Oxford Cambridge and RSA

GCE

Chemistry A

Unit H033/02: Chemistry in depth
Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument
A	Incorrect response response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	

SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Benefit of doubt not given
NBOD	Noted but no credit given
SEEN	Ignore

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Question			Answer	Marks	Guidance
1	(a)	(i)	$\mathrm{Na}(\mathrm{~g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$ \checkmark species (in a correct equation) state symbols (mark separately)	2	ALLOW Na(g) - $\mathrm{e}^{-} \rightarrow \mathrm{Na}^{+}(\mathrm{g})$ IGNORE (g) for electron but CON any other state
1	(a)	(ii)	electrons (being removed) from same shell number of protons/nuclear charge increases AND electrons more strongly attracted/held more tightly \checkmark	2	ALLOW same/similar shielding Note the AND for MP2 (both statements required for this mark) If 'electron' is not specifically mentioned but 'same shell' and 'increasing protons AND greater attraction' given then award 1 mark
1	(b)		$\mathrm{Ra}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ra}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \checkmark$	1	all state symbols are required for this mark
1	(c)		$\mathrm{XO}_{2} \mathrm{OR} \mathrm{GeO}$ Si forms SiO_{2} OR X/Ge has 4 electrons in outer shell OR X/Ge will have an oxidation state of $(+) 4 \checkmark$	2	MP2 can be answered as a comparison of X/Ge with Si OR as a statement about X/Ge ALLOW for reason 'X/Ge/it has the same number of electrons in the outer shell as Si' IGNORE X/Ge and Si are in the same Group and so have similar reactions

Question		Answer	Marks	Guidance
$\mathbf{1}$	(e)	amount $\mathrm{BaCO}_{3}=(0.493 / 197.2)=0.0025 \mathrm{~mol}$ volume $\mathrm{CO}_{2}=(0.0025 \times 24000)=60.0\left(\mathrm{~cm}^{3}\right) \checkmark$	ALLOW 2 or more sf The answer alone scores the mark - the working need not be shown.	
			Total	$\mathbf{1 4}$

Question		Answer	Marks	Guidance
2	(a)		2	Skeletal formula and name are marked separately IGNORE wrong dashes, commas IGNORE ambiguous attachments unless clearly through H atom, e.g. -HO is a CON Initial numbers (in a bracket) are not required but any other initial number is a CON Other number is required.
2	(b)	bond breaking/fission is endothermic/absorbs energy AND bond making/fusion is exothermic/releases energy (in combustion) more energy is (always) released than is absorbed \checkmark ORA 'the energy released in forming (product) bonds is greater than the energy absorbed in breaking (reactant) bonds' ORA scores both marks	2	Statement about bond breaking AND making required for MP1 MP2 requires a comparison of energy to be made IGNORE a simple reference to number of bonds. Note that although the QP states that 'you do not need to refer to specific bonds', IF the correct type AND number of bonds are referred to in the context of MP1 and MP2, these marks may be awarded
2	(c)	$\begin{aligned} & \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+6 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2} 5 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} 3 \mathrm{H}_{2} \mathrm{O} \quad \checkmark \text { (for BOTH equations) } \end{aligned}$	1	Both equations are required for the MP ALLOW $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ as the question does not specify the type of formula and is testing the balancing.
2	(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=\mathbf{- 7 1 6 1}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks If the answer on the answer line is incorrect then marks can be awarded for the following stages, allowing for ECF (obviously it does not matter whether q or n is calculated first, and the formulae and working need not be shown for the marks to be awarded) $\mathrm{q}=\mathrm{cm} \Delta \mathrm{T}$ $q=(4.18 \times 500 \times 16.0)=33440(\mathrm{~J}) \checkmark$ n (biofuel) $=(1.00 / 214)=4.67(29) \times 10^{-3} \mathrm{~mol} \checkmark$ $\Delta_{\mathrm{c}} H=-\left(1 / 4.67(29) \times 10^{-3} \times 33440\right) / 1000$ $\Delta_{\mathrm{c}} H=-7161(7156)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	3	$\Delta_{c} H$ must have the negative sign by itself scores 2 marks) ALLOW 3 (7160), 4 (7156) or more sf, up to calculator value, 7156.16 , as sf is not being tested in this question. If the answer on the answer line is incorrect then marks can be awarded for the following stages - Correct calculation of q - Correct calculation of n - Correct evaluation of $\Delta_{\mathrm{c}} H$ using q and n. ALLOW ECF

Question			Answer	Marks	Guidance
2	(e)		move can closer to flame AND less heat/energy is 'lost'/transferred to the air/more heat/energy is transferred to the water OR use copper/metal can (instead of glass beaker) AND copper is a better thermal conductor (than glass) OR put a draft shield around apparatus AND less heat/energy is 'lost'/transferred to the air/more heat/energy is transferred to the water	1	The explanation must be consistent with the suggested modification. DO NOT ALLOW 'use a bomb calorimeter' as this is not a 'simple' modification requested in the question. ALLOW 'insulate the beaker' AND 'less heat/energy lost (from water)'
2	(f)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=+339\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks If the answer on the answer line is incorrect then marks can be awarded for the following stages, allowing for ECF. Alternatively, see Guidance column. $\Delta \mathrm{H}=\Sigma$ bonds broken $-\Sigma$ bonds formed	3	bond energy must have positive sign (339 without + sign scores 2 marks) Alternatively, if the answer on the answer line is incorrect then marks can be awarded for the following stages, allowing for ECF. - Identity and number of bonds broken and $+2450+(\mathrm{C}-\mathrm{O})\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)$ - Identity and number of bonds formed and $3466\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ - $-677=+2450+(\mathrm{C}-\mathrm{O})-3466$ $(\mathrm{C}-\mathrm{O})=+339\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ A possible mistake will be to overlook the $\mathrm{O}=\mathrm{O}$. If so, bond breaking will be +1703 , and with ECF, (C-O) $=+1086$ (2 marks)

Quest	Answer	Marks	Guidance
(g)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Learners identify A (both formulae) and C correctly giving full reasoning from IR AND identify D and E correctly, giving full reasoning from the MS. The description and explanations are well-developed, clear and logically structured Level 2 (3-4 marks) Learners identify A as a primary alcohol, C as a carboxylic acid, D as a (carboxylic) acid and E as ester with some spectroscopic evidence OR Learners carry out full analysis of either A and C or D and E with full evidence. The description and explanations show a sound development, clarity and order Level 1 (1-2 marks) Learners identify A,C,D and E as alcohol, acid, acid, ester OR Learners identify two of A,C,D or E with some spectroscopic evidence. The description and explanations show a partial development, some clarity and order 0 marks No response or no response worthy of credit	6	Indicative Scientific points include: Identification of C and A - Infrared spectrum of compound \mathbf{C} has absorptions at $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$ and $2980 \mathrm{~cm}^{-1}$ broad (O-H). - \mathbf{C} is a carboxylic acid. - \mathbf{A} is a primary alcohol, - A can be either ... $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ /displayed formula or $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH} /$ displayed formula (ignore names). - The corresponding formulae of \mathbf{C} are ... $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ or $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ (ignore names). The formulae for A and C must be structural, displayed or skeletal but not molecular as this is given in the question for A Identification of \mathbf{D} and \mathbf{E} - $\quad \mathbf{E}$ is an (butyl) ester (acid + alcohol) (formed from a carboxylic acid (D) reacting with the 4-carbon alcohol (A)). - M_{r} value of E is 116 - This is largest m / z peak on MS (AW). - \mathbf{D} is $\mathrm{CH}_{3} \mathrm{COOH}$ 57 (butyl) $=59, \mathrm{CH}_{3} \mathrm{COO}$). - \mathbf{E} is $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ names). Provided A, C and D are structural, displayed or skeletal, and full IR and MS evidence is given, E may be given as $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ for L3 (5 marks).
	Total	18	

Question			Answer	Marks	Guidance
3	(a)	(i)	$\mathrm{Br}_{2}(+\mathrm{h} v) \rightarrow 2 \mathrm{Br}(\bullet) \checkmark$	1	ALLOW $\mathrm{Br}_{2}(+\mathrm{h} v) \rightarrow \mathrm{Br}(\bullet)+\mathrm{Br}(\bullet)$ or simply $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br}$
3	(a)	(ii)	$\begin{aligned} & \overbrace{3}^{\bullet}(+) \mathrm{Br}-\mathrm{Br} \rightarrow \mathrm{CH}_{3}-\mathrm{Br}+\mathrm{Br} \bullet \\ & \checkmark \text { correct equation } \checkmark \text { 'half curly arrows' } \end{aligned}$	2	'full curly arrows' is a CON ALLOW a variety of half arrows (see Textbook P207 Fig 3 for example)
3	(a)	(iii)	(this method - methanol and hydrogen bromide is preferable, not methane and bromine) bromomethane is the only (organic) product in the reaction of methanol and hydrogen bromide OR in the reaction of methane and bromine further substitution/bromination may occur	1	The mark is awarded for the reason, although the choice must be consistent with the reason. ALLOW reference to any or all of the correctly named products, (dibromo-, tribromo-, or tetrabromo-)methane for 'further substitution/bromination'. IGNORE references to radicals without relating to further substitution. IGNORE any references to safety
3	(b)		The student is correct that the $\mathrm{C}-\mathrm{Cl}$ bond is more polar than the $\mathrm{C}-\mathrm{Br}$ bond \checkmark (However,) bromomethane is a bigger molecule/has more electrons than chloromethane \checkmark Therefore bromomethane has greater instantaneous dipoleinduced dipole (id-id) intermolecular bonds (imb) \checkmark Increase in id-id is greater than decrease in pd-pd \checkmark	4	ALLOW 'Cl is more electronegative than Br' for MP1 MP1 is for recognition of the students' correct statement. MP2 and MP3 are for situation in bromomethane and its effect on id-id imb (ORA for chloromethane). ALLOW ' Br has more electrons than Cl ' or ' Br is bigger than Cl' for MP2. MP4 is for recognition of greater role of id-id than pdpd for bromomethane (ORA for chloromethane).
3	(c)	(i)		1	'half curly arrow' is a CON
3	(c)	(ii)	nucleophilic substitution \checkmark	1	Both words required for the mark
3	(c)	(iii)	amine	1	

Question			Answer	Marks	Guidance
3	(d)	(i)	cloudiness/suspension/precipitation AND forming first/in shortest time with iodobutane (and last with chlorobutane)	1	IGNORE references to colours of the cloudiness/suspension/precipitation ALLOW 'a yellow ppt would form before a white ppt' DO NOT ALLOW 'fastest/quickest' for 'first/in shortest time' as this repeats 'fastest' in question
3	(d)	(ii)	ethanol/it is a solvent (for the haloalkane and silver nitrate) \checkmark	1	ALLOW the haloalkane and silver nitrate OR reactants can mix if solvent is not explicitly stated.
3	(d)	(iii)	the C-Cl bond in the most polar ORA \checkmark the $C-I$ bond is the weakest ORA \checkmark (since the iodoalkane is the most reactive) bond enthalpy is more important (than bond polarity) ORA \checkmark	3	MP1 and MP2 are for statements about bond polarity/bond enthalpy MP1 requires reference to bond polarity not just to electronegativity of Cl MP3 is for the statement of the relative importance of the two
3	(e)		increases the electronic energy \checkmark	1	ALLOW 'increases the energy of the electrons (in the molecule)'
3	(f)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=\mathbf{+ 2 8 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ (correct to $\mathbf{3} \mathbf{~ s f}$) award $\mathbf{3}$ marks $\begin{aligned} & \mathrm{E}=6.63 \times 10^{-34} \times 7.14 \times 10^{14} \times 6.02 \times 10^{23} \div 1000 \checkmark \checkmark \\ & \text { bond enthalpy }=+285(\mathrm{~kJ} \mathrm{~mol} \\ & \text { AND answer correct to } 3 \text { s.f. } \end{aligned}$	3	Award 1 out of first two marks if one of the following is missing: $\mathrm{h}, N_{\mathrm{A}}$ or 1000. Award last mark if an identifiable expression is evaluated to 3 sf (with a plus sign) 285 (without positive sign) scores 2
3	(g)	(i)	0.000021% ozone 0.000021 parts ozone per 100 parts of air \therefore in 1 part of air there will be 0.00000021 parts ozone \therefore in 1000000 parts of air there will be 0.21 parts ozone 0.21 (ppm)	1	The answer alone, 0.21 (ppm), scores the mark - the working need not be shown.

Question			$\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2} \checkmark$ Answer	Marks	Guidance
3	(g)	(ii)		1	ALLOW $\mathrm{O}_{3}+\mathrm{O} \rightarrow \mathrm{O}_{2}+\mathrm{O}_{2}$
3	(g)	(iii)	Br is not used up in the reaction/ Br is reformed (in equation $3.2) / \mathrm{Br}$ is (chemically) unchanged	1	ALLOW 'it' for 'Br' IGNORE reference to 'speeding up the reaction'
3	(g)	(iv)	(it causes) photochemical smog/breathing problems/respiratory problems/lung damage/toxic	1	
			Total	24	

Question			Answer				Marks	Guidance
4	(a)		Element	Initial oxidation state	Final oxidation state	\checkmark all 4 oxidati on states	1	+/-MUST be included AND in front of number.
			Mn	+4	+2			
			I	-1	0			
4	(b)		(it) gains ele	ons \checkmark			1	IGNORE reference to number of electrons gained
4	(c)	(i)	white precip	e(ppt)/solid/suspe	\checkmark		1	both colour AND reference to solid are required for the mark but DO NOT ALLOW 'white AND ppt' the white must refer explicitly to the ppt
4	(c)	(ii)	the concent and so a pr OR the water may which would OR the water may which would	on of chloride ions itate would not fo contain iodide (ion ve a yellow precip contain bromide (ve a cream precip	be too low \checkmark		2	ALLOW 'small amount' for concentration ALLOW a general comment like 'there may be other ions/salts/compounds present that would give a precipitate of a different colour' for 1 mark Other ions that would give precipitates include: chromate - red hydroxide/sulfide - brown/black The reference must be to the ion, i.e. halide and not halogen. The second mark depends on the first mark.

Question			Answer	Marks	Guidance
4	(d)	(i)	$5 p^{6} \checkmark$	1	IGNORE $5 s^{2} 5 p^{6}$ or any other more detailed electron configurations
4	(d)	(ii)	add chlorine (water/solution) to (potassium) iodide (solution) \checkmark (the mixture/it) would turn brown	2	For MP2 the result must be the observation and not 'iodine would form'. ALLOW 'would turn blue/black IF starch has been added.
4	(d)	(iii)	$\mathrm{Cl}_{2}+2 \mathrm{l}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \checkmark$	1	IGNORE state symbols
4	(d)	(iv)	chlorine is smaller/has a smaller atomic radius/has fewer (electron) shells the electron gained is held more tightly \checkmark	2	ALLOW 'the outer shell (of electrons) is closer to the nucleus' for MP1 ALLOW 'the electron is more readily attracted (and retained)' IGNORE simply (electron) gained more easily as there must be some reference to attraction
4	(e)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 78 (\%) award 3 marks If the answer on the answer line is incorrect then marks can be awarded for the following stages, allowing for ECF (the working need not be shown for the marks to be awarded) $\begin{aligned} & \mathrm{n}\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{\left.2{ }^{2}\right)}=(28.40 / 1000 \times 0.200)\right. \\ & \mathrm{n}\left(\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}-\right)^{-}=5.68 \times 10^{-3}(\mathrm{~mol}) \\ & \mathrm{n}\left(\mathrm{I}_{2}\right)=\left(5.68 \times 10^{-3} / 2\right) \\ & \mathrm{n}\left(\mathrm{I}_{2}\right)=2.84 \times 10^{-3}(\mathrm{~mol}) \checkmark \\ & \mathrm{M}^{2}\left(\mathrm{l}_{2}\right)=(126.9 \times 2)=253.8 \\ & \left.\left.\mathrm{~m}\left(\mathrm{I}_{2}\right)=2.84 \times 10^{-3}\right) \times 253.8\right) \\ & \left.\mathrm{m}\left(\mathrm{I}_{2}\right)=0.72(0.72079) \mathrm{g} \mathrm{~g}^{2}\right) \\ & \% \text { purity }=(0.72 / 0.92 \times 100) \\ & \% \text { purity }=78(\%) \checkmark \end{aligned}$	3	ALLOW final answer to 2 or more sf (calculator answer is 78.34...) Alternatively, using moles, marks can be awarded for the following stages: $\begin{aligned} & \mathrm{n}\left(\mathrm{I}_{2}\right)=(0.92 / 253.8)=3.62 \times 10^{-3}(\mathrm{~mol}) \\ & \mathrm{n}\left(\mathrm{I}_{2}\right)=(28.40 / 1000 \times 0.200) / 2 \\ & 2.84 \times 10^{-3}(\mathrm{~mol}) \\ & \%=\left(2.84 \times 10^{-3} / 3.62 \times 10^{-3} \times 1000\right)=78(\%) \end{aligned}$
			Total	14	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

