		.01, 22
1)		
Correct Answer		Mark
Α		1
2)		
Correct Answer		Mark
Α		1
3)		
Correct Answer		Mark
С	I	1
4)		
Correct Answer		Mark
В		1
5)		
Correct Answer		Mark
В	+	1
6)		
Correct Answer		Mark
В	+	1
7)	_	
		1ark
Correct Answer	ľ	чагк
В	1	l
8)		
Correct Answer	M	1ark
Α	1	
9)		
Correct Answer	M	1ark
D	1	
10)		
Correct Answer	М	lark
С	1	
D	1	
11)	_	

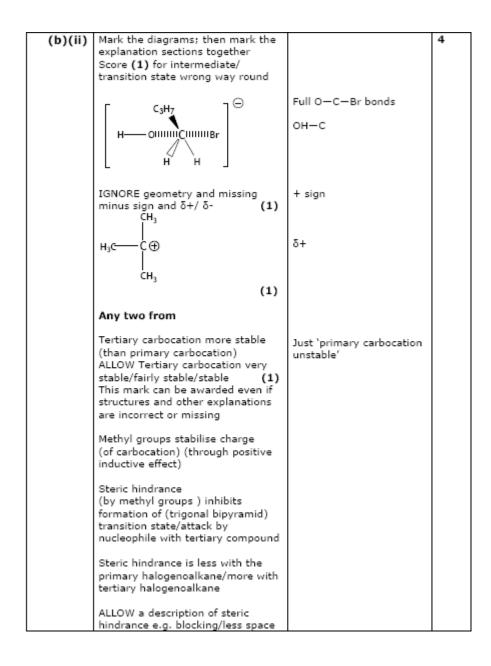
Correct Answer

D

Mark

Question Number	Acceptable Answers	Reject	Mark
(a)(i)	Throughout 20 (a): IGNORE sf except 1 sf (penalise once) correct answer with no working scores full marks mark consequentially IGNORE units unless incorrect		2
	$0.109 \times 27.35 \times 10^{-3}$ (1) = 2.98115×10^{-3} (mol) = $2.98 \times 10^{-3} / 0.00298$ (mol)	0.003	
	cq only on some concentration x some volume		

Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	Moles $I_2 = 0.5 \times \text{moles}$ thiosulfate = 0.5 x answer to (a)(i) = 1.490575 × 10 ⁻³ = 1.49 × 10 ⁻³ /0.00149(mol)		1


Question Number	Acceptable Answers	Reject	Mark
	Moles of Cl_2 = moles of I_2 =		1
(a)(iii)	answer to (a)(ii)		
	= 1.49 × 10 ⁻³ /0.00149(mol)		

Oussties	Assaultable Assaulta	Deiset	Manula
_	Acceptable Answers	Reject	Mark
<u>N</u> umber	Manta and a second seco		_
(a)(iv)	Mark consequentially on answer in (a)(iii) Amount in volumetric flask = 25 x answer to (a)(iii) (= 25 x 1.490575 x 10 ⁻³ = 3.72644 x 10 ⁻²) OR (25 x 1.49 x 10 ⁻³ = 3.725 x 10 ⁻²) (1)		2
	(= amount in 10 cm 3 of disinfectant) Concentration = 100 x previous value (= 1000 x 3.73 x 10 $^{-2}$ /10 = 3.73 (mol dm $^{-3}$)) (1)		
	Concentration = 100 x answer to (a)(iii) scores (1)		

Question Number	Acceptable Answers	Reject	Mark
b)	(Atoms of) the same element (in the same species) are oxidized and reduced (1) ALLOW chlorine for 'element'	Molecule/substance/ reactant /species	3
	Chlorine ON 0 oxidized to (+)1 in ClO ⁻ (1) and reduced to -1 in Cl ⁻ (1)	Just CI oxidized & reduced	
	Only penalise once if oxidized and reduced omitted		
	Just 'Chlorine ON 0 oxidized to (+)1 and reduced to -1' or 'Chlorine oxidized to chlorate(I) and reduced to chloride'(1 mark only)		
	Only penalise once if oxidized and reduced reversed		

Question Number	Acceptable Answers	Reject	Mark
(c)	Colour just before adding the starch: (very) pale yellow/straw coloured (1)	Just 'yellow', brown, gold	2
	Colour after adding the starch: Blue-black (ALLOW black or (dark) blue)	purple	
	Colour at the end point: colourless (1)		
	Both colours required		
	IGNORE 'Clear'		

(a)	Names OR Formulae		4
	A = NaOH/KOH in ethanol /alcohol (1)	Water + ethanol /water + alcohol For A and B OH ⁻ /alkali (penalise once)	
	B = NaOH/KOH in water/ aqueous (1) IGNORE any reference to ethanol /alcohol /dilute	(perialise office)	
	C = NaBr/KBr & (50% or moderately conc) H ₂ SO ₄ / P & Br ₂ / PBr ₃ /PBr ₅ /NaBr /KBr & H ₃ PO ₄ /HBr ALLOW phosphorus bromide (1) IGNORE red/white (phosphorus)	Dilute H₂SO₄ any mention of alkali	
	D = NH ₃ (in alcohol /in a sealed tube /at high pressure) (1) IGNORE aqueous	any mention of acid	
(b)(i)	A = elimination	mention of dehydration in	2
	IGNORE 'nucleophilic'	A mention of electrophilic in A or D	
	D = (nucleophilic) substitution (1)		

Numbe	1		1
(b)(iii)	ALLOW C-I bond easier to break ALLOW iodine forms weaker bonds than bromine without mention of carbon ALLOW reverse arguments with C-Br bond stronger IGNORE Explanations in terms of electronegativity or bond polarity or activation energy o		1
	shielding even if incorrect		
(c)(i)	(Boiling) absorbs heat (allow energy)/latent heat (of vaporization)/enthalpy of vaporization from the surroundings/endothermic. If bonds are mentioned they must be intermolecular		1
	Any two from		2
(c)(ii)	Not flammable Not toxic Unreactive/inert/non-corrosive (only one of these can score) (easily) compressible does not harm the ozone layer Boiling temperature below target temperature ALLOW low boiling temperature high heat of vaporization high gas density high critical temperature IGNORE Non-polluting/ environmentally friendly/ cheap/easily manufactured/ easy to store/easy to contain /take up little space/low melting point/endothermic/ harmful	Does not produce CFCs Gas/solid stable	

(a)	$N_2 + O_2 \rightarrow 2NO \text{ or } 1/2N_2 +$	\exists		1
	1/2O ₂ → NO Or multiples			
	ALLOW extra oxygen or			
	nitrogen molecules provided equation is balanced			
	-			
	IGNORE state symbols even if incorrect			
Hamber	ALLOW = and 2NO	_		
(b)(i)	Free radical(s)			1
	ALLOW recognisable spellings e.g. radicle			
(b)(ii)	Homolytic (fission)			1
	ALLOW recognisable spellings e.g. homolitic	;		
(c)(i)	(unburnt) fuel/petrol/diesel/ kerosene (aviation fuel)		ngines/factories/cattle/ nethane/ethane/crude oil/	1
	ALLOW Car exhaust fumes/		atural gas/coal/pollution	
	fossil fuels/oil			
	IGNORE burning/combustion except if stated as complete			
(c)(ii)	Oxidation		Redox Addition oxidation	1
	ALLOW partial oxidation		Addition oxidation	
(c)(iii)	0		displayed or structural	1
(6)()			or molecular formulae or	-
	IGNORE angles provided		skeletal showing any H atoms	
	clearly 3 carbons			
(c)(iv)	NO removed so less O ₃ broken down/NO reacts with		Just `less O₃ broken down'	1
	hydrocarbon rather than O ₃ s		down	
	less O ₃ broken down			
	IGNORE build up of ozone			
(d)	(At high altitudes) intensity of UV (radiation/light) is greater		NO ₂ removed before it gets to high altitudes	2
	(1		more sunlight	
	ALLOW more UV			
	So conversion of NO ₂ to NO will increase (1	L)		
	1		I	1
	ALLOW (At high altitudes) pressure is lower (1	.)	less oxygen	
	pressure is lower (1	-	less oxygen	
)	less oxygen	

	0 1 1 81 1 200 2		1	,	
(e)	Ozone absorbs/blocks/filters/	Sunlig	ht; Infi	rared;	2
	protects against ALLOW removes (all) UV	renect	S		
	radiation (1)				
	(-,				
	UV/sunlight is biologically				
	harmful/causes genetic		armful		
	damage/causes (skin)		of radia		
	cancer/causes eye cataracts			mention of	
	(1)	UV or	sunligh	IT.	
	Reference to global warming				
	max (1)				
(4)(:)	1				1
(f)(i)	$2NO + 2CO \rightarrow N_2 + 2CO_2$ $OR NO + CO \rightarrow 1/2N_2 + CO_2$				1
	Or multiples				
	Of manapies				
	IGNORE state symbols even if				
	incorrect				
	ALLOW =				
/6//::>					3
(f)(ii)					3
		-			
	1 1 / 1	Ea \	\		
	Energy/		\		
	enthalpy		1		
	240+200				
	△H				
	I I I I I I I I I I I I I I I I I I I				
	1 1 1				
	'—	N ₂ + 200 ₂			
	(progress of reaction	1]			
	ALLOW names or symbols in dia	gram			
		J			
	ALLOW double headed arrows or	r headl	ess	Reversed	
	arrows			arrows	
	IGNORE Maxwell Boltzmann dist	ributio	ns		
	First mark				
		الممدولات	uete	_	
	Labelled y axis and reactants an ALLOW potential energy	a proa	(1)	Energy	
	IGNORE units		(1)	change or	
	IGNORE formula errors and x ax	is labe	s	enthalpy	
	even if incorrect			change or △H	1
	ALLOW 'reactants' and 'products	as lab	els		1
	Second mark				
		-11	(4)		
	Exothermic reaction and △H la IGNORE negative sign on △H	abel	(1)		
	Third mark				
	Activation energy line and label			Any other	
	OR a double hump with higher f		nooth	Any other humped	1
	curve is not needed)	-	(1)	diagram	
	1			g	1

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 15 MARK SCHEME

Number			
(f)(iii)	Catalyst provides an alternative route/mechanism (1)		3
	with lower activation energy ALLOW low activation energy (1)		
	So a higher proportion (ALLOW more) molecules / collisions (ALLOW reactants) have energy equal to or greater than Ea		
	ALLOW 'so more molecules react' (1)		
(g)	Aircraft (release NO) closer to the ozone layer/(atmosphere) at high altitude/in the stratosphere (1)	Just 'atmosphere'	2
	IGNORE greenhouse gases at this point		
	So less NO is lost through competing / other reactions (1)		
	ALLOW broken down		
	ALLOW NO (released at ground level) dissipated (e.g. by reaction with oxygen or hydrocarbons or by reaction to form ozone (as in the passage))		

- 15) D (1)
- 16) D (1)
- 17) B (1)
- 18) A (1)
- 19) B (1)
- 20) D (1)
- 21) C (1)
- 22) D (1)
- 23) C (1)
- 24) A(1)

25)			
(a)	2Na + CH ₂ OHCH ₂ OH → CH ₂ O ⁽⁻⁾ Na ⁽⁺⁾ CH ₂ O ⁽⁻⁾ Na ⁽⁺⁾ + H ₂ This equation scores (2) marks Accept multiples and (CH ₂ OH) ₂ and (CH ₂ O ⁽⁻⁾ Na ⁽⁺⁾) ₂ Organic product (Charges not needed) (1) Balancing and the rest (1) ALLOW for one mark: Na + CH ₂ OHCH ₂ OH → CH ₂ OHCH ₂ O ⁽⁻⁾ Na ⁽⁺⁾ + 1/2H ₂ Accept multiples	2 CH ₂ O ⁽⁻⁾ Na ⁽⁺⁾ CH ₂ Na ⁽⁺⁾ O ⁽⁻⁾ CH ₂ Na ⁽⁺⁾ O ⁽⁻⁾ Reject bond from C to Na	2
(b)	Remove thermometer / still-head / leave the top of condenser open (1) Place condenser directly on top of flask/in vertical position (1) ALLOW correct diagram for 2 marks IGNORE comments on use of electric heaters, changing concentration of reagents	Sealed apparatus, e.g. with thermometer in the top	2

CHERRY HILL TUITION EDEXCEL CHEMISTRY AS PAPER 15 MARK SCHEME

(c)	ALLOW the OH bond to be displayed ALLOW displayed formula as 'working out' ALLOW any orientation IGNORE bonds of different lengths or incorrect bond angles	Displayed formula O C HO OH Just 'Structural formula' Bond from carbon clearly to the H of the OH	1
(d)	Both have OH / hydroxyl groups OR Both would produce steamy / misty /white and fumes /gas (of HCl)	Hydroxide ions White smoke Just 'both produce HCl' Both give the same products'	1
(e)(i)	(Strong) Peak at 1750-1700 (cm ⁻¹) (1) Peak(s) (either or both) at 2900-2700(cm ⁻¹) (1) ALLOW these if merged	peak at 3300-2500 (cm ⁻¹) peak at 3750-3200 (cm ⁻¹)	2
(e)(ii)	(Unreacted) ethanol C ₂ H ₅ OH /displayed /skeletal IGNORE references to O-H bonding	Molecular formula Just "O-H in alcohol" Ethane-1,2-diol	1

110111001				
(e)(iii)	COOH ⁺ ALLOW CO ₂ H ⁺		COOH or any other	
	ALLOW CH₃COO ⁺		formula	
	ALLOW CH₂COOH ⁺		with – charge	
	ALLOW the + sign wherever it is seen		charge	
	Also allow correct displayed, semi-displayed o	r	CH₃CO₂H ⁺	.
	structural formulae		CH₃COOH	
	<u> </u>		C ₂ H ₃ O ₂ ⁺	
(f)(i)				3
	HOH2C≠¢-Br → HO-¢-CH2OH+	Br		
	/ H H			
	HO_			
	1 10			
	One mark for curly arrow from hydroxide ion	1;	Carbon with 8-	
	(This arrow can be drawn from anywhere on			
	the hydroxide ion)	1)		
	One mark for curly arrow from C-Br bond ((1)		
	Correct products;	(1)	Bond to H of OH	
1	If SN1 is shown, then intermediate with	_		
	positive charge must be shown after loss of	Br,		
	followed by attack by hydroxide. This mechanism can score all 3 marks			
(f)(ii		1		2
(.,,,	, incommission reduces prime (1	1		-
	Type: Substitution (1) ALLOW either way round	E	limination	
			N with elimination	
	Just S _N scores (1)		r other type of eaction	
	ALLOW nucleophile and phonetic spelling	re	eaction	
1	IGNORE Heterolytic fission	Н	lomolytic fission	
		Ι.		
(g)	Ag ⁺ (aq) + Br ⁻ (aq) → AgBr(s)	Spe	ectator ions	2
(3)			luded	
	Species (1)			
	State symbols (1)			
	ALLOW one mark for chemical equation with			
	state symbols rather than ionic equation,			
	e.g. AgNO ₃ (aq) + NaBr(aq) → AgBr(s)			
	+ NaNO ₃ (aq)			
(h)	Both silver chloride and silver bromide		ernative tests	2
	dissolve /give colourless solution in conc. ammonia (1)		ich don't work eg placement of	
	(1)		omine, use of	
	If the solid doesn't dissolve in dilute	org	ganic solvent,	
	ammonia then it is silver bromide		ve in sunlight to	
	OR		e if bromine ms, add conc.	
			furic acid to	
	Add conc. sulfuric acid to the (solid) silver		ide solution.	
	bromide and get red-orange bromine gas			
	(1)			