

GCE

Chemistry A

Mark Scheme

Page 1 of 27

Q	Question		Answer	Marks	Guidance	
1	(a)		Because hydrocarbons have different boiling points ✓	1	ALLOW each fraction / component / substance / molecule / compound / fuel has a different boiling temperatures ALLOW condense at different temperatures ALLOW because van der Waals' forces differ with molecular size IGNORE references to volatility different strength of intermolecular forces is not sufficient	
	(b)		Any one from:	1	ASSUME 'they' or 'it' refers to biofuels	
			Bio-fuels produce less carbon dioxide (overall) OR petrol or diesel produce more carbon dioxide (overall) ✓		ALLOW bio-fuels are (more) carbon-neutral OR plants take up the carbon dioxide released during combustion ALLOW lower carbon footprint	
			Bio-fuels are renewable OR petrol and diesel are non-renewable ✓		ALLOW plants are a renewable resource / crude oil non-renewable resource / bio-diesel is more sustainable / diesel is not sustainable / petrol and diesel are made from a finite resource / petrol and diesel will run out / bio-fuels will not run out	
			Allows crude oil to be used to make other products OR petrochemicals (rather than petrol) OR Save crude oil OR no risk of large scale pollution from exploitation of crude oil		ALLOW decrease the need for fossil fuels	
			V		IGNORE can be used by diesel powered cars with or without any conversion	
	(c)	(i)		1	The answer must refer to carbon–carbon bonds or the carbon chain	
			Idea that carbon–carbon bonds can break anywhere ✓		ALLOW (carbon) chain can break anywhere Bonds can break anywhere is not sufficient	

Q	Question		Answer	Marks	Guidance	
1	(c)	(ii)	Correct identification of $C_2H_3^+$ for $m/z = 27 \checkmark$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW CHCH ₂ ⁺ DO NOT ALLOW C ₂ H ₃ (the positive charge is essential) OR CCH ₃ ⁺	
			Some indication to explain how the identity of propene was deduced OR further analysis of the mass spectrum ✓		ALLOW Molecular ion/M ⁺ /M is $m/z = 42$ OR $m/z = 15$ is CH ₃ ALLOW mass spectrum shows $M_r = 42$ ALLOW idea that alkane C ₁₂ H ₂₆ – C ₃ H ₈ can only give 3C ₃ H ₆	
			Correct identification of the alkene as C ₃ H ₆ OR propene ✓		ALLOW prop-1-ene An incorrect formula for the alkene in the equation will not contradict this answer	
			$C_{12}H_{26} \rightarrow C_3H_8 + 3C_3H_6 \checkmark$		ALLOW C ₃ H ₆ from its use in an equation even if the equation is wrong providing there has not been an attempt elsewhere to identify the alkene	
					ALLOW correct displayed OR structural OR skeletal OR molecular formulae in the equation	

Ques	tion	Answer	Marks	Guidance
Ques 1 (d)		React with bromine $\mathbf{OR} \ C_2H_4 + Br_2 \rightarrow C_2H_4Br_2 \checkmark$ React with hydrogen bromide $\mathbf{OR} \ C_2H_4 + HBr \rightarrow C_2H_5Br \checkmark$ React with steam \mathbf{OR} heat with water $\mathbf{OR} \ C_2H_4 + H_2O(g) \rightarrow C_2H_5OH \checkmark$	9	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW reactants even from incorrect equations ALLOW reactants or conditions over the arrow ALLOW Br ₂ mark from the mechanism even if the mechanism is incorrect IGNORE conditions unless they would lead to a different reaction with ethene IGNORE conditions unless they would lead to a different reaction with ethene ALLOW temperature range between 100–400 °C if quoted IGNORE reference to pressure IGNORE hydrolysis Hydration is not sufficient but DO NOT ALLOW hydrogenation
		acid (catalyst) ✓		ALLOW H ₂ SO ₄ OR H ₃ PO ₄ OR H ⁺ DO NOT ALLOW HC <i>I</i> , HBr etc. ALLOW two stage process e.g. react with HBr one mark followed by KOH(aq) one mark

Question	Answer	Marks	Guidance
	Electrophilic addition ✓		
	Curly arrow from double bond to attack Br ⁵⁺ of Br–Br and breaking of Br–Br bond ✓		Curly arrow must start from the double bond and not a carbon atom and go the Br ⁵⁺ ; other curly arrow must start from Br–Br bond. ALLOW attack of Br–Br if dipoles not shown DO NOT ALLOW attack of Br ⁵⁻
	Correct dipoles shown on Br ^{δ+} –Br ^{δ-} ✓		DO NOT ALLOW AMAGIN OF B.
			Dipole must be partial charge and not full charge DO NOT ALLOW any other partial charges eg on the double bond
	Correct carbonium / carbocation ion drawn ✓		Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) All atoms in the carbocation must be shown
	Curly arrow from Br [−] to the carbonium ion and correct product shown ✓		Br ⁻ curly arrow must come from one lone pair on Br ⁻ ion OR from minus sign on Br ⁻ ion Lone pair does not need to be shown on Br ⁻ ion
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ALLOW mechanism which goes via a cyclic bromonium ion instead of the carbocation SEE EXTRA ADVICE ABOUT CURLY ARROWS ON PAGE 30
	H H H H—C—C—H Br Br		

Page 5 of 27

Q	Question		Answer	Marks	Guidance
1	(e)		Correct shape ✓	3	IGNORE any name of shape given
			H C 120° H H		ALLOW 115–125° ALLOW even if it is the C–C–H shown on a diagram.
			120° ✓ Three areas of electron density repel each other ✓		ALLOW three or four electron pairs repel OR three or four bonds repel IGNORE does not have any lone pairs DO NOT ALLOW atoms repel / electrons repel DO NOT ALLOW has lone pair which repels more
	(f)	(i)	H_3C H $C \longrightarrow C$ H $CH_2CH_3 \checkmark$	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		(ii)	CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH ₃ and C ₂ H ₅ groups above or below chain ALLOW bond to ethyl and methyl group to any part of ethyl or methyl group IGNORE any brackets drawn ALLOW two or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) 'End bonds' MUST be shown and can be dotted IGNORE <i>n</i>
			Total	21	

Page 6 of 27

C	uesti	ion	Answer	Marks	Guidance	
2	(a)	(i)	$2C_2H_4 + O_2 \rightarrow 2C_2H_4O \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW correct multiples, including fractions, of this equation IGNORE state symbols DO NOT ALLOW [O]	
		(ii)	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW correct multiples of this equation IGNORE state symbols DO NOT ALLOW [O]	
	(b)	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Only one carbon atom needs to have the correct partial charge DO NOT ALLOW partial charges on hydrogen atoms	
		(ii)	Movement of an electron pair ✓	1	ALLOW movement of a lone pair OR movement of a bond ALLOW movement of two electrons	
		(iii)	Heterolytic ✓ Both electrons (in the bond) go to the same atom OR (bond breaks) to make a cation and (a lone pair on the oxygen atom) OR bond pair becomes a lone pair on oxygen ✓	2	MARK INDEPENDENTLY ALLOW one atom gets none of the bonded electrons DO NOT ALLOW both electrons go to a molecule DO NOT ALLOW makes a positive and a negative ion because in this example this is not true	
		(iv)	It donates a pair of electrons ✓	1	ALLOW donates a lone pair DO NOT ALLOW it donates electrons	
		(v)	idea that H ⁺ ion is used in step 1 AND made in step 4 ✓	1	ALLOW H ⁺ ion is used at the start AND made at the end IGNORE overall H ⁺ is not used up in the mechanism	

C	Question		Answer	Marks	Guidance
2	(b)	(vi)	H — C — H — C — OCH3	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) eg CH ₂ OHCH ₂ OCH ₃ ALLOW vertical 'bond' to any part of the OH or OCH ₃ group DO NOT ALLOW formula with horizontal –HO OR OH–DO NOT ALLOW formula with horizontal –CH ₃ O OR OCH ₃ –
	(c)		Ethane-1,2-diol has more OH groups (than ethanol) ✓	2	ALLOW has more hydroxyl groups OR has more hydroxy groups OR has more alcohol groups Ethane-1,2-diol has two OH groups is NOT sufficient but ALLOW ethane-1,2-diol has two OH groups and ethanol has one DO NOT ALLOW it has hydroxide (ions)
			Stronger hydrogen bonding (between ethane-1,2-diol molecules) ✓		ALLOW more hydrogen bonds (between ethane-1,2-diol molecules) IGNORE hydrogen bonds with water
	(d)		One ester linkage drawn despite the rest of the structure ✓ Correct structure for example CH ₃ COOCH ₂ CH ₂ OOCCH ₃ OR HOHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW ester shown as all the atoms OR as -COOC- OR -CH ₂ OOC- OR -CH ₂ OCOC- IGNORE molecular formula
			✓		

Q	uesti	on	Answer	Marks	Guidance
2	(e)	on	Any two from: H H O O O O O O O O O O O O O O O O O	Marks 2	Mark incorrect answers first If one incorrect answer maximum of 1 mark If two incorrect answers award 0 marks ALLOW OH instead of -O—H ALLOW vertical 'bond' to any part of the OH DO NOT ALLOW formula with horizontal —HO OR OH— but ALLOW ECF if both displayed formulae are drawn this way ALLOW one mark if two correct structural OR skeletal formula OR mixture of the above (as long as unambiguous) are drawn
			H −O−C−−C −O −H ✓✓ Total	15	

Q	Question		Answer	Marks	Guidance	
3	(a)		(equilibrium position shifts) to the left ✓	2	Note: ALLOW suitable alternatives for 'to left', eg: towards CH ₄ or H ₂ O / towards reactants OR in backward direction OR in reverse direction OR decreases yield of CO or H ₂ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left'	
			(because there are) fewer moles (of gas) on the reactant side OR (there are) more moles (of gas) on product side ✓ This explanation mark is dependent on the correct shift of the equilibrium		ALLOW fewer molecules on reactant side OR smaller volume on the left hand side ALLOW ORA if specified IGNORE responses in terms of rate	
	(b)		(equilibrium position shifts) to the right ✓	2	Note: ALLOW suitable alternatives for 'to right', eg: towards CO or H ₂ / towards products OR in forward direction OR increases yield of CO or H ₂ /products OR decreases amount of CH ₄ or H ₂ O/reactants ALLOW 'favours the right', as alternative for 'shifts equilibrium to right'	
			(because forward) reaction is endothermic OR reverse reaction is exothermic ✓ This explanation mark is dependent on the correct shift of the equilibrium		ALLOW reaction takes in heat ALLOW reverse reaction gives out heat ALLOW ORA if specified IGNORE responses in terms of rate	
	(c)	(i)	Gives a high rate of reaction OR reaction is fast OR reasonable rate of reaction without shifting equilibrium too much to the left ✓	1	ALLOW if greater pressure used it increases safety risk ALLOW if greater pressure used it is more expensive ALLOW higher pressure will shift equilibrium position even more to the left It is a compromise on its own is not sufficient but ALLOW compromise between rate and yield OR between rate and safety	

Qu	uesti	on	Answer	Marks	Guidance
3	(c)	(ii)	y-axis label is '(fraction of or number of) molecules' AND x-axis label is 'energy' AND correct curve ✓	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Boltzmann distribution - must start at origin and must not end up at 0 on y-axis ie must not touch x-axis ALLOW particles OR moles as y-axis label IGNORE minor point of inflexion in the curve DO NOT ALLOW two curves DO NOT ALLOW atoms but credit atoms if used in a second marking point DO NOT ALLOW enthalpy for x-axis label
			More molecules with energy above activation energy with a catalyst OR more effective collisions OR more successful collisions ✓ (number of) molecules energy extra molecules with energy above E _a		ALLOW this mark from a labelled diagram more collisions per second is not sufficient

	uesti	on	Answer	Marks	Guidance
3				3	
3	(d)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 91.2 (%) award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			theoretical amount of hydrogen = 3.75 × 10 ⁷ (mol) ✓		IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc
			actual amount of hydrogen made = 3.42 x 10 ⁷ (mol) ✓		
			% = 91.2 √		Answer must have three significant figures ALLOW ECF from incorrect theoretical and actual amounts of hydrogen
					ALLOW answer that uses grams rather than tonnes where theoretical amount of hydrogen = 37.5 (mol) and actual amount of hydrogen = 34.2 (mol)
					ALLOW alternative approach based on the mass of hydrogen rather than the amount of hydrogen Theoretical amount of hydrogen = 3.75 x 10 ⁷ (mol) ✓ Theoretical mass of hydrogen made = 75 (tonnes) ✓ Percentage = 91.2 ✓
	(e)	(i)	CO + 2H ₂ → CH ₃ OH ✓	1	ALLOW correct multiples ALLOW CH ₄ O IGNORE state symbols
		(ii)	Any two from:	2	
			Carbon monoxide is toxic OR poisonous ✓		IGNORE harmful or dangerous
			Increases atom economy of the process OR gives 100% atom economy ✓		ALLOW uses a waste product OR CO is then a desired product OR CO is no longer a waste product OR reduces amount of waste product
			Methanol is a fuel ✓		ALLOW other uses of methanol eg petrol additive, solvent or organic feedstock

OLL.

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 14. Mark Scheme

Page 13 of 27

Question		on	Answer	Marks	Guidance
3	(f)		Unsaturated (vegetable) oils OR oils containing C=C bonds ✓	2	ALLOW unsaturated fats OR unsaturated lipids OR unsaturated ester ALLOW oils become more saturated IGNORE unsaturated compound DO NOT ALLOW unsaturated hydrocarbon
			(reacted with hydrogen) in the presence of a nickel catalyst		ALLOW Pt OR Pd
			Total	16	

C	Questi	on	Answer	Marks	Guidance
4	(a)	(i)		3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			2NH₃ added as product ✓		IGNORE state symbol ALLOW product mark even if product line above the reactant line
			Δ <i>H</i> labelled with product below reactant AND arrow downwards ✓		ALLOW -92 as a label for ΔH ALLOW this line even if it has a small gap at the top and bottom ie does not quite reach reactant or product line
			E _a labelled correctly AND above reactants ✓		The curve must be drawn for this marking point
			enthalpy $3H_2 + N_2$ ΔH $2NH_3$ progress of reaction		IGNORE arrows at both ends of activation energy line but DO NOT ALLOW arrow pointing down The E_a line must go to maximum (or near to the maximum) on the curve ALLOW if the line clearly shows an activation energy and is not an enthalpy change ALLOW this line even if it has a small gap at the top and bottom ie does not quite reach the maximum or reactant line
			progress of reaction		

· JLL

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 14. Mark Scheme

Page 15 of 27

Q	Question		on Answer		Guidance
4	(a)	(ii)	-46 (kJ mol ⁻¹) ✓	1	DO NOT ALLOW 46 with no sign
		(iii)	Any value between +1 to +249 (kJ mol ⁻¹) ✓	1	+ sign is not needed
		(iv)	+342 (kJ mol ⁻¹) ✓	1	+ sign is not needed
	(b)	(i)	$2CO + 2NO \rightarrow 2CO_2 + N_2 \checkmark$	1	ALLOW correct multiples

C	Question		Answer	Marks	Guidance
4	(b)	(ii)	CO and NO are adsorbed (onto surface) OR reactants are adsorbed (onto surface) ✓	3	ALLOW CO and NO stick onto surface OR CO and NO form weak attractions to the surface OR gases are adsorbed onto surface OR gases bond to surface NOT absorb but allow ecf for deabsorb later on
			weakening of bonds OR chemical reaction OR new bonds are made OR carbon dioxide and nitrogen are made ✓		ALLOW lowers activation energy IGNORE alternative pathway Requires less energy is not sufficient
			CO_2 and N_2 desorbs (from the surface) OR products desorbs (from the surface) \checkmark		ALLOW products leave (the surface) OR products diffuse away (from surface) OR weak attraction to surface is broken ALLOW deadsorb

Q	uesti	on	Answer	Marks	Guidance
4	(c)	(i)	Any two from: IR (spectroscopy) ✓ Mass spectrometry ✓ UV (spectroscopy) ✓ NMR ✓	2	ALLOW mass spec / MS / mass spectroscopy
			GC ✓		ALLOW atomic absorption / AAS IGNORE satellite imaging or thermal imaging
		(ii)	Any one from: Idea that pollution travels (across country) borders OR idea that all countries contribute towards pollution OR Cooperation means that scientists can share ideas OR scientists can warn governments of risk OR world-wide legislation can be introduced OR allows monitoring of pollution in different countries OR richer countries can help poorer countries introduce pollution controls OR One country cannot control pollution unless all countries do ✓	1	ALLOW some countries produce more pollution than others ALLOW so protocols can be developed
	(d)		Step 1 NO + O ₃ \rightarrow NO ₂ + O ₂ \checkmark Step 2 NO ₂ + O \rightarrow NO + O ₂ \checkmark overall O ₃ + O \rightarrow 2O ₂ \checkmark	3	

C	uesti	on	Answer	Marks	Guidance
4	(e)	(i)	Reaction gives NO OR reaction gives NO₂ OR reaction gives a mixture of oxides OR activation energy too high OR rate of reaction is too slow ✓	1	ALLOW makes a mixture of oxides/products ALLOW reaction cannot be carried out experimentally ALLOW reaction does not take place nitrogen and oxygen do not react together is not sufficient IGNORE heat loss to surroundings IGNORE reference to bond enthalpy being a mean value
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = +82 (kJ mol ⁻¹) award 2 marks IF answer = -82 (kJ mol ⁻¹) award 1 mark $\Delta H = 193 - 111 \checkmark$	2	
			= +82 √		ALLOW 82
					ALLOW one mark for -82 ALLOW one mark for +304 / -304
			Total	19	

Q	uesti	on	Answer	Marks	Guidance
5	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -162 (kJ mol ⁻¹) award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc
			Energy associated with bond breaking = 3354 OR $(2 \times 805) + (4 \times 436) \checkmark$ Energy associated with bond making = 3516 OR $(4 \times 415) + (4 \times 464) \checkmark$		IGNORE sign IGNORE sign
			Enthalpy change = −162 ✓		ALLOW ECF from wrong additions of energy associated with bond breaking and/or from bond making ALLOW two marks for (+)162, (+)6870, –6870 or (+)766 ALLOW one mark for –766
	(b)	(i)	Absorbs IR radiation ✓	2	IGNORE absorbs heat ALLOW IR re-radiated DO NOT ALLOW absorbs UV radiation DO NOT ALLOW blocks IR radiation
			Bonds vibrate ✓		ALLOW bonds stretch OR bonds bend IGNORE molecule vibrates/rotates DO NOT ALLOW bonds break

Q	uesti	on	Answer	Marks	Guidance
5	(b)	(ii)	Any two from:	2	
					DO NOT ALLOW reference to carbon being stored – the answer must either refer to carbon dioxide or not mention the name of the stored substance
			(liquid) injected deep into the oceans ✓		ALLOW store deep in the oceans OR on the sea-bed ✓ ALLOW stored deep under the sea DO NOT ALLOW dissolve CO₂ in the sea OR stored in ocean
			Stored in (old) geological formations OR stored underground in rocks OR stored in (old) mines OR stored in (old) oil wells ✓		ALLOW stored under the sea bed ALLOW pumped into oil wells to force last bit of oil out
			Stored by reaction with metal <u>oxides</u> OR reaction to form (solid) <u>carbonates</u> OR stored as a <u>carbonate</u> OR equation to show formation of metal carbonate ✓		IGNORE mineral storage

Q	uesti	on	Answer	Marks	Guidance
5	(c)	(i)		7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
					IGNORE dot for radical and any state symbols for all equations
			Homolytic ✓		
			$Br_2 \longrightarrow 2Br \checkmark$		
			Br + $C_2H_6 \longrightarrow HBr + C_2H_5 \checkmark$ $C_2H_5 + Br_2 \longrightarrow C_2H_5Br + Br \checkmark$		
					If more than one termination step is written they must all be correct to be awarded the mark DO NOT ALLOW termination steps with H
			Br + $C_2H_5 \longrightarrow C_2H_5Br$ OR Br + Br \longrightarrow Br ₂ OR C_2H_5 + $C_2H_5 \longrightarrow C_4H_{10}$		·
			Two names of steps linked to appropriate equations ✓ OR three names of steps linked to appropriate equations ✓ ✓		initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to equation involving two radicals:
					If no equations are given to link the names of the step then award one mark for mention of all three steps
					If halogen other than bromine do not give equation mark for initiation and only give one mark for all three terms linked to appropriate equations
					If hydrocarbons other than ethane are used DO NOT ALLOW any marks for the equations in the propagation steps

--

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 14. Mark Scheme

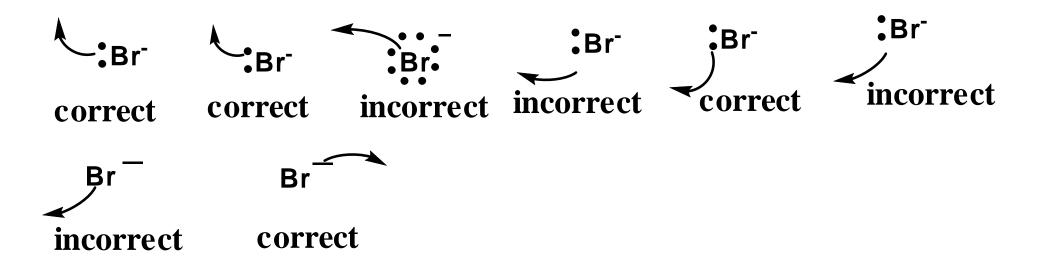
Page 22 of 27

Question		on	Answer		Guidance
5	(c)	(ii)	Any two from:	2	
			More than one C–H bond can be substituted OR multisubstitution can occur OR more than one substitution can happen ✓		ALLOW equations or examples of multi substitution
			Lots of termination steps ✓		ALLOW an equation to illustrate formation of other products eg butane ALLOW examples of other products that can be formed in termination steps eg bromobutane
			termination steps can give products that will also react with (bromine) radicals ✓		ALLOW examples of products eg butane reacting with bromine radicals to give bromobutane
			Total	16	

C	Question		Answer	Marks	Guidance	
6	(a)		1-bromopentane reacts faster OR 1-chloropentane reacts slower ✓	2	ALLOW takes more time to react ALLOW chloro compound reacts slower than bromine compound DO NOT ALLOW bromine reacts faster than chlorine	
			C–CI stronger bond (than C–Br bond) OR C–CI shorter bond (than C–Br bond) OR C–CI bond is harder to break OR needs more energy to break C–CI bond OR bond enthalpy of C–CI greater (than C–Br bond) ✓		ALLOW ORA Answer must refer to the C–C/bond or C–Br bonds	
	(b)	(i)	CH ₃ —CH ₂ —CH ₂ —I ✓	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) n.b. C ₂ H ₅ is unambiguous but C ₃ H ₇ is ambiguous	
			$\begin{array}{c} CH_{3} \longrightarrow CH_{2} \longrightarrow CH \longrightarrow CH_{3} \qquad \checkmark \\ & \downarrow \\ & \downarrow \\ & CH_{3} \longrightarrow C \longrightarrow I \qquad \checkmark \\ & \downarrow \\ & CH_{3} \longrightarrow C \longrightarrow CH_{2} \longrightarrow I \qquad \checkmark \\ & \downarrow \\ \\ $		IGNORE incorrect name Mark incorrect answers first of all. • One incorrect answers maximum 3 marks • Two incorrect answers maximum 2 marks • Three incorrect answers maximum 1 mark • Four incorrect answers scores 0 mark ALLOW as a slip one stick with no H on in a displayed formula	

· ULL

Cherry Hill Tuition A Level Chemistry OCR (A) Paper 14. Mark Scheme


Page 24 of 27

Question		on	Answer	Marks	Guidance
6 ((b)	(ii)	C ₄ H ₁₀ O ✓	1	IGNORE any structures drawn
					DO NOT ALLOW C ₄ H ₉ OH

C	uest	ion	Answer	Marks	Guidance
6	(b)	(iii)	infrared	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
					LOOK ON THE SPECTRUM for labeled absorbances which can be given credit
			1700–1730 cm ⁻¹ indicates carbonyl group ✓		ALLOW has a C=O bond because it has absorbance within range 1640–1750 cm ⁻¹
			broad 2900 cm ⁻¹ indicates O–H bond AND it is a carboxylic acid ✓		ALLOW 2900 cm ⁻¹ indicates O–H in carboxylic acid ALLOW has O–H bond in carboxylic aid because it has absorbance within range 2500–3300 cm ⁻¹ The presence of carboxylic acid can be anywhere in the text including the structure for D
			explanation mark B has a branched structure because of relationship to methylpropene OR C has a branched structure because of relationship to methylpropene OR C must be a primary alcohol because it is oxidised to a carboxylic acid OR a primary alcohol because it reacts with acidified dichromate to make a carboxylic acid OR C cannot be a tertiary alcohol because it is oxidised OR cannot be a tertiary alcohol because it does react with acidified dichromate		If two marking points from the explanation mark are given both must be correct

Question	Answer	Marks	Guidance
	CH_3		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
	CH ₃ C is CH ₃ —C —CH ₂ —OH ✓ H		IGNORE incorrect names for B, C and D Mark correct branched structures first of all.
	CH ₃ D is CH ₃ —C — COOH H		If there are no correct branched structures and C is CH ₃ CH ₂ CH ₂ CH ₂ OH then ALLOW one mark for CH ₃ CH ₂ CH ₂ COOH and one mark for CH ₃ CH ₂ CH ₂ CH ₂ I
	Total	13	

APPENDIX 1

