| Question
 Number | Acceptable Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{1 (a) (i)}$ | NH_{3} | Do not allow just the name ammonia |

Question Number	Acceptable Answer	Additional Guidance	Mark
1(a)(ii)		Do not award skeletal/structural formulae or a combination of these	1

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 (b)}$ | A (the C-Cl bond has a higher bond enthalpy than the
 C-Br bond) | |

Question Number	Acceptable Answer	Additional Guidance	Mark
1(c)(i)	An answer that makes reference to the following points: - hydroxide ions are nucleophiles as they donate a (lone) pair of electrons (to form a covalent bond) - substitution because OH replaces the halogen atom (in the molecule)		2

(Total for Question 1 = 8 marks)

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{2 (a)}$ | B (hydrolysis of butanenitrile with dilute hydrochloric acid) | |

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| 2(b) | D $\left(\mathrm{CH}_{3} \mathrm{COCl}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ | Mark |

| Question
 Number | Acceptable Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{2 (c) (\mathbf { i })}$ | | Do not award displayed or structural formulae |

Question Number	Acceptable Answer	Additional Guidance	
2(c)(ii)		Mark	
			Do not award displayed or structural formulae

| Question
 Number | Acceptable Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| $\mathbf{2 (d) (i)}$ | An answer that makes reference to the following points:
 - to separate (the esters) | |

Question Number	Acceptable Answer	Additional Guidance		
2(d)(ii)	An answer that makes reference to the following points:			
- to identify (the esters) (by determining the $M_{r} /$				
measuring the molecular ion's m / z to $4 \mathrm{dp} / \mathrm{by}$				
fragmentation)			\quad	Mark
:---				

Question Number	Acceptable Answer	Additional Guidance	Mark
3(a)	An answer that makes reference to the following points: - $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$ OR $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-}$ OR $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}^{+}+\mathrm{HSO}_{4}^{-}$ and $\begin{equation*} \mathrm{H}_{2} \mathrm{NO}_{3}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \tag{1} \end{equation*}$ - curly arrow from on or within the circle to the N of $\mathrm{NO}_{2}{ }^{+}$ - intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon and some part of the positive charge must be within the horseshoe - curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the hexagon, reforming the delocalized structure	IGNORE state symbols, even if incorrect Correct Kekulé structures score full marks If final product is not 1-methyl-4-nitrobenzene, maximum 3 marks Allow curly arrow from anywhere within the hexagon Allow curly arrow to any part of the $\mathrm{NO}_{2}{ }^{+}$including to the + charge Ignore any involvement of $\mathrm{HSO}_{4}{ }^{-}$in the final step	4

Question Number	Acceptable Answer	Additional Guidance	Mark
3(b)(i)	An explanation that makes reference to the following points: - the lone pair of electrons on the O overlap with the $\pi /$ delocalised electrons in the benzene ring - so (increased electron density) makes the ring more susceptible to electrophilic attack	second mark is conditional on a reasonable explanation	2

Question Number	Acceptable Answer	Additional Guidance	Mark
3(b)(ii)	An explanation that makes reference to the following points: - 2-nitrophenol forms intramolecular hydrogen bonding and 4-nitrophenol only forms intermolecular hydrogen bonding - so the hydrogen in the 2-nitrophenol cannot form hydrogen bonds with water (so less soluble)		2

Question Number	Acceptable Answer	Additional Guidance	Mark
3(c)	 or	Allow skeletal formula Allow NH_{2} Allow $\mathrm{COOH} / \mathrm{CO}_{2} \mathrm{H} / \mathrm{COCl}$ Allow O-H	1

Question Number	Acceptable Answer		Additional Guidance	Mark
4(a)	- calculates mol of CO_{2} and $\mathrm{H}_{2} \mathrm{O} / \mathrm{mol} \mathrm{C}$ and H - deduces empirical formula - calculates mol J - calculates M_{r} of \mathbf{J} and hence molecular formula	(1) (1) (1) (1)	```Example of calculation \(\mathrm{mol} \mathrm{CO}_{2} / \mathrm{mol} \mathrm{C}=0.88 / 44=0.02\) and \(\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=0.36 / 18=0.02 / \mathrm{mol} \mathrm{H}=0.04\) ratio \(\mathrm{C}: \mathrm{H}=1: 2\) and empirical formula is \(\mathrm{CH}_{2}\) \(\mathrm{n}=\mathrm{pV} / \mathrm{RT}\) \(\mathrm{mol} \mathbf{J}=101 \times 10^{3} \times 123 \times 10^{-6} /(8.31 \times 298)\) \(=5.0166 \times 10^{-3}\) \(M_{r}\) of \(\mathbf{J}=0.28 / 5.0166 \times 10^{-3}=55.8\) so molecular formula is \(\mathrm{C}_{4} \mathrm{H}_{8}\)```	4

Question Number	Acceptable Answer		Additional Guidance	Mark
4(b)	 - all 4 correct - any 3 correct - any 2 correct	(3) (2) (1)	Allow 2 marks for four correct structures that are not skeletal Do not award cycloalkanes	3

Question Number	Acceptable Answer	Additional Guidance	Mark
4(c)	An answer that makes reference to the following points: - \mathbf{K} is $\mathrm{HCHO} /$ methanal because it is the (only) carbonyl with $M_{r} 30$ - the M_{r} of \mathbf{L} is 58 so it could be $\mathrm{CH}_{3} \mathrm{COCH}_{3} /$ propanone or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ /propanal or - a carbonyl compound with 3 carbon atoms - 2 peaks on the ${ }^{13} \mathrm{C}$ NMR spectrum show 2 different carbon environments so it must be propanone (as propanal would have 3 different carbon environments - J is methylpropene/ $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ / - $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{O}_{3} \rightarrow$ $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCHO}+\mathrm{O}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$ both equations correct		5

Question Number	Acceptable Answer		Additional Guidance	Mark
4(d)	- calculates number of mol of $\mathrm{Br}_{2} / \mathrm{mol}$ of Br - calculates volume of \mathbf{J} - calculates percentage of \mathbf{J}	(1) (1) (1)	$\begin{aligned} & \underline{\text { Example of calculation }} \\ & \mathrm{mol} \mathrm{Br}_{2}=0.32 / 159.8=0.002 / \mathrm{mol} \mathrm{Br}=0.32 / 79.9= \\ & 0.004 \\ & (\mathrm{~mol} \mathbf{J}=0.002 \mathrm{so}) \mathrm{vol} \mathbf{J}=0.002 \times 24000 \\ & =48 \mathrm{~cm}^{3} \\ & \text { percentage of } \mathbf{J}=\frac{48}{120} \times 100=40 \% \end{aligned}$	3

(Total for Question 4 = 15 marks)

| Question
 Number | Acceptable Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |
| 5(a) | An answer that makes reference to the following point:
 • different phase | Allow different physical state |

Question Number	Acceptable Answer	Additional Guidance	Mark
5(b)(i)	 - both axes labelled y axis $=$ number/fraction of molecules (with energy, E) x axis $=($ kinetic $)$ energy $/ E$ - curve starting at or going towards origin, asymmetric, asymptotic to x axis and correct shape - E_{a} shown (well to right of the peak)	Allow	3

Question Number	Acceptable Answer	Additional Guidance	Mark
5(b)(ii)	An explanation that makes reference to the following points: - E_{a} (cat) shown on graph at a lower energy than E_{a} or stated to be at a lower energy - greater proportion/more of the molecules/collisions have energy greater than the activation energy with a catalyst OR shows this with labelled shading on the graph - greater proportion/more of the collisions lead to a reaction		3
Question Number	Acceptable Answer	Additional Guidance	Mark
5(c)	An answer that makes reference to the following points: - two half-lives measured and both about 2 min - half-lives are constant so first order		2

Question Number	Acceptable Answer		Additional Guidance	Mark
5(d)(i)	An answer that makes reference to the following points: - second order - as the concentration of HI triples, the initial rate increases by a factor of $9 / 3^{2}$	(1) (1)		2

Question Number	Acceptable Answer		Additional Guidance	Mark
5(d)(ii)	Both marks TE on order in d(i) - rate equation - calculate rate	(1) (1)	$\begin{aligned} & \text { rate }=\mathrm{k}[\mathrm{HI}]^{2} \\ & \text { rate }=7.040 \times 10^{-9} \times(0.5 / 0.1)^{2} \\ &=1.76 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \\ & \text { or } \\ & \mathrm{k}=\text { rate } /[\mathrm{HI}]^{2}=7.040 \times 10^{-9} /(0.1)^{2} \\ &=7.040 \times 10^{-7} \\ & \begin{aligned} \underline{\text { and }} & \\ \text { rate } & =7.040 \times 10^{-7} \times 0.5^{2} \\ & =1.76 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right) \end{aligned} \end{aligned}$	2

Question Number	Acceptable Answer	Additional Guidance	Mark
5(d)(iii)	 - axes labelled and correct unit - points correct, \pm half square and best fit straight line (1) - calculates gradient - calculates $E_{a}=$-gradient $\times \mathrm{R}$ - $\quad E_{\mathrm{a}}$ given to $2 / 3$ SF and correct units for E_{a} to match answer given	$\begin{align*} & \text { gradient }=-21892(\mathrm{~K}) \\ & \text { Allow }-21000 \text { to }-22800(\mathrm{~K}) \tag{1}\\ & \begin{aligned} & E_{\mathrm{a}}=-21892 \times 8.31 \\ &=(+) 181923 \mathrm{~J} \mathrm{~mol}^{-1} \text { or }=(+) 181.923 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & E_{\mathrm{a}}=(+) 180000 /(+) 182000 \mathrm{~J} \mathrm{~mol}^{-1} \\ & \text { or } \quad(+) 180 /(+) 182 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} \end{align*}$ TE on value of gradient but do not allow the mark if E_{a} is negative	5

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 31 MARK SCHEME

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 (a) (\mathbf { i })}$ | $\mathbf{C}\left(\mathrm{C}_{7} \mathrm{H}_{14}\right)$ | Mark |

| Question
 Number | Answer | Mdditional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 (a) (i i)}$ | $\mathbf{C}\left(\mathrm{C}_{7} \mathrm{H}_{12}\right)$ | Mark |

Question Number	Acceptable Answer	Additional Guidance	Mark
6(b)	- 2 pairs of electrons between 2 carbon atoms and 1 pair of electrons between the other 2 carbon atoms - rest of diagram correct	Allow dots or crosses for any atoms or all dots or all crosses Allow diagrams with overlapping circles Ignore inner shell electrons shown on carbon atoms	2

Question Number	Acceptable Answer	Additional Guidance	Mark
6(c)	An answer that makes reference to the following points: - shape: (trigonal) pyramidal/ drawn as (trigonal) pyramidal - bond angle: 107° - justification: 4 pairs of electrons arranged as far apart as possible to minimise repulsion/maximum separation - 1 pair of electrons is a lone pair and causes more repulsion than the bonding pairs (so the bond angle is less than a normal tetrahedral shape)	Example of shape drawn: Allow any bond angle in the range $105-108^{\circ}$	4

Question Number	Answer	Additional Guidance	
$\mathbf{6 (d) (i)}$	C (homolytic fission)		

Question Number	Acceptable Answer	Additional Guidance	
$\mathbf{6 (d) (i i)}$	$\bullet \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \mathrm{CH} \cdot \mathrm{CH}_{3}+\mathrm{HCl}$	(1)	Allow 1 mark for two correct equations forming 1- chloropropane Allow one mark for two correct equations using molecular formula of propane forming $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$

Question Number	Acceptable Answer	Additional Guidance	Mark
6(d)(iii)	An explanation that makes reference to the following points: - the chlorine radical can remove a hydrogen from anywhere in the propane molecule - so a mixture of products is formed	e.g. 1-chloropropane / 1,2-dichloropropane	2

CHERRY HILL TUITION EDEXCEL CHEMISTRY A2 PAPER 31 MARK SCHEME

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 (a) (i)}$ | B (alcohol Q) | |

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 (a) (\text { ii })}$ | \mathbf{C} (alcohols \mathbf{P}, \mathbf{R} and S only) | Mark |

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :---: |
| $\mathbf{7 (a) (\text { iii }}$ | C (alcohol R) | |

Question Number	Acceptable Answer		Additional Guidance	Mark
7(b)	- calculates mol of propan-1-ol - calculates mol of 2-bromopropane produced - calculates mass of 2-bromopropane	(1) (1) (1)	$\begin{aligned} & \frac{\text { Example of calculation }}{\text { mol propan-1-ol }=3.0 / 60=0.05} \\ & \text { mol } 2 \text {-bromopropane produced } \\ & =0.05 \times 0.65 \times 0.58=0.01885 \\ & \text { mass of } 2 \text {-bromopropane }=0.01885 \times 122.9 \\ & =2.317(\mathrm{~g}) \\ & =2.3(\mathrm{~g}) \\ & \text { ignore sf except } 1 \mathrm{sf} \end{aligned}$	3

Question Number	Acceptable Answer	Additional Guidance	Mark
7(c)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	

Indicative content

- convert some ethanol into bromoethane or iodoethane / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
- reagents and conditions: potassium bromide / KBr and concentrated sulfuric acid / $\mathrm{H}_{2} \mathrm{SO}_{4}$ or red phosphorus / P_{4} and iodine / I_{2}
- convert bromoethane / iodoethane into ethylmagnesium bromide / iodide
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgI}$ and using magnesium / Mg in dry ether
- convert some ethanol into ethanal / $\mathrm{CH}_{3} \mathrm{CHO}$
- reagents and conditions: potassium dichromate(VI) in dilute sulfuric acid and distil product immediately
- react ethylmagnesium bromide / iodide with ethanal (in dry ether) and hydrolyse the product (with dilute acid)

Question Number	Acceptable Answer	Additional Guidance	Mark
8(a)	An explanation that makes reference to the following points: - A no because the two substances have the same molecular formula/ relative molecular mass - B yes because only 2-aminopropanal is chiral - C no because both substances react with Fehling's solution (to produce a red precipitate)	Allow no because 3-aminopropanal is not chiral and 2-aminopropanal could be a racemic mixture	3

Question Number	Acceptable Ans		Additional Guidance	Mark
*8(b)	This question assesses a student's ability to logically structured answer with linkages a reasoning. Marks are awarded for indicative content a structured and shows lines of reasoning. The following table shows how the marks indicative content. The following table shows how the marks structure and lines of reasoning. Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout. Answer is partially structured with some linkages and lines of reasoning. Answer has no linkages between points and is unstructured.	show a coherent and fully-sustained d for how the answer is ould be awarded for of marks awarded for ve marking points ould be awarded for Number of marks awarded for structure of answer and sustained line of reasoning 2 1 0	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	

Indicative content

- both have 4 different proton environments/ peaks will be at same chemical shift
- peak areas are 1:1:2:3 in 2-aminopropanal
- peak areas are 1:2:2:2 in 3-aminopropanal
- explanation or use of the $(n+1)$ rule for any splitting pattern
- 2-aminopropanal has 1 singlet $\left(\mathrm{NH}_{2}\right), 2$ doublets (CHO), and $\left(\mathrm{CH}_{3}\right), 1$ pentuplet (CH)
- 3-aminopropanal has 1 singlet (NH_{2}), 2 triplets (CHO), and $\left(\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)$, 1 quartet $\left(\mathrm{CH}_{2}\right)$

Allow ratios in any order for the second and third marking points
Only penalise use of peak heights instead of peak areas once

