Kinematics Practice Problem 2a Solutions:

Determining Muzzle Velocity

$\mathrm{S}_{\mathrm{y}}=1.68 \mathrm{~m}$ (as measured)
$S_{x}=4.15 \mathrm{~m}$ (as measured)
$t=\sqrt{\frac{S_{y}}{.5 a}}=\sqrt{\frac{1.68}{(.5)(9.8)}}=\sqrt{\frac{1.68}{4.9}}=\sqrt{.343}=.587 \mathrm{sec}$
$V_{x}=\frac{S_{x}}{t}=\frac{4.15}{.587}=7.070 \mathrm{~m} / \mathrm{sec}=V_{\text {muzzle }}$

Predicting range of angled shot based on known \mathbf{V}_{m}

OBJECTIVE: Predict S_{x} given known $V_{\text {muzzle }}$

1. Proposition	
$\text { 2. } \begin{aligned} V_{x} & =(\cos \theta)(H)=(\cos 25)(7.070) \\ & =(.906)(7.070)=6.405 \mathrm{~m} / \mathrm{sec} \end{aligned}$	$\text { 3. } \begin{aligned} V_{y} & =(\sin \theta)(H)=(\sin 25)(7.070) \\ & =(.423)(7.070)=2.991 \mathrm{~m} / \mathrm{sec} \end{aligned}$
4. t_{1} $t_{1}=\frac{V_{f}-V_{i}}{a}=\frac{0-2.991}{a-9.8}=.305 \mathrm{se}$	$\begin{aligned} & \text { 5. } \mathrm{S}_{y 1} \\ & \begin{aligned} S_{y 1}= & \frac{V_{f}^{2}-V_{i}^{2}}{2 a}=\frac{\left(0^{0}\right)-\left(2.991^{2}\right)}{2(-9.8)} \\ & =\frac{-8.946}{-19.6}=.456 \mathrm{~m} \end{aligned} \\ & \begin{aligned} S_{y} \text { totol } & = \\ & S_{y 1}+S_{y 2} \\ & =(.456)+(1.72)=2.176 \mathrm{~m} \end{aligned} \end{aligned}$
6. $\mathrm{T}_{2}=\sqrt{\frac{S_{y \text { total }}}{.5 a}}=\sqrt{\frac{2.176}{.5(9.8)}}=\sqrt{\frac{2.176}{4.9}}=\sqrt{.444}=.666$	

