational mode	Used as voltmeter – connected to port: OPT10UT	

1.3.4 Ohmmeter 1

Manufacturer	Hewlett Packard
Туре	34401A
SP ID Tag	15374
Details	-
Supply voltage	230 VAC
Operational mode	Used as ohmmeter – connected to port: RELAY1 (REL1NO)

1.3.5 Ohmmeter 2

Manufacturer	Hewlett Packard
Туре	34401A
SP ID Tag	14118
Details	-
Supply voltage	230 VAC
Operational mode	Used as ohmmeter – connected to port: RELAY1 (REL1NC)



Reference 4P03111 Date 2015-04-30

Page 16 (124)

Manufacturer	Hewlett Packard	
Туре	E3632A	
SP ID Tag	14622	
Details	-	
Supply voltage	230 VAC	
Operational mode	Used as 24 VDC power supply	

Page 17 (124)

1.4 Test set-up



Figure 1. Test setup by client.

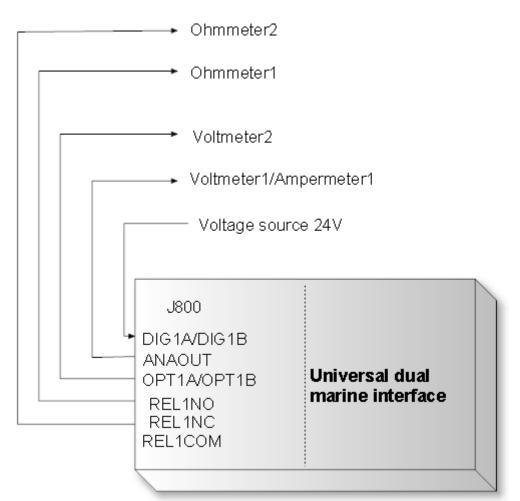


Figure 2. IO cables to Interface Unit by client. REL1NO and REL1NC are part of a single cable connected to the RELAYOUT port. The ports are connected to the left side of the Interface Unit.

1.4.1 Display Unit

Displays 'echosounder' and is connected to the 'left side' of the EMES system.

1.4.2 Interface Unit

The Interface Unit consists of 2 totally identical and independent Interface PCBs.

The interface Unit has 24VDC and 115/230 VAC power inputs on each PCB. Because the two sides are identical, only the left side of the system is tested.

IO cables are connected to the left side.

During radiated emission tests and radiated radio frequency interference tests both sides are powered. The left side is powered with 230 VAC and the right side is powered with 24 VDC, to be able to test both voltages at the same time.

When performing the tests on the Sensor Unit, both sides are ON and supplied the power to both Display Units; both the echosounder signal and the speedlog signal were sent from the Sensor Unit to both Display Units.

1.4.3 Power Supply Unit

The Power Supply Unit consists of 2 totally identical and independent Interface PCBs.

The Power Supply Unit has 24VDC and 115/230 VAC power inputs on each PCB. Because the two sides are identical, only the left side of the system is tested.

During radiated emission tests and radiated radio frequency interference tests both sides are powered. The left side is powered with 230 VAC and the right side is powered with 24 VDC, to be able to test both voltages at the same time.

When testing on the Sensor Unit, both sides were powered to display both the echosound signal and the speedlog signal from the Sensor Unit to both Display Units.

1.4.4 Sensor Unit

The communication line is connecting the EMES60 Sensor Unit all the way to the Display unit Echosounder (left side) and Display unit Speedlog (right side).

1.5 Functional test procedure

Functional test procedure by Northern Solutions A/S:

1.5.1 Display Unit

The IEC61162 Communication line is connecting the EMES60 dual sensor all the way to the Display unit Echosounder and Display unit Speedlog.

The operator shall observe the indications of the display during the test. The simulated data, which is sent from the sensor, must be continuously indicated on the display unit. This would confirm normal operation of the communication lines.

Observe the screen picture. The echogram must continuously advance along the screen. No abnormalities are observed on the screen. Try to change the screens by "swiping in horizontal direction". The screens must change smoothly.

This would confirm normal operation of the touch screen.

1.5.2 Interface Unit

The IEC61162 Communication line is connecting the EMES60 dual sensor all the way to the Display unit Echosounder and Display unit Speedlog.

The operator shall observe the indications of the display during the test. The simulated data, which is sent from the sensor, must be continuously indicated on the display unit.

This would confirm normal operation of the communication lines.

Verification condition 1: Voltage source 24 V on

- Voltmeter 1: 5 V
- Voltmeter 2: 0 V
- Ohmmeter 1: 0 Ohm
- Ohmmeter 2: Infinity

Verification condition 2: Voltage source 24 V off

- Amperemeter 1: 16 mA
- Voltmeter 2: 15 V
- Ohmmeter 1: Infinity
- Ohmmeter 2: 0 Ohm

1.5.3 Power Supply Unit

The IEC61162 Communication line is connecting the EMES60 dual sensor all the way to the Display unit Echosounder and Display unit Speedlog.

The operator shall observe the indications of the display during the test. The simulated data, which is sent from the sensor, must be continuously indicated on the display unit. No Display Unit restart sequences must be observed.

1.5.4 Sensor Unit

The simulated data is generated by the built-in simulator, which consists of the system transmitter and system receiver. In the simulation mode the transmitter is transmitting the recorded signals, which are received and processed by the receiver.

The IEC61162 Communication line is connecting the EMES60 dual sensor all the way to the Display unit Echosounder and Display unit Speedlog.

The operator shall observe the indications of the display during the test. The simulated data, which is sent from the sensor, must be continuously indicated on both display units.

Page 21 (124)

1.6 Performance criterion

The following acceptance criteria for compliance by Northern Solutions A/S are in force: The operator shall observe the indications of the display during the test. The simulated data, which is sent from the sensor, must be continuously indicated on the display unit.

The generic acceptance criteria for compliance from IEC 60945:2002 is in force during the EMC immunity testing:

Performance criterion	Description
A	The EUT shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed, as defined in the relevant equipment standard and in the technical specification published by the manufacturer
В	The EUT shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed, as defined in the relevant equipment standard and in the technical specification published by the manufacturer. During the test, degradation or loss of function or performance which is self-recoverable is however, allowed, but no change of actual operating state or stored data is allowed.
с	Temporary degradation or loss of function or performance is allowed during the test, provided the function is self-recoverable, or can be restored at the end of the test by the operation of the controls, as defined in the relevant equipment standard and in the technical specification published by the manufacturer.

2 ELECTROMAGNETIC COMPATIBILITY

2.1 Radiated emission

2.1.1 Radiated emission – Display Unit

Test specimen	Display Unit
Test specification	IEC 60945:2002, section 9.3
Test method	CISPR 16-2-3:2010
Frequency range	0.15-2000 MHz
Limits	IEC 60945:2002
Comments	The test specimen was tested as standalone
Temperature / Humidity	23°C / 45%RH
Date of measurements	2014-06-26
Test personnel	David Busk

2.1.1.1 Test setup

The EUT was placed 80 cm above ground on a non-conductive table.

Radiated emissions in the frequency range 150 kHz - 30 MHz were premeasured with turn table steps of 45° and an antenna height of 1.5 meter without absorbers on the floor. Final measurements were made at selected frequencies after maximizing the signal by turning turntable.

Radiated emissions in the frequency range 30 - 2000 MHz were premeasured with turn table steps of 45° and antenna height between 1 - 4 m in 1 m step. Both vertical and horizontal antenna polarization were measured with reflective floor. Final measurements were made at selected frequencies after maximizing the signal by turning turntable and changing the height of the antenna.

Photo 8. 0.15 - 30 MHz Measurement.

Page 23 (124)

Photo 9. 30 - 2000 MHz Measurement.

2.1.1.2 Test results

The measured emissions were below the limits.

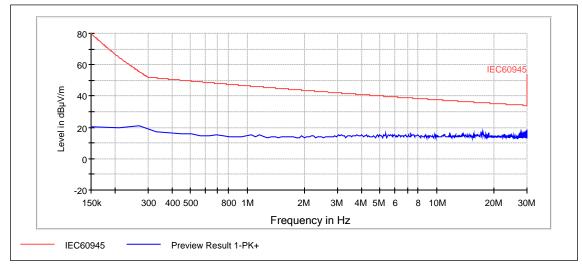


Figure 3. Radiated Emission 150 kHz - 30 MHz. Antenna 0º.

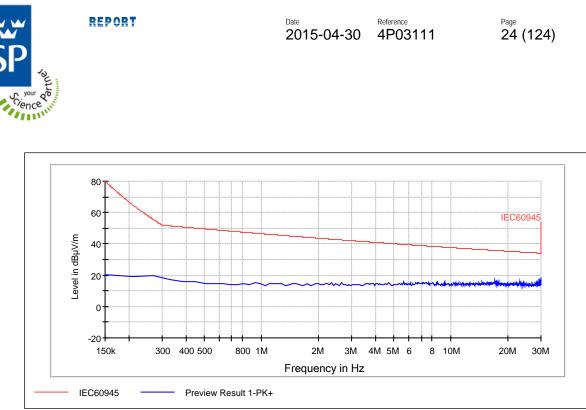


Figure 4. Radiated Emission 150 kHz - 30 MHz. Antenna 90°.

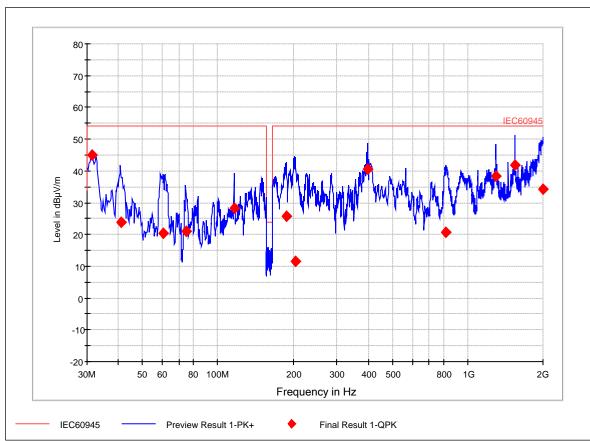


Figure 5. Radiated Emission 30 - 2000 MHz.

Frequency [MHz]	QP [dBµV/m]	BW [kHz]	Height [cm]	Pol.	Azimuth [deg]	Margin [dB]	Limit [dBµV/m]	Result
31.380000	44.9	120.0	101.0	V	170.0	9.1	54.0	PASSED
41.077715	23.8	120.0	150.0	V	106.0	30.2	54.0	PASSED
60.340601	20.2	120.0	150.0	V	105.0	33.8	54.0	PASSED
74.900882	21.0	120.0	150.0	V	74.0	33.0	54.0	PASSED
116.156713	28.2	120.0	101.0	V	-22.0	25.8	54.0	PASSED
187.705211	25.8	120.0	250.0	Н	92.0	28.2	54.0	PASSED
203.666293	11.5	120.0	300.0	Н	267.0	42.5	54.0	PASSED
398.267174	40.5	120.0	101.0	Н	268.0	13.5	54.0	PASSED
815.109659	20.6	120.0	150.0	V	80.0	33.4	54.0	PASSED
1294.30517	38.4	120.0	101.0	Н	136.0	15.6	54.0	PASSED
1547.01418	41.9	120.0	138.0	Н	202.0	12.1	54.0	PASSED
1998.33599	34.3	120.0	200.0	V	112.0	19.7	54.0	PASSED

Table 1. Radiated Emission 30 - 2000 MHz results. Measurement time 15 s.

2.1.2 Radiated emission – Interface Unit

Test specimen	Interface Unit			
Test specification	IEC 60945:2002, section 9.3			
Test method	CISPR 16-2-3:2010			
Frequency range	0.15-2000 MHz			
Limits	IEC 60945:2002			
Comments	None			
Temperature / Humidity	21°C / 43%RH			
Date of measurements	2014-11-20			
Test personnel	David Busk			

2.1.2.1 Test setup

The EUT was placed 80 cm above ground on a non-conductive table. The auxiliary equipment was positioned outside the chamber.

A FTC 101 decoupling clamp from Luthi Elektronik was mounted to the interface cable closest to the auxiliary equipment to isolate the auxiliary equipment from the test. Both sides of the test specimen were powered during the test. The left side was powered with 230 VAC and the right side was powered with 24 VDC.

Radiated emissions in the frequency range 150 kHz - 30 MHz were premeasured with turn table steps of 45° and an antenna height of 1.5 meter without absorbers on the floor. Final measurements were made at selected frequencies after maximizing the signal by turning turntable.

Radiated emissions in the frequency range 30 - 2000 MHz were premeasured with turn table steps of 45° and antenna height between 1 - 4 m in 1 m step. Both vertical and horizontal antenna polarization were measured with reflective floor. Final measurements were made at selected frequencies after maximizing the signal by turning turntable and changing the height of the antenna.

Photo 10. 0.15 - 30 MHz Measurement.

Page 27 (124)

Photo 11. 30 - 2000 MHz Measurement.

2.1.2.2 Test results

The measured emissions were below the limits.

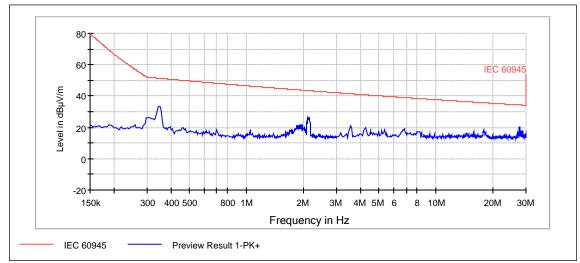


Figure 6. Radiated Emission 150 kHz - 30 MHz. Antenna 0°.

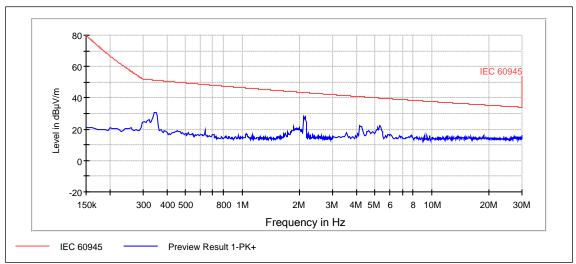


Figure 7. Radiated Emission 150 kHz - 30 MHz. Antenna 90°.

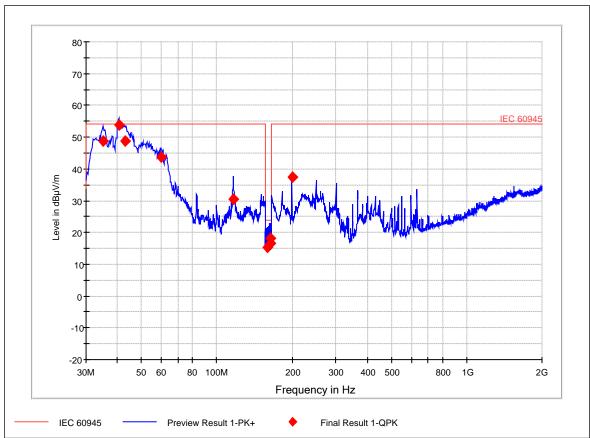


Figure 8. Radiated Emission 30 - 2000 MHz.

Frequency [MHz]	QP [dBµV/m]	BW [kHz]	Height [cm]	Pol.	Azimuth [deg]	Margin [dB]	Limit [dBµV/m]	Result
35.210100	48.7	120.0	100.0	V	247.0	5.3	54.0	PASSED
40.525210	53.7	120.0	100.0	V	247.0	0.3	54.0	PASSED
43.122766	48.9	120.0	100.0	V	323.0	5.1	54.0	PASSED
59.943086	43.8	120.0	183.0	V	118.0	10.2	54.0	PASSED
116.576713	30.4	120.0	100.0	V	9.0	23.6	54.0	PASSED
158.998627	15.4	9.0	100.0	V	1.0	8.6	24.0	PASSED
163.551543	16.6	9.0	100.0	V	281.0	7.4	24.0	PASSED
164.189259	18.3	9.0	100.0	V	248.0	5.7	24.0	PASSED
200.009699	37.4	120.0	172.0	Н	76.0	16.6	54.0	PASSED

Table 2. Radiated Emission 30 - 2000 MHz results. Measurement time 15 s.

Power Supply Unit Test specimen Test specification IEC 60945:2002, section 9.3 Test method CISPR 16-2-3:2010 Frequency range 0.15-2000 MHz Limits IEC 60945:2002 Comments None 21°C / 45%RH **Temperature / Humidity** Date of measurements 2014-11-18 Test personnel David Busk

2.1.3 Radiated emission – Power Supply Unit

2.1.3.1 Test setup

The EUT was placed 80 cm above ground on a non-conductive table. The auxiliary equipment was positioned in a well near .the wall of the chamber.

A EM 101 electromagnetic injection clamp from Luthi Elektronik was mounted to the interface cable and sensor cable closest to the auxiliary equipment to isolate the auxiliary equipment from the test.

A FTC 101decoupling clamp from Luthi Elektronik was mounted to the interface cable and sensor cable on the floor below the test specimen.

Both sides of the test specimen were powered during the test. The left side was powered with 230 VAC and the right side was powered with 24 VDC.

Radiated emissions in the frequency range 150 kHz - 30 MHz were premeasured with turn table steps of 45° and an antenna height of 1.5 meter without absorbers on the floor. Final measurements were made at selected frequencies after maximizing the signal by turning turntable.

Radiated emissions in the frequency range 30 - 2000 MHz were premeasured with turn table steps of 45° and antenna height between 1 - 4 m in 1 m step. Both vertical and horizontal antenna polarization were measured with reflective floor. Final measurements were made at selected frequencies after maximizing the signal by turning turntable and changing the height of the antenna.

To comply with the limits, the client inserted a NEC/TOKIN filter of type: SH_102 at the DC input power port. The filter is used in all other performed tests except for conducted emission test where a Schaffner filter was used. See section 1.2.3.

Photo 12. 0.15 - 30 MHz Measurement.

Photo 13. 30 - 2000 MHz Measurement.

2.1.3.2 Test results

The measured emissions were below the limits.

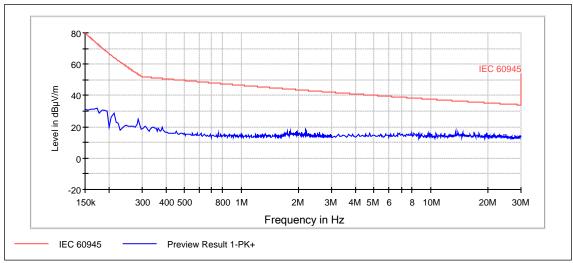


Figure 9. Radiated Emission 150 kHz - 30 MHz. Antenna 0º.

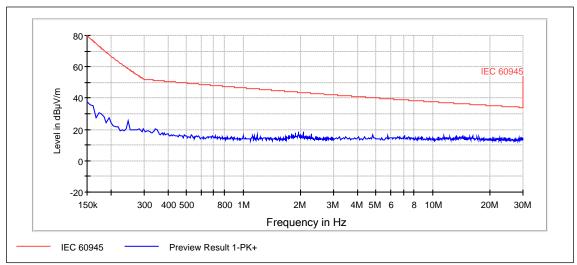


Figure 10. Radiated Emission 150 kHz - 30 MHz. Antenna 90°.

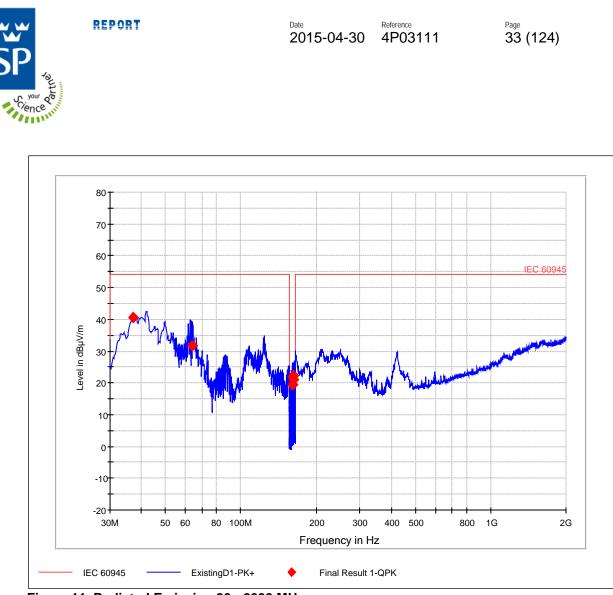


Figure 11. Radiated Emission 30 - 2000 MHz.

Frequency [MHz]	QP [dBµV/m]	BW [kHz]	Height [cm]	Pol.	Azimuth [deg]	Margin [dB]	Limit [dBµV/m]	Result
37.170140	40.4	120.0	100.0	V	192.0	13.6	54.0	PASSED
64.113146	31.6	120.0	158.0	V	55.0	22.4	54.0	PASSED
160.527425	19.5	9.0	244.0	Н	73.0	4.5	24.0	PASSED
160.533687	21.8	9.0	258.0	Н	67.0	2.2	24.0	PASSED
161.167986	19.4	9.0	255.0	Н	76.0	4.6	24.0	PASSED
161.844259	21.1	9.0	171.0	Н	73.0	2.9	24.0	PASSED
163.139820	22.2	9.0	156.0	Н	76.0	1.8	24.0	PASSED

Table 3. Radiated Emission 30 - 2000 MHz results. Measurement time 15 s.

2.1.4 Test equipment

Description	Supplier	Model	Tag no.
Antenna, Ultra Broadband, 30MHz-3GHz	Rohde&Schwarz	HL562	19830
Antenna Magnetic Loop 9 kHz - 30 MHz	Rohde&Schwarz	HFH2-Z2	19966
Analyzer 20Hz-26.5GHz	Rohde&Schwarz	ESI	20763

Table 4. Equipment for Radiated Emission.

2.2 Conducted emission

2.2.1 Conducted emission – Interface Unit

Test specimen	Interface Unit			
Test specification	IEC 60945:2002, section 9.2			
Test method	CISPR 16-2-1:2014			
Frequency range	0.01 - 30 MHz			
Limits	IEC 60945:2002			
Comments	None			
Temperature / Humidity	23°C / 41%RH			
Date of measurements	2015-02-20			
Test personnel	David Busk			

2.2.1.1 Test setup

The test was made at nominal supply voltages of 115 VAC, 230 VAC and 24 VDC. The test specimen was mounted on, and bonded, to an earth plan.

Cables and auxiliary equipment were elevated 10 mm above the conductive table. The power supply cable to the test specimen was a 0.8 m shielded power supply cable

connected directly to the artificial mains network.

Auxiliary equipment was powered through a separate artificial mains network.

To comply with the limits, the client inserted a Shaffner filter of type: FN409 at the DC input power port. The filter is deemed not to have any effect on previous performed tests other than improving results. See section 1.2.2.

Photo 14. Conducted emission test setup. AC voltage.

šP

Page 36 (124)

Photo 15. Conducted emission test setup. DC voltage.

Photo 16. Shaffner filter used for DC test.

REPORT

^{Page} 37 (124)

2.2.1.2 Test results

The measured emissions were below the limits.



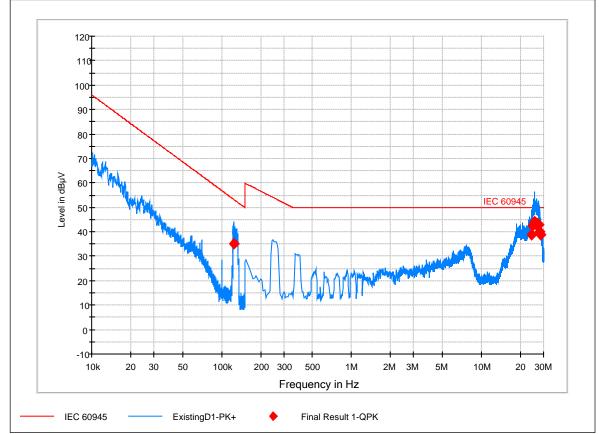
Figure 12. Conducted emission test. Supply voltage: 115 VAC.

šP



Frequency [MHz]	QuasiPeak [dBµV]	BW [kHz]	Line	Margin [dB]	Limit [dBµV]	Result
0.101540	43.7	0.200	Ν	13.0	56.6	PASSED
0.116720	39.8	0.200	L1	14.5	54.3	PASSED
24.919500	41.7	9.000	L1	8.3	50.0	PASSED
25.094700	42.7	9.000	N	7.3	50.0	PASSED
25.670100	44.2	9.000	N	5.8	50.0	PASSED
25.852600	44.5	9.000	N	5.5	50.0	PASSED
26.175900	43.9	9.000	L1	6.1	50.0	PASSED
26.449000	44.9	9.000	N	5.1	50.0	PASSED
26.731400	44.8	9.000	N	5.2	50.0	PASSED
26.807400	44.7	9.000	N	5.3	50.0	PASSED
26.972000	43.6	9.000	L1	6.4	50.0	PASSED
27.139900	44.4	9.000	N	5.6	50.0	PASSED
27.344400	43.1	9.000	L1	6.9	50.0	PASSED
27.781000	42.4	9.000	L1	7.6	50.0	PASSED
28.119300	43.1	9.000	N	6.9	50.0	PASSED
28.532000	42.4	9.000	N	7.6	50.0	PASSED

 Table 5. Conducted emission results. Measurement time 15 s. Supply voltage: 115 VAC.


ŠP

Frequency [MHz]	QuasiPeak [dBµV]	BW [kHz]	Line	Margin [dB]	Limit [dBµV]	Result
0.123780	35.3	0.200	L1	18.0	53.3	PASSED
24.101600	38.8	9.000	L1	11.2	50.0	PASSED
24.574100	42.3	9.000	N	7.7	50.0	PASSED
25.017500	43.1	9.000	N	6.9	50.0	PASSED
25.518700	43.9	9.000	N	6.1	50.0	PASSED
25.729900	44.2	9.000	N	5.8	50.0	PASSED
26.061700	43.3	9.000	L1	6.7	50.0	PASSED
26.347400	43.5	9.000	N	6.5	50.0	PASSED
26.517400	43.1	9.000	N	6.9	50.0	PASSED
26.660600	42.8	9.000	N	7.2	50.0	PASSED
26.991900	43.3	9.000	N	6.8	50.0	PASSED
27.264900	43.0	9.000	N	7.0	50.0	PASSED
27.378600	42.9	9.000	N	7.1	50.0	PASSED
27.942300	39.9	9.000	N	10.1	50.0	PASSED
28.382900	38.6	9.000	N	11.4	50.0	PASSED

 Table 6. Conducted emission results. Measurement time 15 s. Supply voltage: 230 VAC.

QuasiPeak [dBµV]	BW [kHz]	Line	Margin [dB]	Limit [dBµV]	Result
82.8	0.200	Ν	10.7	93.5	PASSED
80.0	0.200	L1	11.6	91.5	PASSED
76.4	0.200	L1	14.0	90.4	PASSED
75.2	0.200	Ν	14.8	90.0	PASSED
71.3	0.200	Ν	16.8	88.1	PASSED
30.8	9.000	Ν	19.7	50.5	PASSED
	[dBµV] 82.8 80.0 76.4 75.2 71.3	[dBµV][kHz]82.80.20080.00.20076.40.20075.20.20071.30.200	[dBµV][kHz]Line82.80.200N80.00.200L176.40.200L175.20.200N71.30.200N	[dBµV][kHz]Line[dB]82.80.200N10.780.00.200L111.676.40.200L114.075.20.200N14.871.30.200N16.8	[dBμV][kHz]Line[dB][dBμV]82.80.200N10.793.580.00.200L111.691.576.40.200L114.090.475.20.200N14.890.071.30.200N16.888.1

Figure 14. Conducted emission test. Supply voltage: 24 VDC.

Table 7. Conducted emission results. Measurement time 15 s. Supply voltage: 24 VDC.

šP

2.2.2 Conducted emission – Power Supply Unit

Test specimen	Power Supply Unit	
Test specification	IEC 60945:2002, section 9.2	
Test method	CISPR 16-2-1:2014	
Frequency range	0.01 - 30 MHz	
Limits	IEC 60945:2002	
Comments	None	
Temperature / Humidity	23°C / 47%RH, 23°C / 41%RH	
Date of measurements 2015-01-22, 2015-02-20		
Test personnel	David Busk	

2.2.2.1 Test setup

The test was made at nominal supply voltages of 115 VAC, 230 VAC and 24 VDC. The test specimen was mounted on, and bonded, to an earth plan.

Cables and auxiliary equipment were elevated 10 mm above the conductive table. The power supply cable to the test specimen was a 0.8 m shielded power supply cable connected directly to the artificial mains network.

Auxiliary equipment was powered through a separate artificial mains network.

To comply with the limits, the client exchanged the NEC/TOKIN SH_102 filter with a Shaffner filter of type: FN409 at the DC input power port. The filter is deemed not to have any effect on previous performed tests other than improving results. See section 1.2.3.

Photo 17. Conducted emission test setup. AC voltage.

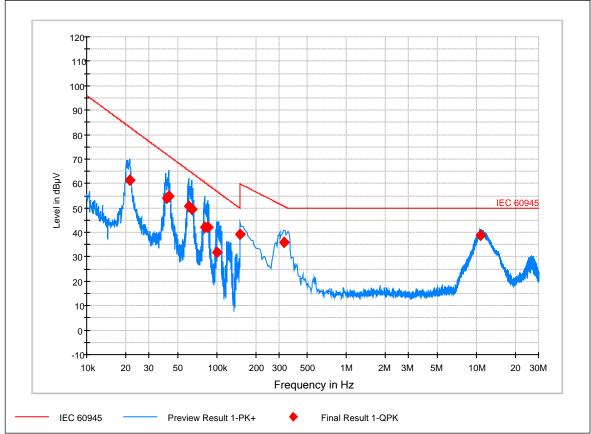
ŠP

Page 42 (124)

Photo 18. Conducted emission test setup. DC voltage.

Photo 19. Shaffner filter used for DC test.

REPORT



Page 43 (124)

2.2.2.2 Test results

The measured emissions were below the limits.

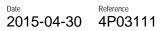
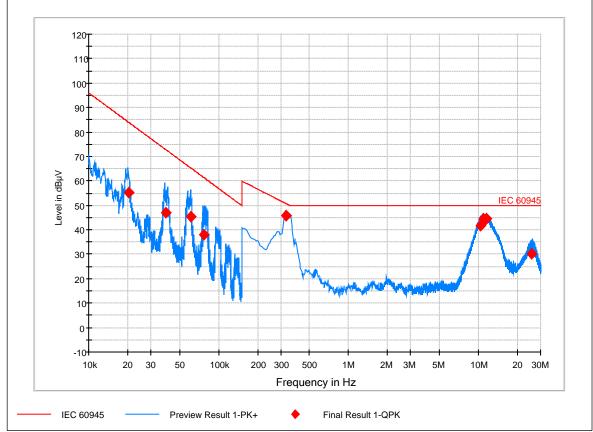
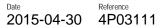


Figure 15. Conducted emission tes	t. Supply voltage: 115 VAC.
-----------------------------------	-----------------------------

Frequency [MHz]	QuasiPeak [dBµV]	BW [kHz]	Line	Margin [dB]	Limit [dBµV]	Result
0.021500	61.3	0.200	Ν	21.7	83.0	PASSED
0.041140	53.8	0.200	Ν	18.2	72.0	PASSED
0.043010	54.7	0.200	L1	16.5	71.2	PASSED
0.061010	50.5	0.200	L1	14.7	65.3	PASSED
0.064250	49.3	0.200	Ν	15.1	64.4	PASSED
0.081030	42.2	0.200	L1	18.3	60.5	PASSED
0.086370	42.2	0.200	Ν	17.2	59.4	PASSED
0.100870	31.8	0.200	L1	24.9	56.7	PASSED
0.150000	39.2	0.200	L1	20.8	60.0	PASSED
0.329800	35.8	9.000	L1	14.9	50.7	PASSED
10.770100	39.0	9.000	L1	11.0	50.0	PASSED


Table 8. Conducted emission results. Measurement time 15 s. Supply voltage: 115 VAC.



Frequency [MHz]	QuasiPeak [dBµV]	BW [kHz]	Line	Margin [dB]	Limit [dBµV]	Result
0.020330	55.4	0.200	L1	28.6	83.9	PASSED
0.038920	47.2	0.200	N	25.7	72.9	PASSED
0.061250	45.2	0.200	N	20.0	65.2	PASSED
0.076650	38.2	0.200	N	23.2	61.4	PASSED
0.329900	45.9	9.000	N	4.8	50.7	PASSED
0.331300	45.8	9.000	N	4.8	50.6	PASSED
10.416000	41.7	9.000	L1	8.3	50.0	PASSED
10.842500	44.4	9.000	L1	5.6	50.0	PASSED
11.171200	43.9	9.000	N	6.1	50.0	PASSED
11.595200	44.4	9.000	L1	5.6	50.0	PASSED
25.728200	30.3	9.000	N	19.7	50.0	PASSED

Figure 16. Conducted emission test. Supply voltage: 230 VAC.	Figure 16.	ducted emission test. Supply voltage: 230 V	AC.
--	------------	---	-----

Table 9. Conducted emission results. Measurement time 15 s. Supply voltage: 230 VAC.

Page 45 (124)

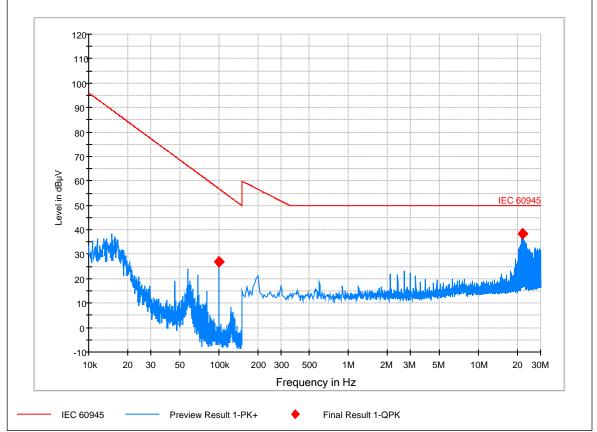


Figure 17. Conducted emission test. Supply voltage: 24 VDC.

Frequency [MHz]	QuasiPeak [dBµV]	BW [kHz]	Line	Margin [dB]	Limit [dBµV]	Result
0.100040	27.0	0.200	L1	29.9	56.9	PASSED
21.811200	38.2	9.000	L1	11.8	50.0	PASSED

Table 10. Conducted emission results. Measurement time 15 s. Supply voltage: 24 VDC.

2.2.3 Test equipment

Description	Supplier	Model	Tag no.
Pulse Limiter 9KHz-30MHz	Rohde&Schwarz	ESH3-Z2	13513
V-network Two Line	Rohde&Schwarz	ESH3-Z5	13935
Receiver EMI Test 9KHz-2750MHz	Rohde&Schwarz	ESCS30	14993
V-network Two Line	Rohde&Schwarz	ESH3-Z5	20682

 Table 11. Test equipment for conducted emission.

2.3 Radiated radio frequency interference

2.3.1 Radiated RF interference - Display Unit and Interface Unit

Test specimen	Display Unit and Interface Unit			
Test specification	IEC 60945:2002, section 10.4			
Test method	IEC 61000-4-3:2006+A1+A2			
Performance criterion	A			
Frequency range	80-2000 MHz			
Field strength	10 V/m			
Modulation	80% AM, 400 Hz sine wave			
Step size / dwell time	ize / dwell time 1% / 3 s (80 – 1000 MHz), 1% / 9 s (1 – 2 GHz)			
Comments	None			
Temperature / Humidity	23°C / 39%RH			
Date of measurements 2014-11-12				
Test personnel	David Busk			

2.3.1.1 Test setup

The tests were performed in a semi anechoic chamber with absorbers on floor. The test specimens were placed on a non-conductive foam table. The auxiliary equipment was placed on the floor under the table. The multimeters were positioned outside the chamber. Both sides of the Interface Unit were powered during the test. The left side was powered with 230 VAC and the right side was powered with 24 VDC.

The distance between the antenna and test specimen was 2.5 m. The antenna height was 1.55 m in the frequency range 80 MHz to 1000 MHz. In the frequency range 1 GHz to 2 GHz the antenna height was 1.35 m.

Functional tests were performed before, during and after testing.

Photo 20. Radio frequency electromagnetic interference. 80 MHz – 1000 MHz.

SP Technical Research Institute of Sweden

ŠP

REPORT

Page 47 (124)

Photo 21. Radio frequency electromagnetic interference. 1 GHz – 2 GHz.

2.3.1.2 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended before, during and after the test.

Frequency	Specimen side		Horizontal		Vertical
[MHz]	facing antenna	V/m	Result	V/m	Result
80-1000	0° (Left)	10	PASSED	10	PASSED
80-1000	90° (Back)	10	PASSED	10	PASSED
80-1000	180° (Right)	10	PASSED	10	PASSED
80-1000	270° (Front)	10	PASSED	10	PASSED
1000-2000	0° (Left)	10	PASSED	10	PASSED
1000-2000	90° (Back)	10	PASSED	10	PASSED
1000-2000	180° (Right)	10	PASSED	10	PASSED
1000-2000	270° (Front)	10	PASSED	10	PASSED

Table 12. Results for radio frequency electromagnetic interference 80 MHz – 2000 MHz.

šP

2.3.2 Radiated RF interference - Power Supply Unit

Test specimen	Power Supply Unit
Test specification	IEC 60945:2002, section 10.4
Test method	IEC 61000-4-3:2006+A1+A2
Performance criterion	A
Frequency range	80-2000 MHz
Field strength	10 V/m
Modulation	80% AM, 400 Hz sine wave
Step size / dwell time	1% / 3 s (80 – 1000 MHz), 1% / 9 s (1 – 2 GHz)
Comments	None
Temperature / Humidity	23°C / 35%RH
Date of measurements	2014-11-17
Test personnel	David Busk

2.3.2.1 Test setup

The tests were performed in a semi anechoic chamber with absorbers on floor. The test specimen was placed on a non-conductive foam table. The auxiliary equipment was placed on the floor under the table. The multimeters were positioned outside the chamber. Both sides of the Power Supply Unit were powered during the test. The left side was powered with 230 VAC and the right side was powered with 24 VDC.

The distance between the antenna and test specimen was 2.5 m. The antenna height was 1.55 m in the frequency range 80 MHz to 1000 MHz. In the frequency range 1 GHz to 2 GHz the antenna height was 1.35 m.

Functional tests were performed before, during and after testing.



Photo 22. Radio frequency electromagnetic field 80 MHz – 1000 MHz.

šP

REPORT



Photo 23. Radio frequency electromagnetic interference. 1 GHz – 2 GHz.

2.3.2.2 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended before, during and after the test.

Frequency	Specimen side	Horizontal Ve		Vertical	
[MHz]	facing antenna	V/m	Result	V/m	Result
80-1000	0° (Left)	10	PASSED	10	PASSED
80-1000	90° (Back)	10	PASSED	10	PASSED
80-1000	180° (Right)	10	PASSED	10	PASSED
80-1000	270° (Front)	10	PASSED	10	PASSED
1000-2000	0° (Left)	10	PASSED	10	PASSED
1000-2000	90° (Back)	10	PASSED	10	PASSED
1000-2000	180° (Right)	10	PASSED	10	PASSED
1000-2000	270° (Front)	10	PASSED	10	PASSED

Table 13. Results for radio frequency electromagnetic interference. 80 MHz – 2000 MHz.

2.3.3 Test equipment

Description	Supplier	Model	Tag no.
Amplifier 25-1000MHz 100W	Amplifier Research	100W1000M1A	13787
Amplifier 800MHz-4,2GHz 25W	Amplifier Research	25S1G4	13788
Antenna, MicroWave Horn, 1-4,2GHz	Amplifier Research	AT4002	13792
Directional Coupler 1-4,2GHz 40dB 600W	Amplifier Research	DC7140	13809
Directional Coupler 80-1000MHz 60dB 600W	Amplifier Research	DC6180	13810
Power Meter Digital	Rohde&Schwarz	NRVD	13830
Power Probe 1nW-20mW 10MHz-18GHz	Rohde&Schwarz	NRV-Z1	13831
Power Probe 1nW-20mW 10MHz-18GHz	Rohde&Schwarz	NRV-Z1	13832
Signal generator 5kHz - 6GHz	Rohde&Schwarz	SME06	14152
Antenna Log Periodic 80-1300 MHz	Rohde&Schwarz	HL023A1	16217
Amplifier 10kHz 250MHz 500W	Amplifier Research	500A250B	50020

 Table 14. Test equipment for radiated radio frequency interference.

ŝP

2.4 Conducted radio frequency interference

2.4.1 Conducted RF interference - Display Unit

Test specimen	Display Unit
Test specification	IEC 60945:2002, section 10.3
Test method	IEC 61000-4-6:2013
Performance criterion	A
Frequency range	150 kHz – 80 MHz
Amplitude	$3 V_{rms}$ and $10 V_{rms}$ at spot frequencies (U ₀)
Spot frequencies	2, 3, 4, 6.2, 8.2, 12.6, 16.5, 18.8, 22 and 25 MHz
Modulation	80% AM, 400 Hz sine wave
Sweep rate	3 seconds per 1% step size
Comments	None
Temperature / Humidity	24°C / 36%RH
Date of measurements	2014-12-03
Test personnel	David Busk, Bo Schødt

2.4.2 Test setup

The test specimen was grounded through a CDN-M1. The CDN-M1 was terminated in 50 Ω during all tests.

Cables not connected to a CDN were exposed through an injection clamp. The injected current was monitored by a current probe. If the current exceeded $I_{max} = U_0 / 150 \Omega$ the amplitude was reduced until the measured current was equal to the I_{max} value. The auxiliary equipment was grounded through a CDN-M1 terminated in 50 Ω . All cables not under test were decoupled.

Functional tests were performed before, during and after testing.

Photo 24. Conducted radio frequency interference test setup. Clamp injection on signal cable.

ŠP

2.4.3 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended during and after the test.

The injection current did not exceed the I_{max} value so the voltage was not reduced.

Port	Injection method	Results
Display unit cable	Clamp and sensor	PASSED

Table 15. Results for conducted radio frequency interference.

2.4.4 Conducted RF interference - Interface Unit

Test specimen	Interface Unit	
Test specification	IEC 60945:2002, section 10.3	
Test method	IEC 61000-4-6:2013	
Performance criterion	A	
Frequency range	150 kHz – 80 MHz	
Amplitude	3 V_{rms} and 10 V_{rms} at spot frequencies (U ₀)	
Spot frequencies	2, 3, 4, 6.2, 8.2, 12.6, 16.5, 18.8, 22 and 25 MHz	
Modulation	80% AM, 400 Hz sine wave	
Sweep rate	3 seconds per 1% step size	
Comments	None	
Temperature / Humidity	23°C / 37%RH, 23°C / 39%RH	
Date of measurements	2014-11-27 - 2014-12-03	
Test personnel	David Busk, Bo Schødt	

2.4.5 Test setup

The test specimen was powered through a CDN-M3.

The test specimen was grounded through a CDN-M1. The CDN-M1 was terminated in 50 Ω during all tests.

Cables not connected to a CDN were exposed through an injection clamp. The injected current was monitored by a current probe. If the current exceeded $I_{max} = U_0 / 150 \Omega$ the amplitude was reduced until the measured current was equal to the I_{max} value.

When testing on a signal port the auxiliary equipment was grounded through a CDN-M1 terminated in 50 Ω .

All cables not under test were decoupled.

Functional tests were performed before, during and after testing.

Photo 25. Conducted radio frequency interference test setup. AC power.

^{Page} 53 (124)

Photo 26. Conducted radio frequency interference test setup. DC power.

Photo 27. Conducted radio frequency interference test setup. Clamp injection on signal cables.

2.4.6 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended during and after the test.

The injection current did not exceed the I_{max} value so the voltage was not reduced.

Port	Injection method	Results
Power AC Left	CDN-M3	PASSED
Power DC Left	CDN-M3	PASSED
Display unit cable	Clamp and sensor	PASSED
Interface cable	Clamp and sensor	PASSED
ANAOUT	Clamp and sensor	PASSED
OPT1OUT	Clamp and sensor	PASSED
DIG1IN	CDN-M2	PASSED
RELAYOUT	Clamp and sensor	PASSED

Table 16. Results for conducted radio frequency interference.

2.4.7 Conducted RF interference - Power Supply Unit

Test specimen	Power Supply Unit
Test specification	IEC 60945:2002, section 10.3
Test method	IEC 61000-4-6:2013
Performance criterion	A
Frequency range	150 kHz – 80 MHz
Amplitude	$3 V_{rms}$ and $10 V_{rms}$ at spot frequencies (U ₀)
Spot frequencies	2, 3, 4, 6.2, 8.2, 12.6, 16.5, 18.8, 22 and 25 MHz
Modulation	80% AM, 400 Hz sine wave
Sweep rate	3 seconds per 1% step size
Comments	None
Temperature / Humidity	24°C / 37%RH, 23°C / 39%RH
Date of measurements	2014-11-26, 2014-11-27
Test personnel	David Busk

2.4.8 Test setup

The test specimen was powered through a CDN-M3.

The test specimen was grounded through a CDN-M1. The CDN-M1 was terminated in 50 Ω during all tests.

Cables not connected to a CDN were exposed through an injection clamp. The injected current was monitored by a current probe. If the current exceeded $I_{max} = U_0 / 150 \Omega$ the amplitude was reduced until the measured current was equal to the I_{max} value.

When testing on a signal port the auxiliary equipment was grounded through a CDN-M1 terminated in 50 Ω .

All cables not under test were decoupled.

Functional tests were performed before, during and after testing.

Photo 28. Conducted radio frequency interference test setup. AC power.

Page 56 (124)

Photo 29. Conducted radio frequency interference test setup. DC power.

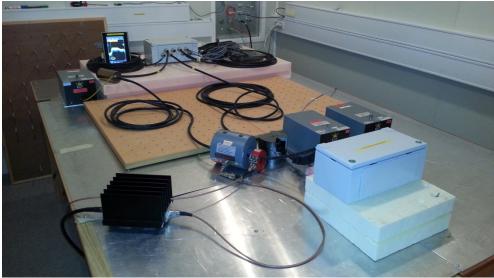


Photo 30. Conducted radio frequency interference test setup. Clamp injection on signal cables.

2.4.9 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended during and after the test.

The injection current did not exceed the I_{max} value so the voltage was not reduced.

Port	Injection method	Results
Power AC Left	CDN-M3	PASSED
Power DC Left	CDN-M3	PASSED
EMES60 sensor cable	Clamp and sensor	PASSED
Interface cable	Clamp and sensor	PASSED

Table 17. Results for conducted radio frequency interference.

2.4.10 Conducted RF interference - Sensor Unit

Test specimen	Sensor Unit
Test specification	IEC 60945:2002, section 10.3
Test method	IEC 61000-4-6:2013
Performance criterion	A
Frequency range	150 kHz – 80 MHz
Amplitude	$3 V_{rms}$ and $10 V_{rms}$ at spot frequencies (U ₀)
Spot frequencies	2, 3, 4, 6.2, 8.2, 12.6, 16.5, 18.8, 22 and 25 MHz
Modulation	80% AM, 400 Hz sine wave
Sweep rate	3 seconds per 1% step size
Comments	None
Temperature / Humidity	23°C / 38%RH
Date of measurements	2015-01-21
Test personnel	David Busk, Bo Schødt

2.4.11 Test setup

The test specimen was grounded through a CDN-M1. The CDN-M1 was terminated in 50 Ω during all tests.

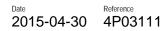
Cables not connected to a CDN were exposed through an injection clamp. The injected current was monitored by a current probe. If the current exceeded $I_{max} = U_0 / 150 \Omega$ the amplitude was reduced until the measured current was equal to the I_{max} value. The auxiliary equipment was grounded through a CDN-M1 terminated in 50 Ω . All cables not under test were decoupled.

Functional tests were performed before, during and after testing.

Photo 31. Conducted radio frequency interference test setup. Clamp injection on signal cable.

ŠP

2.4.12 Test results


No change in actual operating state or stored data was observed. The test specimen continued to operate as intended during and after the test.

The injection current did not exceed the I_{max} value so the voltage was not reduced.

Port	Injection method	Results
EMES60 sensor cable	Clamp and sensor	PASSED

 Table 18. Results for conducted radio frequency interference.

REPORT

^{Page} 59 (124)

2.4.13 Test equipment

Description	Supplier	Model	Tag no.
Clamp HF Current			13138
Amplifier 10KHz-220MHz	Amplifier Research	75A220	13367
Decoupling Clamp	Luthi Elektronik	FTC101	13417
Power Meter Digital	Rohde&Schwarz	NRVD	13857
Power Sensor 1uW-100mW DC-18GHz	Rohde&Schwarz	NRV-Z51	13858
Directional Coupler Dual 0,1-1000MHz 40dB	Amlifier Research	DC3002	13859
CDN Signal Line	Fischer Custom Comm.	FCC-801-M3-16A	14428
CDN Power Line	Fischer Custom Comm.	FCC-801-M1-10A	18401
CDN Signal Line	Fischer Custom Comm.	FCC-801-AF2	14427
CDN Power Line	TESEQ	CDN M216	50051
CDN Power Line	TESEQ	CDN M316	50052
Signal Generator	Rohde&Schwarz	SME03	15328
Bulk Injection Probe	FCC	F-120-9A	16298
Powersensor 100pW-20mW 100kHz-6GHz	Rohde&Schwarz	NRV-Z4	17472
Attenuator 300W 6dB	Bird	300WA-FFN06	20109

Table 19. Test equipment for conducted radio frequency.

ŝP

2.5 Burst / Fast transients

2.5.1 Burst / Fast transients – Display Unit

Test specimen	Display Unit
Test specification	IEC 60945:2002, section 10.5
Test method	IEC 61000-4-4:2012
Performance criterion	В
Amplitude	±1 kV common mode on signal ports
Pulse rise time / duration	5 ns / 50 ns
Repetition rate	5 kHz
Application	15 ms burst every 300 ms
Duration	5 minutes for each polarity
Comments	None
Temperature / Humidity	23°C / 38%RH
Date of measurements	2014-12-05
Test personnel	David Busk

2.5.1.1 Test setup

The power cable between the power supply and the test generator was 0.5 m. The test specimen, the auxiliary equipment and the cables were raised 10 cm above the ground reference plane on foam.

Functional tests were performed before and after testing.

Photo 32. Burst / Fast transients test setup.

2.5.1.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Port	Level	Injection method	Result	
Display cable	±1 kV	Capacitive clamp	PASSED	
Table 20. Results for fast transients tests				

 Table 20. Results for fast transients tests.

2.5.2 Burst / Fast transients – Interface Unit

Test specimen	Interface Unit
Test specification	IEC 60945:2002, section 10.5
Test method	IEC 61000-4-4:2012
Performance criterion	В
Amplitude	±1 kV common mode on signal ports
Pulse rise time / duration	5 ns / 50 ns
Repetition rate	Signal ports: 5 kHz, AC ports: 5 kHz and 100 kHz
Application	15 ms burst every 300 ms
Duration	5 minutes for each polarity
Comments	None
Temperature / Humidity	23°C / 38%RH
Date of measurements	2014-12-05
Test personnel	David Busk

2.5.2.1 Test setup

The power cable between the power supply and the test generator was 0.5 m. The test specimen, the auxiliary equipment and the cables were raised 10 cm above the ground reference plane on foam.

Functional tests were performed before and after testing.

Photo 33. Burst / Fast transients test setup.

2.5.2.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Port	Level	Injection method	Result
Power AC Left	±2 kV	CDN	PASSED
Display unit cable	±1 kV	Capacitive clamp	PASSED
Interface cable	±1 kV	Capacitive clamp	PASSED
ANAOUT	±1 kV	Capacitive clamp	PASSED
OPT10UT	±1 kV	Capacitive clamp	PASSED
DIG1IN	±1 kV	Capacitive clamp	PASSED
RELAYOUT	±1 kV	Capacitive clamp	PASSED

Table 21. Results for fast transients tests.

2.5.3 Burst / Fast transients – Power Supply Unit

Test specimen	Power Supply Unit
Test specification	IEC 60945:2002, section 10.5
Test method	IEC 61000-4-4:2012
Performance criterion	В
Amplitude	±1 kV common mode on signal ports
Pulse rise time / duration	5 ns / 50 ns
Repetition rate	Signal ports: 5 kHz, AC ports: 5 kHz and 100 kHz
Application	15 ms burst every 300 ms
Duration	5 minutes for each polarity
Comments	None
Temperature / Humidity	24°C / 38%RH
Date of measurements	2014-12-05
Test personnel	David Busk

2.5.3.1 Test setup

The power cable between the power supply and the test generator was 0.5 m. The test specimen, the auxiliary equipment and the cables were raised 10 cm above the ground reference plane on foam.

Functional tests were performed before and after testing.

Photo 34. Burst / Fast transients test setup.

ŝP

2.5.3.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Port	Level	Injection method	Result
Power AC Left	±2 kV	CDN	PASSED
Interface cable	±1 kV	Capacitive clamp	PASSED
EMES60 sensor cable	±1 kV	Capacitive clamp	PASSED

Table 22. Results for fast transients tests.

2.5.4 Burst / Fast transients – Sensor Unit

Test specimen	Sensor Unit
Test specification	IEC 60945:2002, section 10.5
Test method	IEC 61000-4-4:2012
Performance criterion	В
Amplitude	±1 kV common mode on signal ports
Pulse rise time / duration	5 ns / 50 ns
Repetition rate	5 kHz
Application	15 ms burst every 300 ms
Duration	5 minutes for each polarity
Comments	None
Temperature / Humidity	23°C / 46%RH
Date of measurements	2015-01-21
Test personnel	David Busk

2.5.4.1 Test setup

The power cable between the power supply and the test generator was 0.5 m. The test specimen, the auxiliary equipment and the cables were raised 10 cm above the ground reference plane on foam.

Functional tests were performed before and after testing.

Photo 35. Burst / Fast transients test setup.

2.5.4.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Port	Level	Injection method	Result
EMES60 sensor cable	±1 kV	Capacitive clamp	PASSED
Table 22 Besults for fast transients test			

 Table 23. Results for fast transients test.

2.5.5 Test equipment

Description	Supplier	Model	Tag no.
Ultra Compact Simulator	EM Test	UCS500	13504
Capacitive Coupling Clamp	Nokia	-	15310

Table 24. Test equipment for burst / fast transients.

2.6 Surge / Slow transients

2.6.1 Surge / Slow transients – Interface Unit

Test specimen	Interface Unit
Test specification	IEC 60945:2002, section 10.6
Test method	IEC 61000-4-5:2005
Performance criterion	В
Amplitude	±1 kV Line / Earth ±0.5 kV Line / Line.
Pulse rise time / duration	1.2 μs / 50 μs
Repetition rate	1 pulse pr. minute
Duration	5 minutes for each polarity
Source impedance	2 Ω Line-Line / 12 Ω Line-Earth
Comments	None
Temperature / Humidity	22°C / 36%RH
Date of measurements	2014-12-04
Test personnel	David Busk

2.6.1.1 Test setup

The test was done on AC Power Left.

The length of the power cable to the test generator was 0.5 m.

The test specimen and auxiliary equipment were raised on 10 cm foam.

Functional tests were performed before and after testing.

 Table 25. Test setup for surge tests.

2.6.1.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Port	Injection level	Results
Line / Neutral	500 V	PASSED
Line / Earth	500 V	PASSED
Line / Earth	1 kV	PASSED
Neutral / Earth	500 V	PASSED
Neutral / Earth	1 kV	PASSED

Table 26. Results for surge on AC power line.

2.6.2 Surge / Slow transients – Power Supply Unit

Test specimen	Power Supply Unit
Test specification	IEC 60945:2002, section 10.6
Test method	IEC 61000-4-5:2005
Performance criterion	В
Amplitude	±1 kV Line / Earth ±0.5 kV Line / Line.
Pulse rise time / duration	1.2 μs / 50 μs
Repetition rate	1 pulse pr. minute
Duration	5 minutes for each polarity
Source impedance	2 Ω Line-Line / 12 Ω Line-Earth
Comments	None
Temperature / Humidity	23°C / 37%RH
Date of measurements	2014-12-05
Test personnel	David Busk

2.6.2.1 Test setup

The test was done on AC Power Left.

The length of the power cable to the test generator was 0.5 m.

The test specimen and auxiliary equipment were raised on 10 cm foam.

Functional tests were performed before and after testing.

Table 27. Test setup for surge tests.

Page 71 (124)

2.6.2.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Port	Injection level	Results
Line / Neutral	500 V	PASSED
Line / Earth	500 V	PASSED
Line / Earth	1 kV	PASSED
Neutral / Earth	500 V	PASSED
Neutral / Earth	1 kV	PASSED

Table 28. Results for surge on AC power line.

2.6.3 Test equipment

Description	Supplier	Model	Tag no.
Ultra Compact Simulator	EM Test	UCS500	13504

 Table 29. Test equipment for surge / slow transients.

2.7 Electrostatic discharge

2.7.1 Electrostatic discharge – Display Unit

Test specimen	Display Unit
Test specification	IEC 60945:2002, section 10.9
Test method	IEC 61000-4-2:2008
Performance criterion	В
Discharges	Cont. discharge: ±6kV Air discharge: ±2kV, ±4kV, ±8kV
Comments	None
Temperature / Humidity	22°C / 48%RH
Atmospheric pressure	1001 mbar
Date of measurements	2015-01-28
Test personnel	David Busk

2.7.1.1 Test setup

Indirect discharges were performed on the vertical and horizontal coupling planes. All non-conductive parts were investigated with an air discharge tip at the specified levels.

Functional tests were performed before and after testing.

Photo 36. ESD test setup.

2.7.1.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Air discharges were not possible at the specified test levels.

Photo 37. Discharge points for ESD tests. Red arrows show contact discharge points. Air discharges were not applicable.

Direct contact discharge		Indirect contact discharge		Air discharge	
Voltage	Result	Voltage	Result	Voltage	Result
				±2 kV	PASSED
±6 kV	PASSED	±6 kV	PASSED	±4 kV	PASSED
			±8 kV	PASSED	

Table 30. Results for electrostatic discharge test.

2.7.2 Electrostatic discharge – Interface Unit

Test specimen	Interface Unit	
Test specification	IEC 60945:2002, section 10.9	
Test method	IEC 61000-4-2:2008	
Performance criterion	В	
Discharges	Cont. discharge: ±6kV Air discharge: ±2kV, ±4kV, ±8kV	
Comments	None	
Temperature / Humidity	22°C / 48%RH	
Atmospheric pressure	1001 mbar	
Date of measurements	2015-01-28	
Test personnel	David Busk	

2.7.2.1 Test setup

Indirect discharges were performed on the vertical and horizontal coupling planes. All non-conductive parts were investigated with an air discharge tip at the specified levels.

Functional tests were performed before and after testing.

Photo 38. ESD test setup.

ŝP

2.7.2.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Air discharges were not possible at the specified test levels.

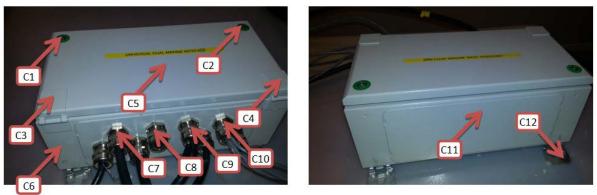


Photo 39. Discharge points for ESD tests. Red arrows show contact discharge points. Air discharges were not applicable.

Direct contact discharge		Indirect contact discharge		Air discharge	
Voltage	Result	Voltage	Result	Voltage	Result
			±2 kV	PASSED	
±6 kV	PASSED	±6 kV	PASSED	±4 kV	PASSED
			±8 kV	PASSED	

Table 31. Results for electrostatic discharge test.

2.7.3 Electrostatic discharge – Power Supply Unit

Test specimen	Power Supply Unit
Test specification	IEC 60945:2002, section 10.9
Test method	IEC 61000-4-2:2008
Performance criterion	B
Discharges	Cont. discharge: ±6kV Air discharge: ±2kV, ±4kV, ±8kV
Comments	None
Temperature / Humidity	22°C / 48%RH
Atmospheric pressure	1001 mbar
Date of measurements 2015-01-28	
Test personnel	David Busk

2.7.3.1 Test setup

Indirect discharges were performed on the vertical and horizontal coupling planes. All non-conductive parts were investigated with an air discharge tip at the specified levels.

Functional tests were performed before and after testing.

Photo 40. ESD test setup.

ŝP

2.7.3.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Air discharges were not possible at the specified test levels.

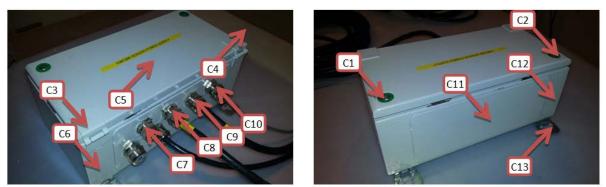


Photo 41. Discharge points for ESD tests. Red arrows show contact discharge points. Air discharges were not applicable.

Direct contact discharge		Indirect contact discharge		Air discharge	
Voltage	Result	Voltage	Result	Voltage Result	
		ED ±6 kV	±6 kV PASSED	±2 kV	PASSED
±6 kV	PASSED			±4 kV	PASSED
				±8 kV	PASSED

 Table 32. Results for electrostatic discharge test.

2.7.4 Test equipment

Description	Supplier	Model	Tag no.	
ESD Simulator MiniZap	Thermo KeyTek	MZ-15/EC	18357	
Table 22. Test equipment for electrostatic discharge test				

 Table 33. Test equipment for electrostatic discharge test.

2.8 Power supply failure

Test specimen	Interface Unit and Power Supply Unit
Test specification	IEC 60945:2002, section 10.8
Test method	None
Performance criterion	С
Specifications	3 interrupts during 5 minutes. Switching off time 30 seconds
Comments	None
Temperature / Humidity	23°C / 37%RH
Date of measurements	2015-09-24
Test personnel	David Busk

2.8.1 Test setup

The test was made at nominal supply voltages of 115 VAC, 230 VAC and 24 VDC. 3 interruptions were made within 5 minutes with 30 seconds pause between switching off and switching back on.

Functional tests were performed before and after testing.

Photo 42. Test setup for power supply failure. DC power.

Photo 43. Test setup for power supply failure. AC power.

2.8.2 Test results

No change in actual operating state or stored data was observed. The test specimen operated as intended before and after the test.

Voltage	Frequency	Result
115 VAC	60 Hz	PASSED
230 VAC	50 Hz	PASSED
24 VDC	None	PASSED

Table 34. Power supply failure results.

Description	Supplier	Model	Tag no.
Programmable AC Source	Chroma	61502	19062
Multimeter	Hewlett Packard	34401A	14880
DC Power supply	Hewlett Packard	E3632A	14519
DC Power supply	Hewlett Packard	E3632A	14622

Table 35. Test equipment for Power supply failure test.

Page

80 (124)

2.9 Extreme power supply

Test specimen	Interface Unit and Power Supply Unit
Test specification	IEC 60945:2002, section 7.1
Test method	None
Performance criterion	A
Environment	Normal temperature
Duration	15 minutes
Comments	Extreme power supply test was also done after return to normal environmental conditions in Dry Heat and Low temperature tests. (see respective paragraphs for results).
Temperature / Humidity	23°C / 37%RH
Date of measurements	2014-12-11
Test personnel	David Busk

2.9.1 Test setup

The test was made at nominal supply voltages of 115 VAC, 230 VAC and 24 VDC. AC power supply variations were applied using a programmable power supply. DC power supply variations were applied using DC power supplies. A multimeter was used to ensure correct voltage and frequency levels.

Functional tests were performed during and after testing.

Photo 44. Test setup for extreme power supply. DC power.

Photo 45. Test setup for extreme power supply. AC power.

2.9.2 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended before, during and after the test.

	Performance			
Extreme power supply	Voltage	Frequency	Result	
230 VAC + 10%, 50 Hz + 5%	253 VAC	52.5 Hz	PASSED	
230 VAC + 10%, 50 Hz - 5%	253 VAC	47.5 Hz	PASSED	
115 VAC - 10%, 60 Hz - 5%	103,5 VAC	57 Hz	PASSED	
115 VAC - 10%, 60 Hz + 5%	103,5 VAC	63 Hz	PASSED	
24 VDC + 30%	31.2 VDC	None	PASSED	
24 VDC – 10%	21.6 VDC	None	PASSED	

 Table 36. Extreme power supply test results.

2.9.3 Test equipment

Description	Supplier	Model	Tag no.
Programmable AC Source	Chroma	61502	19062
Multimeter	Hewlett Packard	34401A	14880
DC Power supply	Hewlett Packard	E3632A	14519
DC Power supply	Hewlett Packard	E3632A	14622

Table 37. Test equipment for Extreme power supply test.

2.10 Power supply variations (transient)

Test specimen	Interface Unit and Power Supply Unit
Test method	IEC 60945:2002, section 10.7
Performance criterion	A
Specifications	Duration of min. and max voltages: 1.5 s Duration of min. and max frequency: 5.0 s
Comments	None
Temp / Humidity	23°C / 37%RH
Date of measurements	2014-12-11
Test personnel	David Busk

2.10.1 Test setup

The test was made at nominal supply voltages of both 115 VAC and 230 VAC. Power supply variations were applied using a programmable power supply. A multimeter was used to ensure correct voltage and frequency levels. An oscilloscope was used to confirm that the shape of the waveform was properly generated.

Functional tests were performed before, during and after testing.

Figure 18. Power supply variations (transient) test setup.

ŠP

2.10.2 Test results

No change in actual operating state or stored data was observed. The test specimen was operational and functional before, during and after the test.

Voltage deviation transient	Performance		
voltage deviation transient	Voltage	Frequency	Result
230 VAC + 20%, 50 Hz + 10%	276 VAC	55 Hz	PASSED
230 VAC - 20%, 50 Hz - 10%	184 VAC	45 Hz	PASSED
115 VAC + 20%, 60 Hz + 10%	138 VAC	66 Hz	PASSED
115 VAC - 20%, 60 Hz - 10%	92 VAC	54 Hz	PASSED

Table 38. Power supply variations (transient) results.

2.10.3 Test equipment

Description	Supplier	Model	Tag no.
Programmable AC Source	Chroma	61502	19062
Multimeter	Hewlett Packard	34401A	14880
Oscilioscope	Textronic	TDS 3014	16756

Table 39. Test equipment for power supply variations (transient) test.

Reference

84 (124)

2.11 Power supply excessive conditions

Test specimen	Interface Unit and Power Supply Unit
Test method	IEC 60945:2002, section 7.2
Performance criterion	Excessive voltage: A
renormance cinterion	Reverse polarity: C
Specifications	Excessive voltage: Duration of each exposure was 15 min.
Specifications	Reverse polarity: Duration of each exposure was 5 min.
Comments	None
Temp / Humidity	23°C / 37%RH
Date of measurements	2014-12-11
Test personnel	David Busk

2.11.1 Test setup

The test was made at nominal supply voltages of 115 VAC, 230 VAC and 24 VDC.

AC excessive test voltages were applied using a programmable power supply.

DC excessive test voltages were applied using DC power supplies.

A multimeter was used to ensure correct voltage levels.

The excessive current tests are automatically performed together with the excessive low voltage operation.

The reverse polarity test was made by exchanging phase and neutral, or line and neutral, at the power supply.

Figure 19. Excessive conditions test setup. AC power.

šP

Figure 20. Excessive conditions test setup. DC power.

2.11.2 Test results

No change in actual operating state or stored data was observed. The test specimen continued to operate as intended during and after the test.

Excessive voltage	Performance			
Excessive voltage	Voltage	Frequency	Result	
230 VAC + 20%	276 VAC	50 Hz	PASSED	
115 VAC - 20%	92 VAC	60 Hz	PASSED	
24 VDC + 50%	36 VDC	None	PASSED	
24 VDC - 40%	14.4 VDC	None	PASSED	

Table 40. Excessive voltage test results.

Reverse polarity	Performance		
Reverse polarity	Line	Neutral	Result
230 VAC	Neutral	Phase	PASSED
115 VAC	Neutral	Phase	PASSED
24 VDC	Neutral	Line	PASSED
Table 11. Deverse polarity test results			

 Table 41. Reverse polarity test results.

2.11.3 Test equipment

Description	Supplier	Model	Tag no.
Programmable AC Source	Chroma	61502	19062
Multimeter	Hewlett Packard	34401A	14880
DC Power supply	Hewlett Packard	E3632A	14519
DC Power supply	Hewlett Packard	E3632A	14622

 Table 42. Test equipment for power supply excessive conditions test.

3 ENVIRONMENTAL

3.1 Dry Heat, Functional

Test specimen	Display Unit, Interface Unit, Power Supply Unit
Test specification	IEC 60945:2002, section 8.2 (protected equipment)
Test method	IEC 60068-2-2: 2007-07 test Bb
Temperature	55°C
Duration	16 hours
Comments	None
Date of test	2014-12-18 – 2014-12-19
Test personnel	Stig Larsen

3.1.1 Test setup

Test specimen and auxiliary equipment was turned on during the test.

Functional tests were performed before the climatic exposure, during the last two hours of the exposure, and after recovery.

Functional tests during the last two hours of the exposure included tests at extreme power supply conditions, with 15 minutes at each extreme. For AC supply +/- 10% voltage and +/- 5% for frequency was tested. For DC supply +30% -10% voltage was tested.

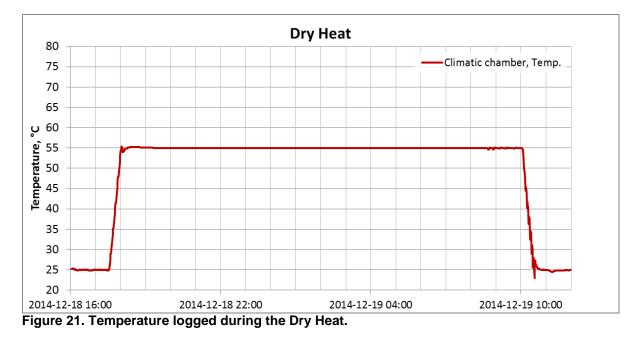



Photo 46. Test setup for climatic tests.

ŠP

3.1.2 Test results

Functional test	Result
Before exposure	PASSED
Last two hours of exposure	PASSED
After recovery	PASSED

Table 43. Results for Dry Heat, Functional, test functional test

Extreme power supply conditions		Result
Voltage	Frequency	Result
103.5 VAC (115 VAC - 10%)	47.5 Hz (50 Hz - 5%)	PASSED
103.5 VAC (115 VAC - 10%)	63 Hz (60 Hz + 5%)	PASSED
253 VAC (230 VAC + 10%)	63 Hz (60 Hz + 5%)	PASSED
253 VAC (230 VAC + 10%)	47.5 Hz (50 Hz - 5%)	PASSED
21.6 VDC (24 VDC – 10%)	-	PASSED
31.2 VDC (24 VDC + 30%)	-	PASSED

 Table 44: Results for Dry Heat, Functional, test extreme power supply test.

3.1.3 Test equipment

Description	Supplier	Model	Tag no.
Temperature and Climatic Test Chamber H3	Vötsch	VC 7060	17624
Multimeter	Hewlett Packard	34401A	14885
Programmable AC Source	Chroma	61502	19062
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	14306
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	15761
Multimeter (functional check)	Hewlett Packard	34401A	13184
Multimeter (functional check)	Hewlett Packard	34401A	13191
Multimeter (functional check)	Hewlett Packard	34401A	13202
Multimeter (functional check)	Tektronix	TX3	15655

Table 45: Test equipment for Dry Heat, Functional, test.

3.2 Dry Heat, Storage

Test specimen	Sensor Unit
Test specification	IEC 60945:2002, section 8.2 (submerged equipment)
Test method	IEC 60068-2-2: 2007-07 test Bb
Temperature	70°C
Duration	16 hours
Comments	Only Sensor Unit is included in Dry Heat, Storage
Date of test	2014-12-14 – 2014-12-15
Test personnel	Stig Larsen

3.2.1 Test setup

Test specimen and auxiliary equipment was turned off throughout the climatic exposure. Functional tests were performed before the climatic exposure and after recovery.

Photo 47. Test setup for Dry Heat, Storage, for Sensor Unit.

šř

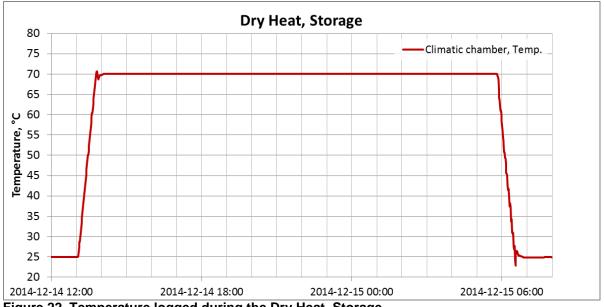


Figure 22. Temperature logged during the Dry Heat, Storage.

3.2.2 Test results

Functional test	Result	
Before exposure	PASSED	
After exposure	PASSED	

Table 46. Results for Dry Heat, Storage, functional test

3.2.3 Test equipment

Description	Supplier	Model	Tag no.
Temperature and Climatic Test Chamber H3	Vötsch	VC 7060	17624
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	14306
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	15761
Multimeter (functional check)	Hewlett Packard	34401A	13184
Multimeter (functional check)	Hewlett Packard	34401A	13191
Multimeter (functional check)	Hewlett Packard	34401A	13202
Multimeter (functional check)	Tektronix	TX3	15655

Table 47: Test equipment for Dry Heat, Storage, test.

3.3 Low temperature

Test specimen	Display Unit, Interface Unit, Power Supply Unit	
Test specification	IEC 60945:2002, section 8.4 (protected equipment)	
Test method	IEC 60068-2-1: 2007-03 test Ab	
Temperature	-15°C	
Duration	16 hours	
Comments	None	
Date of measurements	2014-12-16 – 2014-12-17	
Test personnel	Stig Larsen	

3.3.1 Test setup

Test specimen and auxiliary equipment was turned off from the functional test before exposure until the last 2 hours at -15°C.

Functional tests were performed before the climatic exposure, during the last two hours of the exposure, and after recovery.

Functional tests during the last two hours of the exposure included tests at extreme power supply conditions, with 15 minutes at each extreme. For AC supply +/- 10% voltage and +/- 5% for frequency was tested. For DC supply +30% -10% voltage was tested.

Setup in chamber was the same as for Dry Heat test (see paragraph 3.1.1).

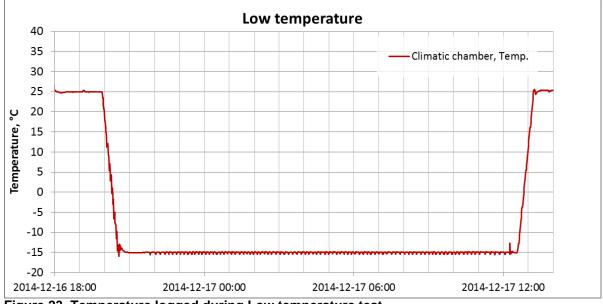


Figure 23. Temperature logged during Low temperature test.

3.3.2 Test results

Functional test	Result
Before exposure	PASSED
Last two hours of exposure	PASSED
After exposure	PASSED

Table 48. Results for Low temperature test functional test.

Extreme power supply conditions		Result
Voltage	Frequency	Result
103.5 VAC (115 VAC - 10%)	47.5 Hz (50 Hz - 5%)	PASSED
103.5 VAC (115 VAC - 10%)	63 Hz (60 Hz + 5%)	PASSED
253 VAC (230 VAC + 10%)	63 Hz (60 Hz + 5%)	PASSED
253 VAC (230 VAC + 10%)	47.5 Hz (50 Hz - 5%)	PASSED
21.6 VDC (24 VDC - 10%)	-	PASSED
31.2 VDC (24 VDC + 30%)	-	PASSED

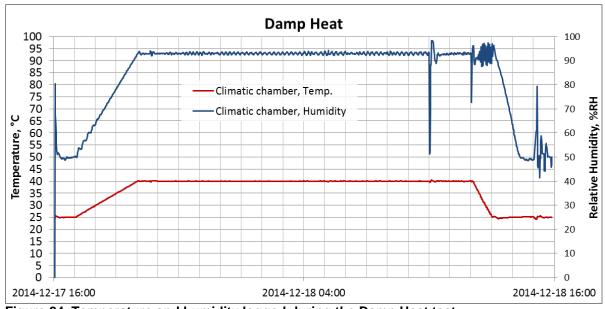
Table 49: Results for Low Temperature, extreme power supply test.

3.3.3 Test equipment

Description	Supplier	Model	Tag no.
Temperature and Climatic Test Chamber H3	Vötsch	VC 7060	17624
Multimeter	Hewlett Packard	34401A	14885
Programmable AC Source	Chroma	61502	19062
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	14306
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	15761
Multimeter (functional check)	Hewlett Packard	34401A	13184
Multimeter (functional check)	Hewlett Packard	34401A	13191
Multimeter (functional check)	Hewlett Packard	34401A	13202
Multimeter (functional check)	Tektronix	TX3	15655

Table 50: Test equipment for Low Temperature test.

šP



3.4 Damp Heat

Display Unit, Interface Unit, Power Supply Unit	
IEC 60945:2002, section 8.3 (protected equipment)	
IEC 60068-2-78:2012	
+40°C	
93% RH	
16 hours	
None	
2014-12-17 – 2014-12-18	
Stig Larsen	

3.4.1 Test setup

Test specimens and auxiliary equipment was turned on during the test. Functional tests were performed before the climatic exposure, during the last two hours of the exposure, and after recovery.

Setup in chamber was the same as for Dry Heat test (see paragraph 3.1.1).

Figure 24. Temperature and humidity logged during the Damp Heat test.

3.4.2 Test results

Functional test	Result
Before exposure	PASSED
Last two hours of exposure	PASSED
After recovery	PASSED

 Table 51. Results for Damp Heat test.

3.4.3 Test equipment

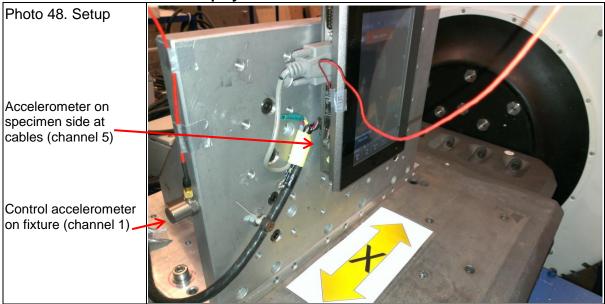
Description	Supplier	Model	Tag no.
Temperature and Climatic Test Chamber H3	Vötsch	VC 7060	17624
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	14306
Powersupply DC 0-15V 7A , 0-30V 4A	HP	E3632A	15761
Multimeter (functional check)	Hewlett Packard	34401A	13184
Multimeter (functional check)	Hewlett Packard	34401A	13191
Multimeter (functional check)	Hewlett Packard	34401A	13202
Multimeter (functional check)	Tektronix	TX3	15655

Table 52: Test equipment for Damp Heat.

94 (124)

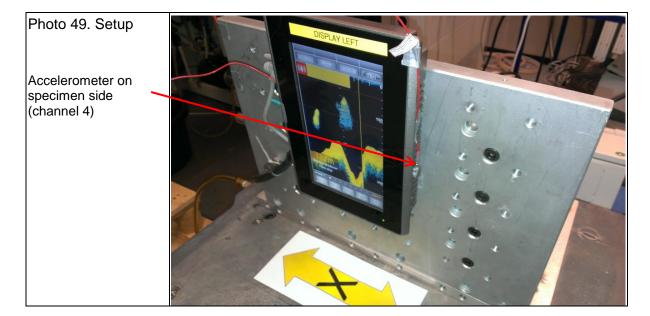
3.5 Vibration

3.5.1 Vibration - Display Unit


Test specimen	Diaplay Lipit	
Test specimen	Display Unit	
Test specification	IEC 60945:2002 Section 8.7	
Test method	IEC 60068-2-6:2007 test Fc	
Severity	2 Hz to 13.2 Hz – amplitude ±1 mm	
	13.2 Hz to 100 Hz – amplitude ±0.7 g	
Duration, sweep	0.5 octave per minute	
Duration, endurance	120 minutes	
Comments	Test sequence: X, Y, Z	
Date of test	2015-01-15, 2015-01-19	
Test personnel	Stig Larsen	

Sections below show, for each axis, the test setup and result of the resonance search. The graphs from resonance search contain the vibration profile, acceleration measured by control accelerometer, and the amplification factor for vibration measured on test specimen.

The test specimen was mounted on angle fixture using 4 screws attaching to the threaded holes on the back panel of the test specimen (VESA standard 75 x 75 mm hole pattern). Test specimen was mounted with display in portrait mode, in order to match the orientation of the content of the display.


Summary of vibration test results are found in section 3.5.5.

3.5.1.1 X-axis vibration – Display Unit

šP

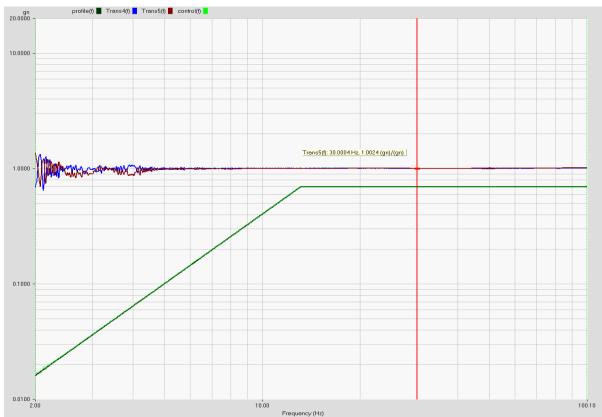
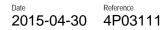


Figure 25. X-axis resonance search. Amplification plot for channel 4 + 5.



3.5.1.2 Y-axis vibration – Display Unit

Photo 50. Setup	DISPLAY LEFT
Accelerometer on specimen front (channel 5)	
Photo 51. Setup	Y
Accelerometer on specimen back (channel 4)	
Control accelerometer on fixture (channel 1)	

Page 97 (124)

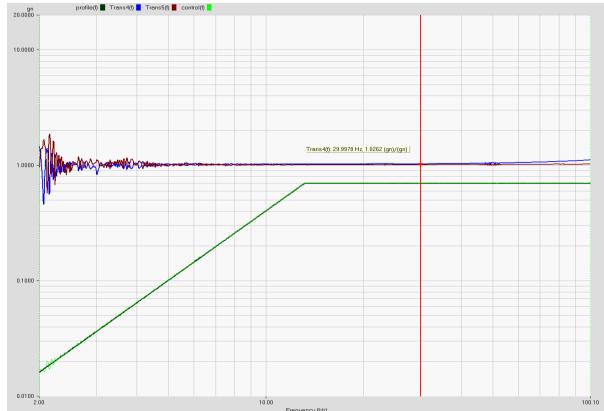
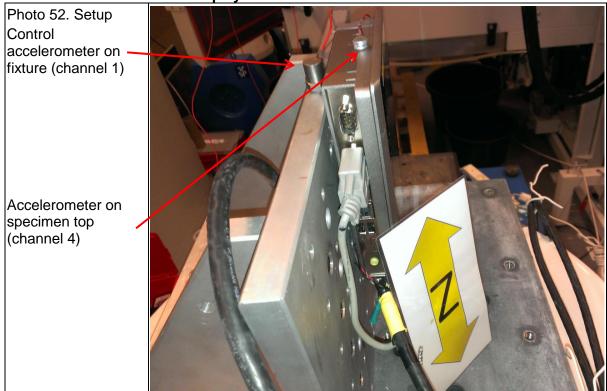
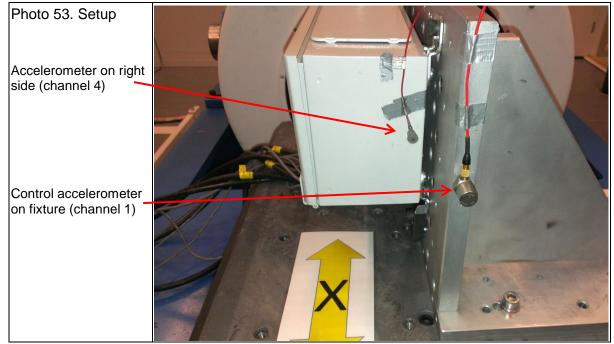



Figure 26. Y-axis resonance search. Amplification plot for channel 4 + 5.

3.5.1.3 Z-axis vibration – Display Unit

Frequency (Hz) Figure 27. Z-axis resonance search. Amplification plot for channel 4 (blue) on Display Unit.

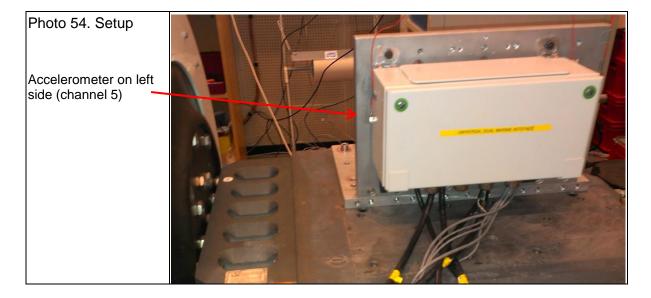

3.5.2 Vibration - Interface Unit

Interface Unit	
IEC 60945:2002 Section 8.7	
IEC 60068-2-6:2007 test Fc	
2 Hz to 13.2 Hz – amplitude ±1 mm	
13.2 Hz to 100 Hz – amplitude ±0.7 g	
0.5 octave per minute	
120 minutes	
Test sequence: Y, X, Z	
2015-01-15; 2015-01-16	
Stig Larsen	

Sections below show, for each axis, the test setup and result of the resonance search. The graphs from resonance search contain the vibration profile, acceleration measured by control accelerometer, and the amplification factor for vibration measured on test specimen.

The test specimen was mounted on angle fixture through the 4 brackets supplied for the enclosure.

Summary of vibration test results are found in section 3.5.5.


3.5.2.1 X-axis vibration – Interface Unit

ŠP

 Date
 Reference
 Page

 2015-04-30
 4P03111
 100 (124)

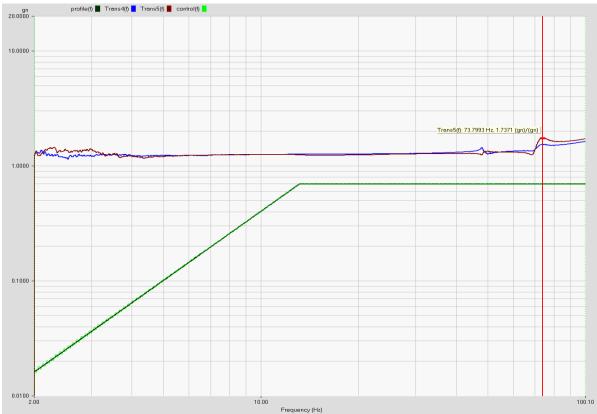
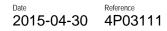


Figure 28. X-axis resonance search. Amplification plot for channel 4.



Date Reference 4P03111

Page 101 (124)

3.5.2.2 Y-axis vibration – Interface Unit

Photo 55. Setup	
Cantral	
Control	
accelerometer on	
fixture (channel 1)	
Accelerometer on	
back at right side (channel 4)	
Photo 56. Setup Accelerometer on	
back at left side (channel 5)	

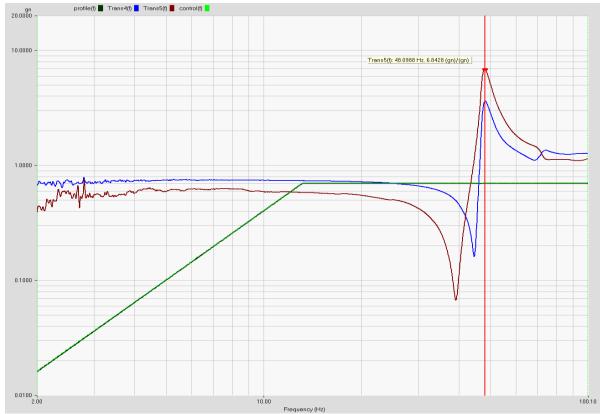
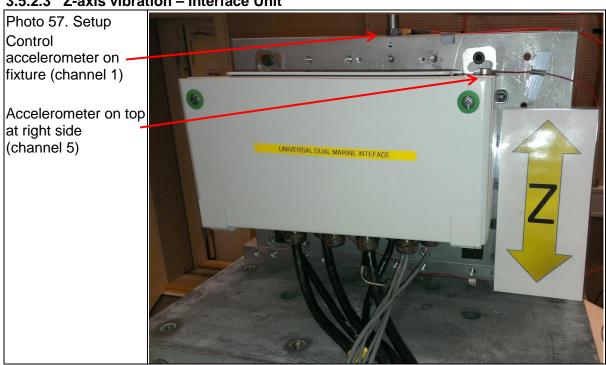
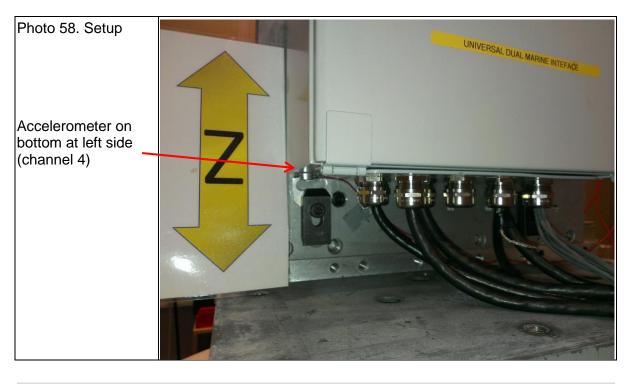
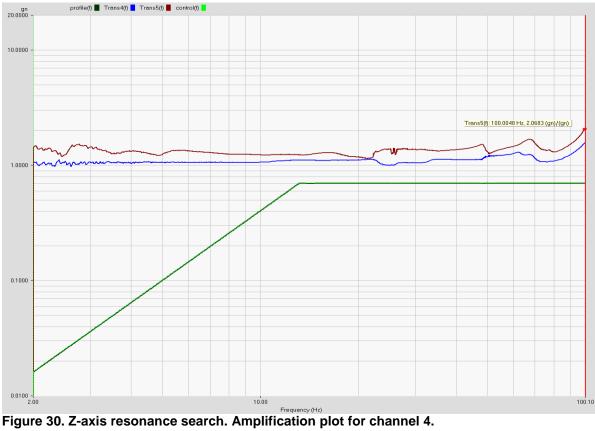



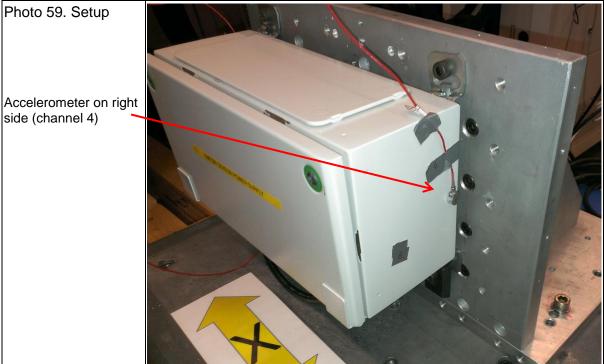
Figure 29. Y-axis resonance search. Amplification plot for channel 4.


3.5.2.3 Z-axis vibration – Interface Unit



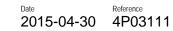
Date Reference 4P03111

3.5.3 Vibration - Power Supply Unit


Test specimen	Display Unit, Interface Unit, Power Supply Unit, Sensor unit
Test specification	IEC 60945:2002 Section 8.7
Test method	IEC 60068-2-6:2007 test Fc
Severity	2 Hz to 13.2 Hz – amplitude \pm 1 mm 13.2 Hz to 100 Hz – amplitude \pm 0.7 g
Duration, sweep	0.5 octave per minute
Duration, endurance	120 minutes
Comments	Test sequence: Y, X, Z
Date of test	2015-01-14; 2015-01-15; 2015-01-19
Test personnel	Stig Larsen

Sections below show, for each axis, the test setup and result of the resonance search. The graphs from resonance search contain the vibration profile, acceleration measured by control accelerometer, and the amplification factor for vibration measured on test specimen.

The test specimen was mounted on angle fixture through the 4 brackets supplied for the enclosure.

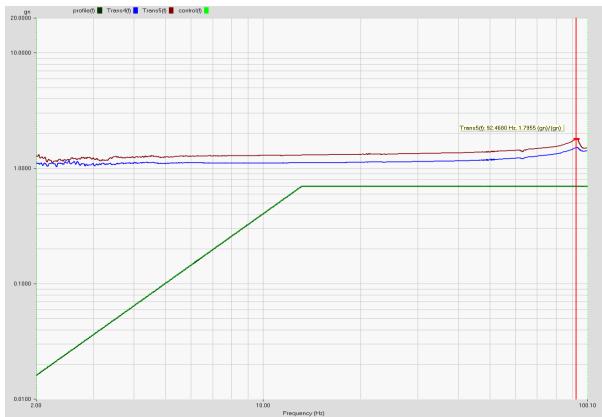

Summary of vibration test results are found in section 3.5.5.

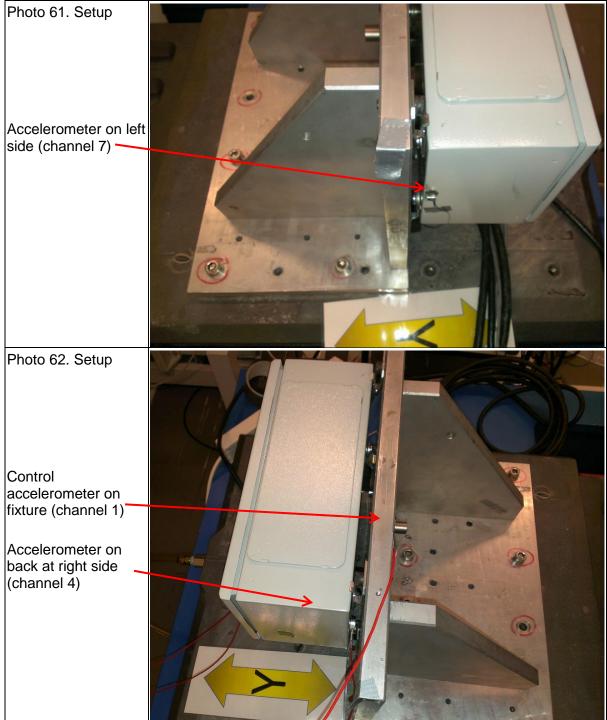
3.5.3.1 X-axis vibration – Power Supply Unit

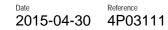
ŠP

Page 105 (124)

Photo 60. Setup	
Accelerometer on left	
side (channel 5)	
Control accelerometer	
on fixture (channel 1)	
	The second secon



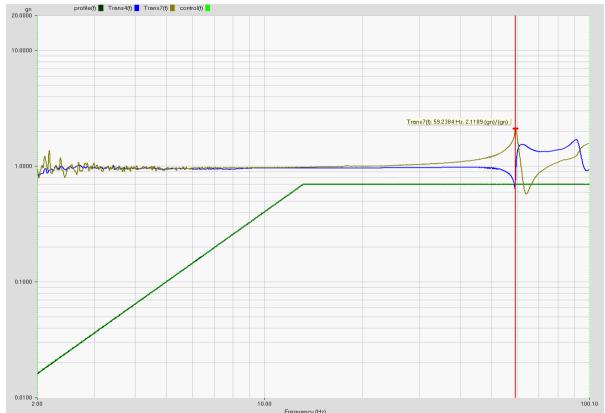
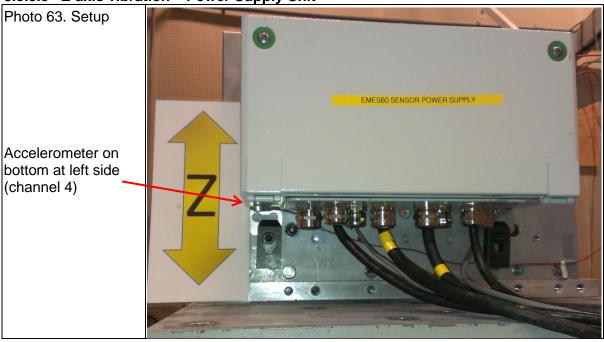

Figure 31. X-axis resonance search. Amplification plot for channel 4 + 5.

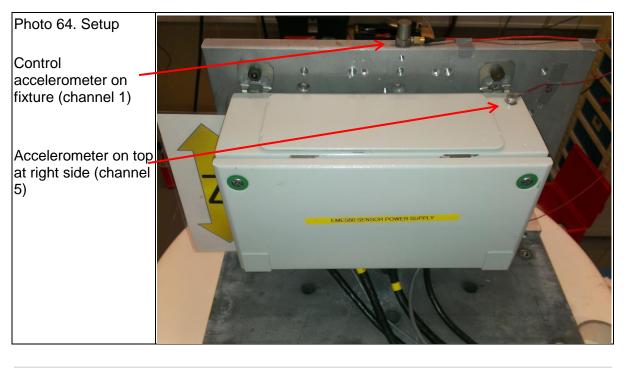

Date Reference 4P03111

Page 106 (124)

3.5.3.2 Y-axis vibration – Power Supply Unit

Page 107 (124)


Figure 32. Y-axis resonance search. Amplification plot for channel 4.

3.5.3.3 Z-axis vibration – Power Supply Unit

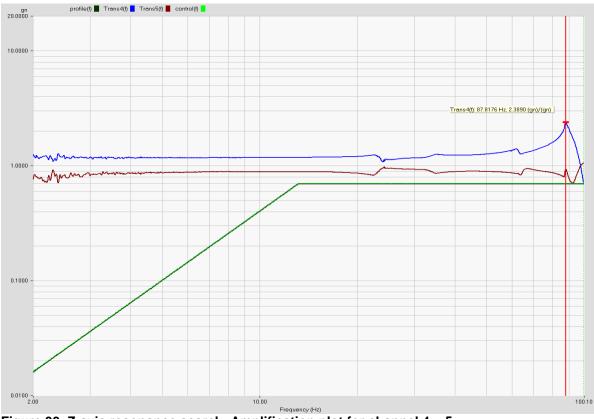
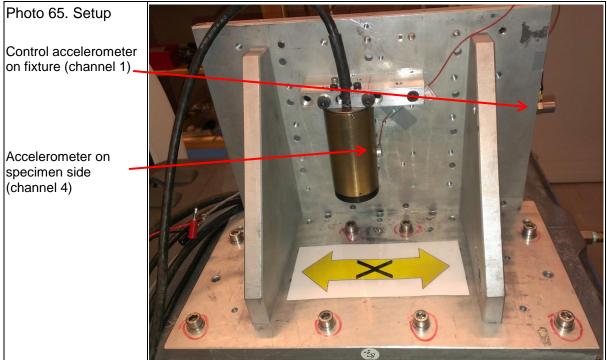
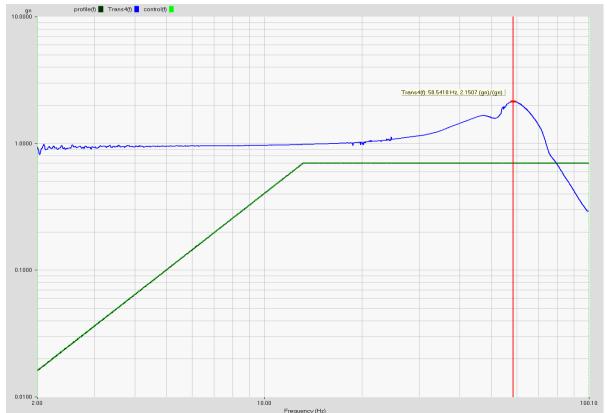


Figure 33. Z-axis resonance search. Amplification plot for channel 4 + 5.


3.5.4 Vibration - Sensor Unit

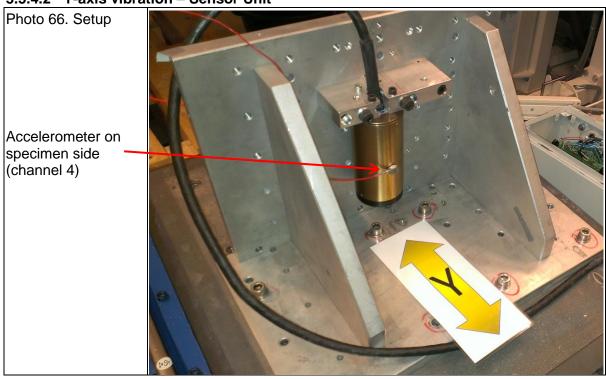
Test specimen	Display Unit, Interface Unit, Power Supply Unit, Sensor unit	
Test specification	IEC 60945:2002 Section 8.7	
Test method	IEC 60068-2-6:2007 test Fc	
Severity	2 Hz to 13.2 Hz – amplitude ± 1 mm 13.2 Hz to 100 Hz – amplitude ± 0.7 g	
Duration, sweep	0.5 octave per minute	
Duration, endurance	120 minutes	
Comments	Test sequence: X, Y, Z	
Date of test	2014-12-22; 2014-12-23; 2015-01-19	
Test personnel	Stig Larsen	

Sections below show, for each axis, the test setup and result of the resonance search. The graphs from resonance search contain the vibration profile, acceleration measured by control accelerometer, and the amplification factor for vibration measured on test specimen.


Test specimen was fixed to vibrator using threaded holes next to the cable.

Summary of vibration test results are found in section 3.5.5.

3.5.4.1 X-axis vibration – Sensor Unit



Date Reference 4P03111

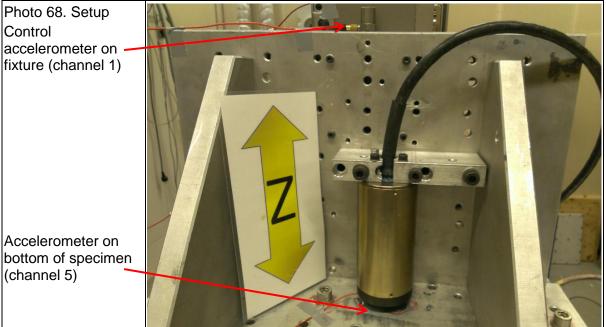
Page 110 (124)

Figure 34. X-axis resonance search. Amplification plot for channel 4.

3.5.4.2 Y-axis vibration – Sensor Unit

Date Reference 4P03111 Page 111 (124)

Photo 67. Setup		
Control accelerometer on fixture (channel 1)		
gn profile(f) 📕 Trans4(f) 📕	control(f)	
	Image: Second	
	Trans4(<u>)</u> , 72,6796 Hz, 2,5332 (gn)	/(gn)
1.0000		
0.1000 -		
0.0100 -		
	Prequency (Hz) nance search. Amplification plot for channel 4.	100.10


Figure 35. Y-axis resonance search. Amplification plot for channel 4.

 Date
 Reference
 Page

 2015-04-30
 4P03111
 112 (124)

3.5.4.3 Z-axis vibration - Sensor Unit

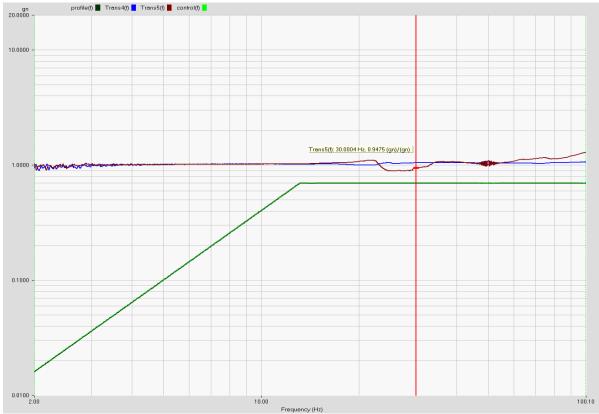


Figure 36. Z-axis resonance search. Amplification plot for channel 5 (brown) on Sensor Unit.

Page 113 (124)

3.5.5 Summary of Vibration test results

No change in actual operating state or stored data was observed. The test specimens were operational and functional during and after the test.

Test parameters and results for the individual test specimens are found in the tables below.

	Resonance frequency	Measured amplification factor	Test parameter for endurance test	Result
X-axis	No resonance	-	2 hours at 30 Hz	PASSED
Y-axis	No resonance	-	2 hours at 30 Hz	PASSED
Z-axis	No resonance	-	2 hours at 30 Hz	PASSED

Table 53. Vibration test summary, Display Unit

	Resonance frequency	Measured amplification factor	Test parameter for endurance test	Result
X-axis	73.8 Hz	1.7 g _n /g _n	2 hours at 73.8 Hz	PASSED
Y-axis	48.1 Hz	6.8 g _n /g _n	2 hours at 48.1 Hz	PASSED
Z-axis	> 100 Hz	2.1 g _n /g _n at 100 Hz	2 hours at 100 Hz	PASSED

 Table 54. Vibration test summary, Interface Unit

	Resonance frequency	Measured amplification factor	Test parameter for endurance test	Result
X-axis	92.5 Hz	1.8 g _n /g _n	2 hours at 92.5 Hz	PASSED
Y-axis	59.2 Hz	2.1 g _n /g _n	2 hours at 59.2 Hz	PASSED
Z-axis	87.8 Hz	2.4 g _n /g _n	2 hours at 87.8 Hz	PASSED

Table 55. Vibration test summary, Power Supply Unit

	Resonance frequency	Measured amplification factor	Test parameter for endurance test	Result
X-axis	58.5 Hz	2.2 g _n /g _n	2 hours at 58.5 Hz	PASSED
Y-axis	72.7 Hz	2.5 g _n /g _n	2 hours at 72.7 Hz	PASSED
Z-axis	No resonance	-	2 hours at 30 Hz	PASSED

Table 56. Vibration test summary, Sensor Unit

3.5.6 Test equipment for Vibration test

Description	Supplier	Model	Tag no.
Dactron, Shaker Control System	LDS Test & Meas.	LAS 200	900489
Accelerometer B&K 2166452 (channel 1)	Bruel&Kjaer	4399	50005
Accelerometer 12064 (channel 2)	Endevco	7251A-100	50007
Accelerometer DW34 (channel 4)	Endevco	7250A-10	17376
Accelerometer DW35 (channel 5)	Endevco	7250A-10	17377
Accelerometer DW36 (channel 6)	Endevco	7250A-10	17375
Accelerometer 8534 (channel 7)	Wilcoxon Research	TM212S	50008
Accelerometer 8535 (channel 8)	Wilcoxon Research	TM212S	50009
Isotron power supply	Endevco	Isotron 2793	18221
Shaker power amplifier	Gearing & Watson	DSA4-20K	17144
Electrodynamic shaker	Gearing & Watson	V2634	17145
Shaker head expander	Gearing & Watson	HE-S18	17149

 Table 57. Test equipment for Vibration test.

šΡ

4 SUPPLEMENTARY TESTS

4.1 Compass safe distance

4.1.1 Compass safe distance – Display Unit

Test specimen	Display Unit
Test specification	IEC 60945:2002, section 11.2
Test method	IEC 61000-4-8:2009
Comments	Tested at SP Borås
Temp / Humidity	22°C / 30%
Date of measurements	2014-12-09
Test personnel	Bengt Andersson

4.1.1.1 Test setup

The test of the compass safe distance was performed on each unit of the EUT. During the test the position of the which gives the most significant compass error position was selected. The safe distance was measured from the closest boundary of the test object to the Nano Tesla probe.

The magnetic normalization is performed in the magnetic main axle of the EUT. The DC magnetization field was 80 A/m with an stabilizing 50 Hz AC magnetic field of 1.43 kA/m.

Rounding up of the measured safe distance is made to the nearest + 5 cm according to the standard.

Maximum allowed compass deviation		
Standard compass	Steering, standby steering and	
Standard compass	emergency compass	
5.4° corresponding 94 nT magnetic flux	18° corresponding 313 nT magnetic flux	
density	density	

 Table 58. Maximum allowed compass deviation.

The measurement procedure for each EUT unit are as the following:

- 1. Measurement of unpowered EUT in the magnetic condition it was received.
- 2. Measurement after magnetic normalizing with the EUT unpowered.
- 3. Measurement of the EUT in powered condition and in normal working mode

Page 115 (124)

Photo 69. Magnetization in Helmholtz coil.

4.1.1.2 Test results

Photo 70. Maximum deviation at virgin, after magnetization and in normal operation mode.

Condition of test object	Standard compass (5.4°) [cm]	Steering, standard steering and emergency compass (18°) [cm]
Unpowered as received	36	22
After magnetization, unpowered	58	34
In powered condition (energized)	54	31

Table 59. Measurements for compass safe distance test.

Results	Standard compass (5.4°) [cm]	Steering, standard steering and emergency compass (18°) [cm]
Minimum compass safe distances after rounding up to nearest 5 cm	60 ± 5	35 ± 5

Table 60. Results for compass safe distance test.

4.1.2 Compass safe distance – Interface Unit

Test specimen	Interface Unit	
Test specification	IEC 60945:2002, section 11.2	
Test method	IEC 61000-4-8:2009	
Comments	Tested at SP Borås	
Temp / Humidity	22°C / 30%	
Date of measurements	2014-12-09	
Test personnel	Bengt Andersson	

4.1.2.1 Test setup

The test of the compass safe distance was performed on each unit of the EUT. During the test the position of the which gives the most significant compass error position was selected. The safe distance was measured from the closest boundary of the test object to the Nano Tesla probe.

The magnetic normalization is performed in the magnetic main axle of the EUT. The DC magnetization field was 80 A/m with an stabilizing 50 Hz AC magnetic field of 1.43 kA/m.

Rounding up of the measured safe distance is made to the nearest + 5 cm according to the standard.

Maximum allowed compass deviation		
Steering, standby steering and emergency compass		
18° corresponding 313 nT magnetic flux density		

Table 61. Maximum allowed compass deviation.

The measurement procedure for each EUT unit are as the following:

- 4. Measurement of unpowered EUT in the magnetic condition it was received.
- 5. Measurement after magnetic normalizing with the EUT unpowered.
- 6. Measurement of the EUT in powered condition and in normal working mode

Photo 71. Magnetization in Helmholtz coil. (Photo of Power Supply Unit)

4.1.2.2 Test results

Photo 72. Maximum deviation at virgin, after magnetization and in normal operation mode.

Condition of test object	Standard compass (5.4°) [cm]	Steering, standard steering and emergency compass (18°) [cm]
Unpowered as received	73	26
After magnetization, unpowered	114	71
In powered condition (energized)	112	72

Table 62. Measurements for compass safe distance test.

Results	Standard compass (5.4°) [cm]	Steering, standard steering and emergency compass (18°) [cm]
Minimum compass safe distances after rounding up to nearest 5 cm	115 ± 15	75 ± 5

Table 63. Results for compass safe distance test.

4.1.3 Compass safe distance – Power Supply Unit Test specimen Power Supply Unit Test specification IEC 60945:2002 section 11.2

Test specimen	Power Supply Unit	
Test specification	IEC 60945:2002, section 11.2	
Test method	IEC 61000-4-8:2009	
Comments	Tested at SP Borås	
Temp / Humidity	22°C / 30%	
Date of measurements	2014-12-09	
Test personnel	Bengt Andersson	

4.1.3.1 Test setup

The test of the compass safe distance was performed on each unit of the EUT. During the test the position of the which gives the most significant compass error position was selected. The safe distance was measured from the closest boundary of the test object to the Nano Tesla probe.

The magnetic normalization is performed in the magnetic main axle of the EUT. The DC magnetization field was 80 A/m with an stabilizing 50 Hz AC magnetic field of 1.43 kA/m.

Rounding up of the measured safe distance is made to the nearest + 5 cm according to the standard.

Maximum allowed compass deviation		
Standard compass Steering, standby steer emergency compa		
5.4° corresponding 94 nT magnetic flux density 18° corresponding 313 nT magnetic flu density		

 Table 64. Maximum allowed compass deviation.

The measurement procedure for each EUT unit are as the following:

- 7. Measurement of unpowered EUT in the magnetic condition it was received.
- 8. Measurement after magnetic normalizing with the EUT unpowered.
- 9. Measurement of the EUT in powered condition and in normal working mode

Page 121 (124)

Photo 73. Magnetization in Helmholtz coil.

4.1.3.2 Test results

Photo 74. Maximum deviation at virgin, after magnetization and in normal operation mode.

Condition of test object	Standard compass (5.4°) [cm]	Steering, standard steering and emergency compass (18°) [cm]
Unpowered as received	53	26
After magnetization, unpowered	111	69
In powered condition (energized)	115	67

Table 65. Measurements for compass safe distance test.

Results	Standard compass (5.4°) [cm]	Steering, standard steering and emergency compass (18°) [cm]
Minimum compass safe distances after rounding up to nearest 5 cm	115 ± 10	70 ± 5

Table 66. Results for compass safe distance test.

4.1.4 Test equipment

Measurement equipment	SP number
Test site Edison	504 114
Alpha lab Milligauss meter	901 494
Hand held compass for magnetic vector analysis	-
Helmholtz coil	901 506
EM Test Netwave	600 681
Software netwave control v5.1.2.0	-
Temperature and humidity meter Testo 625	504 117

Table 67. Test equipment for compass safe distance test.

šΡ

4.2 Protection against accidental access to dangerous voltages			
Test specimenDisplay Unit, Interface Unit, Power Supply Unit, Sensor Unit			
Test specification	IEC 60945:2002, section 12.1		
Test method	IEC 60529:2001		
Test finger	Joined test finger: diameter: 12 mm, length: 80 mm		
Comments	None		
Date of measurements	2015-02-04		
Test personnel	David Busk		

4.2.1 Test setup

According to IEC 60529, table 1, first characteristic numeral 2: protected against access to hazardous parts with a finger.

The test is carried out by inserting the test finger through any openings of the enclosure of the test specimen.

4.2.2 Test results

The enclosure of the test specimen has no openings greater than Ø12 mm. Thus it is evident that the test finger cannot penetrate the enclosure and get access to dangerous voltages.

Test finger	Result
Ø12 mm, 80 mm length	PASSED

Table 68. Test results for protection against accidental access to dangerous voltages.

4.2.3 Test equipment

Description	Supplier	Model	Tag no.
Jointed test finger	Shen Zhen Autostrong Ins. co., LTD	AUTO-B	50053
Table CO. Test survivement for unstration susingt assidental second to demonstrate unltance			

Table 69. Test equipment for protection against accidental access to dangerous voltages.

5 MEASURING UNCERTAINTIES

Compliancy evaluation is based on a shared risk principle with respect to the measurement uncertainty.

5.1 EMC

EMC tests	Frequency [MHz]	Polarization	Expanded Uncertainty [dB] (k=2)
Radiated emission	30 - 200	Vertical	4.73
	200 - 3000	Vertical	4.97
	30 - 200	Horizontal	4.72
	200 - 3000	Horizontal	5.08
Radiated emission (magnetic loop antenna)	0.15 - 30		3.60
Conducted emission	0.01 - 30		3.44
Conducted Immunity			2.90
Radiated Immunity			1.92
Electrostatic discharge	Ipeak, ±10 % I at 30 ns, ±30 % I at 60 ns, ±30 %		
Surges, common and differential mode	Voltage Uopen circuit, ±10 %		
	Wave shape, ±	20 %	
	Current Uat 50 ohm, ±20 %		
	Source impedance 2 Ohm, ±20 %		
Electrical fast transients/burst	Voltage Uopen circuit, ±10 %		
	Voltage Uat 50	ohm, ±10 %	
	Wave shape 5/	50 ns, ±20 %	
	Source impeda	nce Zq, ±20 %	•

5.2 Climatic test

Uncertainty, temperature:	
Fluctuation, temporal, in centre of working space:	± 0.5 K
Spatial:	± 2.0 K
Ucertainty, humidity:	± 2.3%RH

5.3 Mechanical tests

Uncertainty in acceleration measurement was \pm 3.9%. Uncertainty in frequency measurement 5-100 Hz was \pm 0.5 Hz. Uncertainty in frequency measurement >100 Hz was \pm 0.5%. Measuring uncertainty is evident from SP-METHOD 1606, rev.7.

5.4 Supplementary tests

5.4.1 Compass safe distance

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor k=2 (95% level of confidence). The measurement uncertainties can be found in the table below:

Standard	Method	Uncertainty
ISO 964/IEC 61000-4-8	Distance measurement	± 15 cm
ISO 964/IEC 61000-4-8	Magnetic DC field	Reading ±20 nT

Appendix 1

Page 1 (10)

Appendix 1

Dual Marine Interface Test conditions provided by clientDocument name:Dual Marine InterfaceDocument last modified:2015-03-22Document author:Leonid BoldyrevNumber of pages:9

šΡ

Dual Marine Interface

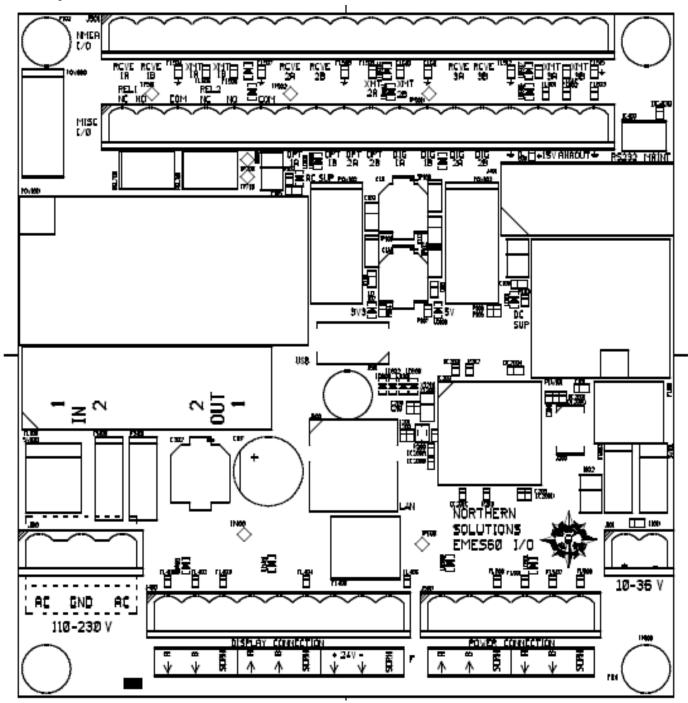

Revision 22032015

Table of Contents

PCB Layout
Display
Power supply 4
Auxiliary equipment
Connections
Verification
Schematic diagram 4
DIG1A/B, DIG2A/B
Auxiliary equipment
Connections
Verification
Schematic diagram
Relays REL1/REL2 6
Auxiliary equipment
Auxiliary equipment
Connections
Connections
Connections
Connections
Connections 6 Verification 6 Schematic diagram 6 Optocoupler outputs 7 Auxiliary equipment 7
Connections 6 Verification 6 Schematic diagram 6 Optocoupler outputs 7 Auxiliary equipment 7 Connections 7
Connections 6 Verification 6 Schematic diagram 6 Optocoupler outputs 7 Auxiliary equipment 7 Connections 7 Verification 7 Verification 7
Connections 6 Verification 6 Schematic diagram 6 Optocoupler outputs 7 Auxiliary equipment 7 Connections 7 Verification 7 Schematic diagram 7 Schematic mean 7 Optocoupler outputs 7 Auxiliary equipment 7 Connections 7 Verification 7 Schematic diagram 7
Connections6Verification6Schematic diagram6Optocoupler outputs7Auxiliary equipment7Connections7Verification7Schematic diagram7Analog output (programmable between 0-10V/4-20mA)8

Schematic diagram	8
IEC61162-1/2 comptaible input/output	9
Connections	9
Verification	9
Schematic diagram	9

PCB Layout

Display

Connect the display units by the display cables to terminals "Display connection"

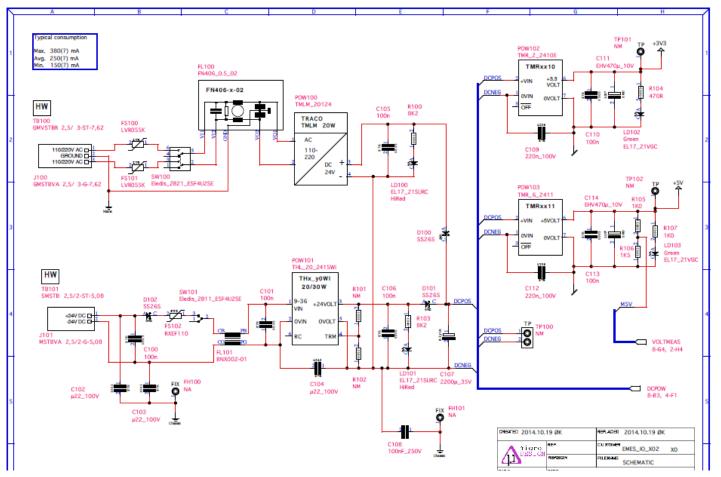
Power supply

EMES60 Dual Interface Unit consists of 2 <u>totally identical and independent</u> Interface PCBs. EMES Interface has 24VDC and 110/220VAC power inputs on each PCB.

Auxiliary equipment

24VDC linear power supply, 2 channels, Max current 1A@24V each

Connections


Connect two 3-wires cable to terminals 110/220V AC and ground terminal on both boards. Observe the ground lead. Connect this cable to the mains.

Connect two 2-wires cable to terminals +24VDC (red wire) and -24VDC (black wire). Observe the ground lead. Connect this cable to the lab power supply: red banana plug to plus 24, black banana plug to minus. All cables are 3m long.

Verification

Observation

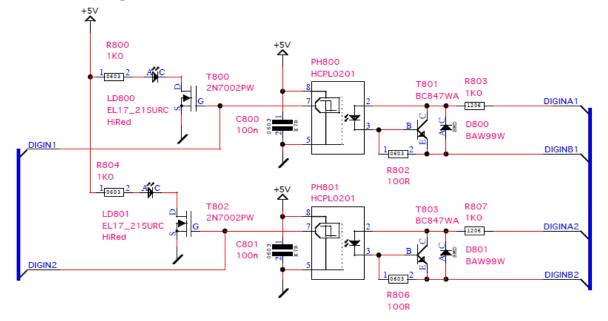
The Interface board and display must start normally; refer to the verification rules below.

DIG1A/B, DIG2A/B

Auxiliary equipment

5VDC linear power supply (Power5VDC)

Connections


Connect the 2-wires cable to DIG1A (red wire) and DIG1B (black wire) input terminals. Connect Red banana plug to plus, black banana plug to minus of the 5VDC power supply. Cable length: 10m or 3m, depending on the test requirements.

Verification

Method: observation

State1: Power5VDC off LD800 (red) off LD300 (green) off LD301 (green) off LD302 (green) on LD303 (red) on State2: Power5VDC on LD800 (red) on LD300 (green) off LD301 (green) on

LD301 (green) on LD302 (green) off LD303 (red) off

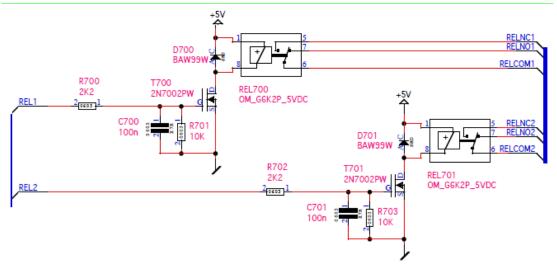
Relays REL1/REL2

EMES60 has 2 identical electromechanical relays (potential free) on each Interface PCB, indicated as REL1NC/REL1NO/REL1COM and REL2NC/REL2NO/REL2COM. Totally -4 relays in the entire system.

Auxiliary equipment

Multimeter in continuity test mode

Connections


Connect the 3-wires cable to REL1NC (red) /REL1NO (black) /REL1COM (transparent) Cable length: 10m or 3m, depending on the test requirements. Attach red multimeter probe to transparent wire During the verification: attach black multimeter probe alternatively to red and black wire – to read the status of the relay contacts NC and NO

Verification

Multimeter readouts

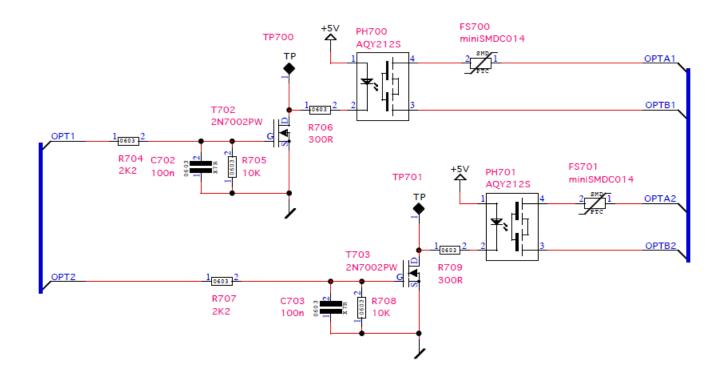
State1: Interface board is powered, Power5VDC off REL1NC (red wire) -> REL1COM (transparent wire) = disconnected REL1NO (black wire) -> REL1COM (transparent wire) = connected

State2: Interface board is powered, Power5VDC on REL1NC (red wire) -> REL1COM (transparent wire) = connected REL1NO (black wire) -> REL1COM (transparent wire) = disconnected

Optocoupler outputs

Auxiliary equipment

Multimeter in Voltmeter mode


Connections

Connect the 2-wires test cable to OPT1A (red wire)/OPT1B (black wire) output terminals. Attach short piece of wire between terminal +15V and OPT1A. Attach short piece of wire between terminal ground and OPT1B. Test cable length: 10m or 3m, depending on the test requirements. Attach red wire to multimeter plus probe, black wire to minus probe.

Verification

State1: Interface board is powered, Power5VDC off Voltmeter readout: Red wire (OPT1A) -> Black wire (OPT1B) 15V

State2: Interface board is powered, Power5VDC on Voltmeter readout: Red wire (OPT1A) -> Black wire (OPT1B) 0V

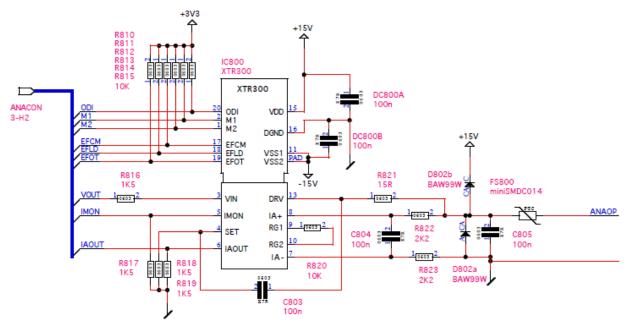
Analog output (programmable between 0-10V/4-20mA)

EMES60 has one analog output on each Interface PCB, indicated as ANAOUT. Totally the entire system has 2 outputs.

Auxiliary equipment

Multimeter

Connections


Attach the red wire (with crocodile clip) to the ANAOUT terminal. Attach the black wire to the ground terminal.

Connect the positive multimeter probe to the red wire, negative probe – to the black wire.

Verification

State1: Interface board is powered, Power5VDC off Multimeter is in voltage mode. The readout is 5V

State2: Interface board is powered, Power5VDC on Multimeter is in current mode. The readout is 16mA

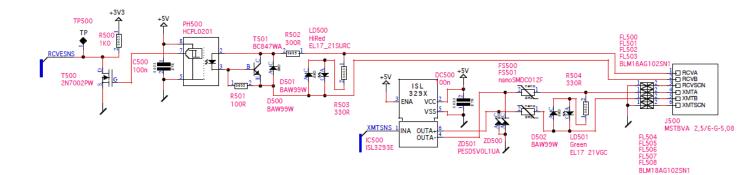
IEC61162-1/2 comptaible input/output

EMES60 has 5 <u>totally identical</u> IEC61162-1/2 compatible serial COM lines on each Interface board. For each Interface PCB:

1 line dedictaed to communication between the display and the Interface unit

1 line dedictaed to communication between the sensor and the Interface unit

3 lines dedictaed to communication between the Interface unit and external equipment.


Totally the entire EMES60 system has 10 such input/outputs.

Connections

During the test the sensor and displays will be connected to the Interface PCBs. The test setup will provide serial communication between all units.

Verification

It will be possible to monitor the messages coming from the sensor to the display unit by observing the information displayed on the Display Unit. Continuous update of the echosounding echogram (left side) and speed data (right side) will indicate normal operation of all interfaces (Sensor Unit ->Interface Unit -> Display Unit)

Appendix 2

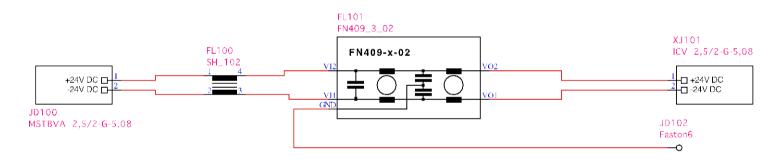
Page

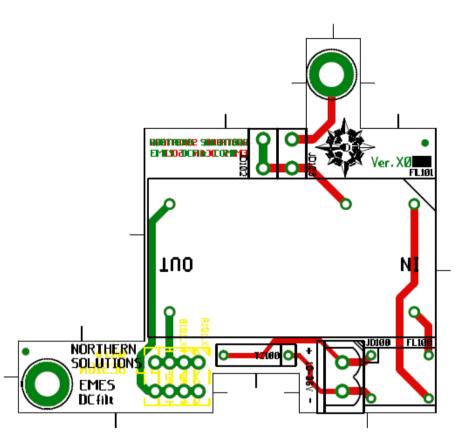
1 (3)

Appendix 2

Supplemental info for Interface and Power Supply Units provided by clientDocument name:EMC ModificationsDocument last modified:2015-04-28Document author:Leonid BoldyrevNumber of pages:2

To comply with the EMC requirements, the following changes were made on the DUTs during the tests


Test	Date	Interface Unit	Power supply unit
Radiated emission	2014-11-25	No change	NEC/TOKIN SH_102 filter on DC Power
	(start of		
	testing)		
Conducted	2015-04-28	Schaffner Type FN409_3_02 on DC	NEC/TOKIN SH_102 filter removed from DC
emission	(end of	Power	power.
	testing)		Schaffner Type FN409_3_02 inserted on DC
			power.
			(Only tested with Schaffner in the final)


The above described modifications will be implemented in the production units in the following way:

• Interface and Power supply units

Two filters (ref specifications below) will be mounted on a Daughter Board, EMES_DCFilt, fitted on top of the EMES_IO board and EMES_POW_DIR board. This daughter board plugs into the DC input terminal of EMES_IO J101 with a terminal on the bottom side, XJ101.

On top of the Daughter Board, there is a new terminal, JD100, for the DC supply. There is also a Faston terminal, JD102 to connect System Ground.

FL100 is a NEC/TOKIN SH_102 Common Mode Filter necessary to properly control Radiated Noise.

 $\underline{http://www.nec-tokin.com/english/guide/dc/dc-sh-e.pdf}$

FL101 is a Schaffner Type FN409_3_02, required to reduce Conducted Noise to a satisfactory level.

http://schaffner.com/en/product-storage/datasheets/fn-409.html

The EMES_IO and EMES_POW_DIR Boards will be revised and re-approved at a later stage with similar components on-board.

For Northern Solutions AS,

NORTHERN

Leonid Boldyrev, general manager