ALLOW Kekulé structures throughout

Question			Answer	Mark	Guidance
1	(b)	(i)	1st mark: reactants, correctly balanced, \checkmark ie $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl}_{3} \mathrm{CCHO}$ 2nd mark: product, (correctly balanced) \downarrow ie $\mathrm{H}_{2} \mathrm{O}$	2	Each mark is independent of the other ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ for chlorobenzene ALLOW any unambiguous structure for $\mathrm{Cl}_{3} \mathrm{CCHO}$, e.g. $\mathrm{CCl}_{3} \mathrm{CHO}$ BUT DO NOT ALLOW $\mathrm{CCl}_{3} \mathrm{COH}$ Standalone mark Standalone mark
		(ii)	$6 \checkmark$	1	
	(c)		substitution/nitration/ NO_{2} at different positions (on the ring) OR forms different isomers OR multiple substitution/nitration \downarrow	1	ALLOW examples, e.g. 1-chloro-2-nitrobenzene and 1-chloro-2-nitrobenzene ALLOW 'it' for nitro group ALLOW examples, e.g. 1-chloro-2,3-dinitrobenzene IGNORE nitrate/ NO_{3}
	(d)		In phenol, (lone) pair of electrons on O is (partially) delocalised into the ring \checkmark QWC: delocalised/delocalized/delocalise, etc must be spelt correctly in the correct context for benzene OR phenol at least once electron density increases/is high \checkmark ORA $\mathrm{Cl}_{2} /$ electrophile is (more) polarised \checkmark ORA	3	ANNOTATIONS MUST BE USED ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned ALLOW lone pair of electrons on O is (partially) drawn/ attracted/pulled into delocalised ring IGNORE 'activates the ring' DO NOT ALLOW charge density or electronegativity ALLOW Cl ${ }_{2}$ is (more) attracted $\mathrm{OR} \mathrm{Cl}_{2}$ is not polarised by benzene OR induces dipoles (in chlorine/electrophile)
			Total	13	

Question			Answer	Mark	Guidance
2	(a)	(i)	donates a lone pair (on N) OR accepts a proton/ $/ \mathrm{H}^{+} \checkmark$	1	IGNORE 'forms a dative covalent bond' (no direction of lone pair) ALLOW 'forms a dative covalent bond with/to \mathbf{H}^{+}, ALLOW mark for $\mathrm{N}: \rightarrow \mathrm{H}^{+}$(can be from correct equation)
		(ii)	$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-} \downarrow$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark$	2	ALLOW ($\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4}$ DO NOT ALLOW $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right) \mathrm{HSO}_{4} \mathrm{OR}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right) \mathrm{HSO}_{4}^{-}$ brackets not required ALLOW $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{OR}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right)\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$ brackets not required ALLOW separate ions with or without a ' + ' sign between them, e.g. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
	(b)	(i)		2	In diazonium ion, IGNORE Cl- ALLOW ' + ' sign up to halfway along triple bond from left-hand N In compound B, ALLOW -OH ionised as -O- ALLOW - COOH ionised as COO^{-}
		(ii)	conditions = alkaline $/ \mathrm{OH}^{-}$ AND use $=$ dye/pigment/colouring \checkmark	1	BOTH responses required for one mark ALLOW named alkali, e.g. $\mathrm{NaOH} / \mathrm{KOH}$ ALLOW base IGNORE references to temperature ALLOW use = indicator

Question			Answer		Mark	Guidance
2	(b)	(iii)	Organic product: Other products: CO_{2} AND $\mathrm{H}_{2} \mathrm{O} \checkmark$		2	IGNORE phenoxide: $\mathrm{O}^{-} \mathrm{OR} \mathrm{O}^{-} \mathrm{Na}^{+}$ ALLOW COOº OR COONa ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ Note: must be formulae and not names (in question)
	(c)				1	ALLOW $\mathrm{N}_{2}{ }^{+}$on structural formula ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}^{+}$ ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{HCl}$ If + charge shown, IGNORE its position
				Total	9	

Question			Answer	Mark	Guidance
3	(a)		monomers join/bond/add/react/form polymer/form chain AND another product/small molecule e.g. $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl} \checkmark$ QWC must spell AND use 'monomer(s)' correctly throughout	1	IGNORE 'two' when referring to monomers, ie (two) monomers \qquad
	(b)	(i)	 ester link \checkmark Note: Any ester link shown must be correct rest of the structure \checkmark	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW benzene ring for $\mathrm{C}_{6} \mathrm{H}_{5}$ 'End bonds' MUST be shown (do not have to be dotted) ALLOW one or more repeat units but has to have a whole number of repeat units (ie does not have to be two) For ester, DO NOT ALLOW \qquad ALLOW structure with no O at left end and COO at right end IGNORE brackets IGNORE n
		(ii)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW one or more repeat units but has to have a whole number of repeat units (ie does not have to be two) 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n

Question			Answer	Mark	Guidance
3	(c)		compound C compound \mathbf{D} and compound \mathbf{E}	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ ALLOW D and E by ECF from an incorrect structure of C provided that \mathbf{C} contains a double bond and molecular formulae of D and E is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$ with $\mathrm{H}_{2} \mathrm{O}$ added across double bond
	(d)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) e.g. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ DO NOT ALLOW -HO IGNORE working (ie other structures) provided correct structure of propan-2-ol is shown IGNORE name (even if wrong)

Question			Answer	Mark	Guidance
3	(d)	(ii)	 OR acid anhydride:	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) OR (2-)methylpropanoic acid DO NOT ALLOW incorrect name (will CON a correct structure) ALLOW acyl chloride: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCl}$ IGNORE working provided correct structure of propan-2-ol is shown
		(iii)	Hydrogen bonds form with water \checkmark Note: Can be shown in diagram as dashed line, ie ---- (no label required) DO NOT CON 'hydrogen bond' from an incorrect hydrogen bond in diagram Mandelic acid forms more hydrogen bonds (with water) ORA Mandelic acid has an extra OH OR 2 OH groups OR has a COOH group \checkmark ORA	3	ANNOTATIONS MUST BE USED ALLOW a diagram showing hydrogen bonds with water, dipole and lone pair are not required ALLOW a hydrogen bond to $\mathrm{C}=\mathrm{O}$, ie $\mathrm{C}=\mathrm{O}---\mathrm{H}-\mathrm{O}$ IGNORE bond angles Diagram does not need to show all of mandelic acid (IGNORE if wrong) ALLOW any comparison of numbers of hydrogen bonds provided that mandelic acid has more hydrogen bonds DO NOT ALLOW 'No -OH groups in ester (as there are)' DO NOT ALLOW reference to $-\mathrm{OH}^{-}$/ hydroxide IGNORE reference to carbon chain and van der Waals' forces Note: If a response compares Ester 1 with Ester 2 rather than with mandelic acid, maximum of 2 marks: 1st mark hydrogen bonds 2nd mark Ester 2 has more Os/oxygens OR Ester 2 forms more hydrogen bonds

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 20 MARK SCHEME

Question		Answer	Mark	Guidance	
$\mathbf{3}$	(d)	(iv)	To test for (adverse) side effects OR to test toxicity OR to test for irritation \checkmark	$\mathbf{1}$	ALLOW a stated adverse side effect, eg allergy, carcinogenic, etc IGNORE references to optical isomers, chirality, etc
(IGNORE vague statements such as harmful to skin, dangerous to skin, corrosive to skin, reacts with skin		
ALLOW company liable to litigation/damages					

Question			Answer	Mark	Guidance
5	(a)		idea of separating (the components/compounds) idea of (identifying compounds) by comparison with a (spectral) database	2	ALLOW (identifies compounds) using fragmentation (patterns)/fragment ions (but IGNORE molecular ions) \checkmark Note: Each marking point does not need to be linked to GC or MS (The question asks about GC-MS as a combined technique)
	(b)	(i)	54.2% of 118 OR 54.2/118 $\times 100=64 / 63.96$ (hence there are 4 oxygens) $118-64=54 \text { hence } 4 \text { carbon (48) and } 6 \text { hydrogen (6) } \checkmark$	2	IGNORE calculation that proves that $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ has a molar mass of 118 (ie $12 \times 4+6 \times 1+16 \times 4$) ALLOW 64/118 x $100=54.2 \%$ for 1 st mark IGNORE method using empirical formula ALLOW any reasonable working leading to 4C Note: $54.2(\%) \div 16$ would not get the 1st mark but the answer could be used to get the 2nd mark
		(ii)	carboxyl group OR carboxylic acid \checkmark must be name (in question)	1	IGNORE working, e.g. $\mathrm{O}-\mathrm{H}, \mathrm{C}=\mathrm{O}, \mathrm{C}-\mathrm{O}$ on IR spectrum

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Answer \& Mark \& Guidance \\
\hline 5 \& (c) \& (i) \& \begin{tabular}{l}
Chemical shifts \\
Any two peaks identified for 1 mark \(\checkmark\) \\
peak at \(\delta=0.8 \mathrm{ppm}\) due to \(\mathrm{R}-\mathrm{CH} / \mathrm{CH}_{3} \mathrm{CH}\) \\
peak at \(\delta=3.4 \mathrm{ppm}\) due to \(\mathrm{HC}-\mathrm{C}=\mathrm{O}\) \\
peak at \(\delta=11 \mathrm{ppm}\) due to \(\mathrm{COOH} /\) carboxylic acid \\
Splitting \\
quartet shows adjacent \(\mathrm{CH}_{3}\) OR 3 adjacent \(\mathrm{Hs} \checkmark\) \\
doublet shows adjacent CH OR 1 adjacent \(\mathrm{H} \checkmark\) \\
Identification
\end{tabular} \& 1

2

1 \& | ANNOTATIONS MUST BE USED |
| :--- |
| CHECK SPECTRUM for responses |
| ANNOTATE with ‘^’ |
| For peak at $(\delta=) 0.8(\mathrm{ppm})$, ALLOW doublet and vice versa For peak at $(\delta=) 3.4(\mathrm{ppm})$, ALLOW quartet ' and vice versa For peak at $(\delta=) 11(\mathrm{ppm})$, ALLOW singlet and vice versa |
| ALLOW peak at $\delta=2.4 \mathrm{ppm}$ for peak at $\delta=3.4 \mathrm{ppm}$ ALLOW tolerance on δ values: $\pm 1 \mathrm{ppm}$ |
| For quartet, ALLOW quadruplet |
| ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) | \\

\hline \& \& (ii) \& $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} / \mathrm{D} /$ It does not absorb OR does not give a peak \checkmark \& 1 \& | ALLOW $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} /$ does not contain H ALLOW undeuterated solvents would absorb OR give peaks |
| :--- |
| ALLOW responses in terms of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ producing peaks \qquad but IGNORE number of peaks | \\

\hline \& \& (iii) \& TMS is the standard (for chemical shift measurements) \checkmark \& 1 \& | ALLOW TMS is the reference OR TMS has $\delta=0$ (ppm) OR for calibration |
| :--- |
| IGNORE unreactive, volatile, it gives a sharp peak | \\

\hline \& \& (iv) \& peak at $\delta=11.0$ (ppm) disappears \checkmark \& 1 \& ALLOW COOH (peak) disappears ALLOW OH (peak) disappears \\
\hline \& \& \& Total \& 12 \& \\
\hline
\end{tabular}

Question			Answer	Mark	Guidance
6	(a)	(i)		1	Circles can be around C OR CH atoms but must not include other atoms ALLOW any suitable way of highlighting chiral carbons, e.g. asterisk, * Note: Mark the circles and ignore other working on diagram
		(ii)	carboxyl OR carboxylic acid, amine, amide, ester must be names 2 marks for 4 correct functional groups $\checkmark \checkmark$ 1 mark for 3 correct functional groups \checkmark	2	ALLOW peptide for amide
	(b)		 1 mark for left-hand amino acid with $\mathrm{NH}_{3}{ }^{+} \mathrm{OR} \mathrm{NH}_{2} \checkmark$ 1 mark for right-hand amino acid with $\mathrm{NH}_{3}{ }^{+} \mathrm{OR} \mathrm{NH}_{2} \checkmark$ 1 mark for both amino acids shown with $\mathrm{NH}_{3}{ }^{+} \checkmark$	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW + charge on H of NH_{3} groups, ie $\mathrm{NH}_{3}{ }^{+}$ Note: If there are more than three structures shown, credit any correct structures and ignore incorrect structures

CHERRY HILL TUITION OCR A CHEMISTRY A2 PAPER 20 MARK SCHEME

| Question | | Answer | Mark | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{6}$ (c) | (adverse) side effects
 OR toxicity
 OR irritation \checkmark | $\mathbf{1}$ALLOW a stated adverse side effect, eg allergy, carcinogenic,
 hyperactivity etc
 IGNORE references to optical isomers, chirality, etc | | |
| IGNORE vague statements such as harmful to body, | | | | |
| dangerous to body | | | | |
| DO NOT ALLOW obesity, corrosive to body | | | | |
| ALLOW company liable to litigation/damages | | | | |
| Note: Scroll down to bottom of page to check for any further | | | | |
| writing | | | | |

