Topographic Survey

Introduction

- Topography defined as the shape or configuration or relief or three-dimensional quality of a surface
- Topography maps are very useful for engineers when planning and locating a structure

Topographic Survey

Introduction

- U.S. Geological Survey (USGS) has developed maps for a large part of the US
- Napoleon Bonaparte received his first promotion because of ability to make and use maps

Topographic Survey

Contours

The most common method of representing the topography of an area is to use contour lines

A contour line is an imaginary level line that connects points of equal elevation

Topographic Survey

Contours

Imagine a hill that has its top sliced off with a really big knife

Topographic Survey

Contours

Topographic Survey

Contours

- The selection of the contour is important
- The contour interval should be small enough to give the desired topographic detail while remaining economic
- Usually every fifth contour line is shown in a heavy, wider line, this is called a index line

Topographic Survey

Contours

Topographic Survey

Contours

Topographic Survey

Characteristics of Contours

- Closely spaced contours indicate steep slopes
- Widely spaced contours indicate moderate slopes
- Contours should be labeled to the elevation value
- Contours are not shown going through buildings
- Contour line do not cross

Topographic Survey

Characteristics of Contours

- Contour lines do begin or end on the plan
- Depression and hill look the same; note the contour value to distinguish the terrain
- Important points can be further defined by including a "spot" elevation
- Contour lines tend to parallel each other on uniform slopes

Topographic Survey

Construction of Contours

- The first step in developing a contour map is measuring the elevations of a group of points
- It will be easier for us to establish a rectangular grid of points (marked with flags) and measure the elevation
- The location of the flag points can be established by taping and checked by pacing or the odometer

Topographic Survey

Construction of Contours

*

Topographic Survey

Once your contour grid is established, measure the elevation of each grid point

Topographic Survey 98 102 112 D. С 101 108 109 111

108

106

В

112 We want a contour map on 5 ft intervals

111

106

108

The grid is rectangular, the dimensions of the sides are 80 ft (north) and 100 ft (east)

Topographic Survey

Construction of Contours

- The basic method for estimating contour is applied to each grid cell individually
- Use linear interpolation to find the location of the desired contour interval
- Let consider the cell in the upper left-hand corner remember the contour interval is 5 ft

Topographic Survey Construction of Contours First see if a contour 102 interval exist between nodes of the grid cell; if 100 D. so, estimate where along the side the contour interval would be located 101 108 Apply simple linear interpolation to each side 105 to locate the contour interval

Topographic Survey

Let's look at the top edge of the grid cell

Topographic Survey

Let's look at the bottom edge of the grid cell

$$x = \frac{4(100)}{7} = 57ft \qquad 105 = \frac{7}{100}x + 101$$

Topographic Survey Let's look at the left edge of the grid cell 98 100 102 98 100 101 101 101 105 108 $a = slope = \frac{101 - 98}{80}$ b = intercept = 98 $c = \frac{2(80)}{3} = 53ft$ $c = \frac{3}{80}x + 98$

Topographic Survey

End of Topographic Surveying