Topographic Survey

Introduction

I Topography-defined as the shape or configuration or relief or three-dimensional quality of a surface

- Topography maps are very useful for engineers when planning and locating a structure

Topographic Survey

Contours

The most common method of representing the topography of an area is to use contour lines
\qquad

Topographic Survey

Contours

|| Contours that point up hill can indicate a valley or stream

Topographic Survey

Introduction

U.S. Geological Survey (USGS)
has developed maps for a
large part of the US
Napoleon Bonaparte received his first promotion because of ability to make and use maps

Topographic Survey

Contours

- Imagine a hill that has its top sliced off with a really big knife

Topographic Survey

Contours

\|. The selection of the contour is important

- The contour interval should be small enough to give the desired topographic detail while remaining economic
|l Usually every fifth contour line is shown in a heavy, wider line, this is called a index line

Topographic Survey

Contours

Topographic Survey

Topographic Survey

Characteristics of Contours

- Closely spaced contours indicate steep slopes
\|. Widely spaced contours indicate moderate slopes
I. Contours should be labeled to the elevation value
- Contours are not shown going through buildings
\| Contour line do not cross

Topographic Survey

Contours

Topographic Survey

Characteristics of Contours

|l Contour lines do begin or end on the plan

- Depression and hill look the same; note the contour value to distinguish the terrain
- Important points can be further defined by including a "spot" elevation
- Contour lines tend to parallel each other on uniform slopes

Topographic Survey

Construction of Contours

- The first step in developing a contour map is measuring the elevations of a group of points

II It will be easier for us to establish a rectangular grid of points (marked with flags) and measure the elevation

- The location of the flag points can be established by taping and checked by pacing or the odometer

Topographic Survey

Construction of Contours

Topographic Survey

Once your contour grid is established, measure the

- We want a contour map on 5 ft intervals
\|. The grid is rectangular, the dimensions of the sides are 80 ft (north) and 100 ft (east)

Topographic Survey

Topographic Survey

Construction of Contours

|l The basic method for estimating contour is applied to each grid cell individually

1. Use linear interpolation to find the location of the desired contour interval

- Let consider the cell in the upper left-hand corner remember the contour interval is 5 ft

Topographic Survey

Let's look at the top edge of the grid cell

Topographic Survey

Construction of Contours

Topographic Survey

Let's look at the bottom edge of the grid cell

Topographic Survey

1 Let's look at the left edge of the grid cell

Topographic Survey

Locate the contour intervals locations on the grid cell

Topographic Survey

- Let's look at the right edge of the grid cell

	$98 \quad 100$	102	105108	
			$\longleftarrow \times \longrightarrow$	
	D.	105		
100	105		$a=$ slope $=\underline{108-102}$	
		108		80
			$b=$ intercept $=102$	
			$105=\frac{6}{80} x+102$	

Topographic Survey

Repeating the linear interpolation for each of the remaining grid cell gives

Topographic Survey

End of Topographic Surveying

