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Abstract
The construction of a tumor-associated carbohydrate antigen-zwitterionic polysaccharide conjugate, Thomsen-nouveau-
polysaccharide A1 (Tn-PS A1, where Tn = d-GalpNAc), has led to the development of a carbohydrate binding monoclonal 
antibody named Kt-IgM-8. Kt-IgM-8 was produced via hybridoma from Tn-PS A1 hyperimmunized Jackson Laboratory 
C57BL/6 mice, splenocytes and the murine myeloma cell line Sp2/0Ag14 with subsequent cloning on methyl cellulose 
semi-solid media. This in-house generated monoclonal antibody negates binding influenced from peptides, proteins, and 
lipids and preferentially binds monovalent Tn antigen as noted by ELISA, FACS, and glycan array technologies. Kt-IgM-8 
demonstrated in vitro and in vivo tumor killing against the Michigan Cancer Foundation breast cell line 7 (MCF-7). In vitro 
tumor killing was observed using an LDH assay that measured antibody-induced complement-dependent cytotoxicity and 
these results were validated in an in vivo passive immunotherapy approach using an MCF-7 cell line-derived xenograft 
model. Kt-IgM-8 is effective in killing tumor cells at 30% cytotoxicity, and furthermore, it demonstrated approximately 40% 
reduction in tumor growth in the MCF-7 model.

Keywords Complement-dependent cytotoxicity · Immunotherapy · Monoclonal antibody · Thomsen-nouveau · Tumor-
associated carbohydrate antigens · Xenograft
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VVL  Vicia villosa lectin
ZPS  Zwitterionic polysaccharide

Introduction

A cancer antigen prioritization study revealed 9 out of the 
top 75 cancer antigens as tumor-associated carbohydrate 
antigens (TACAs) [1]. Carbohydrate tumor antigens are 
viable targets for the development of immunotherapies, in 
which, there are many TACA-based vaccines currently being 
evaluated [2–6]. Recently, the Food and Drug Administration 
(FDA) approved  Unituxin® (dinutuximab) from a National 
Cancer Institute (NCI)/United Therapeutics joint venture as 
the first mAb to target the  TACA ganglioside disialic acid 
2 (GD2 = d-GalpNAcβ1–4(Neu5Acα2–8Neu5Acα2–3)-d-
Galpβ1–4Glc) for the treatment of high-risk neuroblasto-
mas in pediatric patients [7]. Prior to  Unituxin®, the FDA 
approved therapeutic mAbs which targeted protein-based 
tumor antigens such as  Avastin® (bevacizumab—Genen-
tech, Inc.),  Herceptin® (trastuzumab—Genentech, Inc.), and 
 Rituxan® (rituximab—Biogen Idec Inc.) [8, 9].

Unlike proteins, TACAs elicit a T-cell independent 
immune response resulting in weak immunogenicity. This 
limitation is alleviated when TACAs are conjugated to 
immunogenic carrier proteins. This approach has some dis-
advantages due to protein-epitope suppression and non-spe-
cific antibody binding caused by immunogenic hydrocarbon 
linkers [10–12]. There is often ambiguity in the effectiveness 
of TACA conjugates as vaccines and there is a poor record 
of Phase III clinical trials including  THERATOPE® (sialyl 
Thomsen-nouveau-keyhole limpet hemocyanin (STn-KLH 
conjugate)) [13, 14]. The current protein immunogen car-
rier strategy to target carbohydrate antigens for eradicating 
cancer could be improved by investigating alternative immu-
nogenic carriers.

One approach for overcoming issues of TACA-protein 
conjugates and increasing carbohydrate immunogenicity is 
the use of an entirely carbohydrate-based immunogen such 
as Thomsen-nouveau-polysaccharide A1 (Tn-PS A1) (1) 
(Fig. 1). Tn-PS A1 (1) features the Tn (d-GalpNAc) antigen 
and an MHCII-binding zwitterionic polysaccharide (ZPS), 
PS A1, isolated from the capsule of Bacteroides fragilis 
[American-Type Culture Collection (ATCC) 25285/National 
Collection of Type Cultures (NCTC) 9343] [15]. Conjugate 
1, derived from oxidized PS A1 and a synthetic aminooxy 
Tn derivative capitalizing on oxime formation, is stable 
under physiological conditions [15, 16]. This unique immu-
nogen stimulates anti-tumor responses through the induction 
of CD4+ T cells polarized by cytokines IL-2, IL-4, IL-10, 
and IL-17A encoding for Th1/Th17 immunity [17, 18]. Fur-
thermore, carbohydrate-selective polyclonal IgG (pIgG) and 
polyclonal IgM (pIgM) antibodies have been observed [15, 

17]. This innovative design for an entirely carbohydrate 
immunogen, capable of augmenting the immune response 
towards TACAs, may become a valuable platform for treat-
ing/preventing cancers when immunotherapeutic approaches 
are applied.

Although many FDA approved antibodies are monoclonal 
IgGs (mIgGs), there have been ongoing clinical investiga-
tions using monoclonal IgMs (mIgMs) such as mAb216 and 
L612 HuMAb, which have demonstrated promising thera-
peutic results in melanoma and leukemia patients respec-
tively [19, 20]. IgM antibodies are gaining clinical relevance 
due in part to their pentavalent nature and increased abil-
ity to initiate complement-dependent cytotoxicity (CDC) 
[21–23]. The pentavalent structure allows for high avidity 
due to increased antigen-binding events. In addition, IgM 
antibodies allow for enhanced CDC activity when com-
pared to their IgG counterparts due to the initial comple-
ment protein, C1q, which binds  103-fold greater to  Fc-IgM. 
C1q is involved in the initial C1 complex of the classical 
complement cascade [24, 25]. Thus, by targeting TACAs 
using mIgM antibodies, there is an increased therapeutic 
potential through multivalent target avidity and complement 
activation for immunotherapy.

Other mAbs (IgG and IgM) have been produced to rec-
ognize TACAs, but unfortunately, many lack the ability to 
bind monovalent glycans and are limited to binding clustered 
or multivalent presentations of glycans [26]. In 2007, Gild-
ersleeve and coworkers examined the binding events of 27 
carbohydrate specific mAbs to various TACAs employing 

Fig. 1  Structure of Tn-PS A1 (1)
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glycan array technology [26]. The results were particularly 
concerning due to the lack of binding to the cognate mono-
valent antigens, but rather, binding was observed with anti-
gen clusters. Specifically, B1.1 (IgM), a commercial mAb 
against Tn failed to bind Tn alone, but rather was found 
to bind Tn antigens in clusters containing two or more 
GalNAcα1-Ser/Thr (Tn) [26]. Therefore, devising alter-
native strategies to address mAb binding to monovalent 
TACAs is a challenging, but critical endeavor for expanding 
the currently available glycan tool box.

An important criterion for producing anti-carbohydrate 
mAbs is that immunogens generate selective antibodies 
against sugar antigens without binding preference from 
immunogen peptide/hydrocarbon linkers. To limit mAb 
cross reactivity, we sought to utilize Tn-PS A1 (1) with a 
focus of immunity against the Tn antigen. To accomplish our 
goal, we have capitalized on knowledge previously gained 
by examining PS A1-based conjugates using an oxime 
bond providing a unique, entirely carbohydrate immunogen 
in the absence of artificial linkers. We utilized a syntheti-
cally prepared anomeric aminooxy Tn moiety to conjugate 
to oxidized PS A1 through an embedded aldehyde on the 
d-furanose moiety (Fig. 1) [15, 17]. This strategy places an 
emphasis on the immune response towards O-linked carbo-
hydrates employing linker-free oxime ligation and not on 
O-linked glycopeptides. For example, mAbs that bind selec-
tively towards glycopeptides tend to be influenced by the 
original peptide sequence and are thus not entirely glycan 
specific [27–30]. Traditional methods for mAb production 
have used naturally occurring entities that contain TACAs 
(i.e., cancer cells and glycosylated proteins) which have led 
to a plethora of non-selective commercially available mAbs 
such as B1.1 (mIgM) and Tn 218 (mIgM) which preferen-
tially bind clustered Tn (epitopes with two or more Tn con-
secutive antigens) [31, 32]. B1.1 and Tn 218 were produced 
from ovine submaxillary mucin and screened for Tn bind-
ing. The complications associated with raised mAbs using 
glycoproteins include epitopic suppression due to increased 
immunogenicity towards the protein which minimizes the 
response against the target antigenic sugar [33, 34]. Most 
mAbs generated from glycopeptides/proteins/linkers have 
a varying degree of sensitivity towards the peptide/linker 
portion. However, our design concept uses an entirely car-
bohydrate immunogen providing a carbohydrate-selective 
mAb development process. Here, within, we highlight our 
Tn-PS A1 (1) construct that was used to produce mIgM anti-
bodies where the donor/acceptor Fab/antigen-binding events 
are preferential for the Tn antigen. Furthermore, we dem-
onstrate that the monoclonal antibody, termed Kt-IgM-8, 
possesses tumor killing activity against Michigan Cancer 
Foundation breast cell line 7 (MCF-7) in an LDH comple-
ment-dependent cytotoxicity assay and in an in vivo MCF-7 
tumor xenograft model. We also demonstrate that the use 

of Tn-PS A1 generate mAbs capable of eliciting anti-tumor 
responses superior to some that are commercially available.

Materials and methods

Immunizations

Immunization of Tn-PS A1, PS A1, and PBS has been 
reported [15].

Hybridoma fusion protocol

Mouse spleens were obtained on day 60 and put in DMEM 
media. The splenocytes were obtained by homogenizing 
the spleens. Cells were washed with serum-free DMEM 
by centrifuging at 1000 rpm for 10 min and resuspending 
the final pellet in 30 mL of serum-free DMEM. Simulta-
neously, Sp2/0-Ag14 (ATCC CRL-1581) were cultured 
and washed with serum-free DMEM by centrifuging at 
1000 rpm for 10 min followed by resuspension in 30 mL 
of serum-free DMEM. 2 × 107 myeloma cells and 1 × 108 
viable splenocytes were added in a 50 mL centrifuge tube 
and were washed with serum-free DMEM three times. 
ClonaCell™-HY PEG (1 mL) was added without stirring. 
Cells were stirred for 1 min by gently agitating the tube. 
4 mL of serum-free DMEM media was added to the fusion 
mixture and stirred for 4 min. 10 mL of serum-free DMEM 
was slowly added and the entire mix was incubated at 37 °C 
for 15 min. 30 mL of 10% FCS-DMEM (10-DMEM) was 
added and washed with 40 mL of DMEM and the superna-
tant was discarded. 10 mL of 20% FCS-DMEM (20-DMEM) 
was used to resuspend the pellet and was transferred to a 
T-175 flask containing 20 mL of 20-DMEM. The resus-
pended pellet was then incubated for 24 h in 5%  CO2. Cells 
were centrifuged and resuspended with 10 mL of 20-DMEM 
and then added to 90 mL of semi-solid methyl cellulose 
media (ClonaCell™ FLEX). The bottle was mixed by invert-
ing and then aliquoted into 10 petri dishes and placed in 
a 5%  CO2 incubator for 10–14 days. Single-cell colonies 
were picked (5 µL) and placed in 96-well plates containing 
10-DMEM in 200 µL. The cell supernatants were screened 
by ELISA with plates coated with Tn-BSA (4 µg/mL) when 
sufficient antibody was produced [15]. Tn-BSA was used in 
the selection protocol to avoid PS A1 interactions.

mIgM purification

Purification of mIgM antibodies was conducted according 
to literature procedure [35]. Cell culture supernatant was 
dialyzed against distilled water causing a precipitation of 
the mIgM antibody after 1 day at 4 °C. The resulting pre-
cipitate was centrifuged to remove water. The protein was 
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dissolved in 10 mL of 1 × PBS buffer and this was followed 
by re-precipitation by adding 17.1 g of ammonium sulfate. 
The precipitate was then concentrated and purified using 
size exclusion chromatography (Sephacryl S-300). Collected 
fractions were individually checked for protein by UV moni-
toring at 280 nm. The resulting fractions containing mIgM 
antibody were pooled, sterile filtered, and stored at 4 °C.

Enzyme‑linked immunosorbent assay

In-house generated monomeric BSA constructs [Tn-BSA, 
Thomsen–Friedenreich (TF)-BSA, etc.] were coated on 
 Immulon® Microtiter™ 4 HBX 96 well plates using a car-
bonate buffer (pH 9.6) at a concentration of 4 µg/mL over 
night at 4  °C. The wells were then washed three times 
with 200 µL/well of washing buffer (1 × TBS with 0.1% 
 TWEEN® 20) followed by incubation of 200 µL of a block-
ing buffer (3% BSA in 1 × TBS) for 1 h. Wells were washed 
three times with washing buffer, then 100 µL of a solution 
containing antibody (Kt-IgM-8 or Tn-218) in TBS was 
then incubated for 2 h at 37 °C. Wells were then washed 
three times with washing buffer. Rat anti-mouse IgM 
alkaline phosphatase conjugate (Southern Biotech, Cata-
log#:1139-04) was then diluted to 1:1000 in TBS and 100 
µL of secondary antibody solution was then added to each 
well and incubated for 1 h at 37 °C. Wells were washed 
three times with washing buffer. A p-nitrophenylphosphate 
(PNPP) solution, in diethanolamine buffer (1 mg/mL), was 
then added to each well to a final volume of 100 µL. The 
PNPP solution was incubated for 30 min before measuring 
the OD (405 nm) using a BioTek PowerWave HT microplate 
spectrophotometer.

SDS‑PAGE

Kt-IgM-8 was further purified using Pierce™ IgM purifi-
cation kit (ThermoFischer Scientific, Cat#44897) per kit 
instructions. IgM samples [Kt-IgM-8 and mouse IgM, κ 
isotype control, clone: MM-30, (BioLegend Cat#401601)] 
were separately mixed 1:1 with a PAGE sample buffer con-
taining 2-ME. 20 µL samples (0.5 mg/mL) were loaded 
into the stacking gel. A constant amperage of 30 mA was 
applied using a BIO-RAD mini-PROTEAN® II system for 
25 min (supplementary Fig. 1). The gel was then stained 
using Coomassie blue, washed with water, and de-stained 
using 5% acetic acid.

Flow cytometry

Kt-IgM-8 was diluted to 30 µg/mL in FACS staining buffer 
(1 × PBS, 0.5% BSA, 0.1% sodium azide) and incubated 
with cell lines MCF-7 or human colorectal carcinoma 116 
(HCT-116) (both at 2.0 × 106) for 30 min on ice and then 

washed three times. Cells were labeled with  AlexaFluor® 
647 (Southern Biotech Cat#1021-31) and data were acquired 
using Becton Dickinson (BD) FACSCalibur™ and analyzed 
with FlowJo™ software.

Complement‑dependent cytotoxicity

2 × 104 MCF-7 cells were plated in a 96-well-plate over-
night. The cells were exposed to 51Cr for 4 h, and then, the 
wells were washed with cell media. 100 µL of Kt-IgM-8 
(30 µg/mL), or anti-Tn-PS A1 whole sera, or purified pIgGs 
from anti-Tn-PS A1 sera, or anti-PS A1 or anti-PBS whole 
sera was added to wells. The antibodies were incubated for 
1 h at 37 °C in a 5%  CO2 incubator. The cells were then 
washed with cell media and 10% complement was added to 
each well. 51Cr release was measured after 18 h using liq-
uid scintillation to quantify 51Cr release, and % cytotoxicity 
was calculated using the following formula: (experimental 
− spontaneous)/(max − spontaneous) × 100. Spontaneous 
wells only received media.

SCID mice tumor implantation and adoptive transfer 
of immunotherapeutic

The SCIDs (Crl:SHO®-PrkdcscidHrhr) were surgically 
implanted with a 17β-estradiol 60-day release pellet 
(0.72 mg/pellet) (Innovative Research of America) behind 
the shoulders. After 2 days, 5 × 105 MCF-7 tumors cells 
were mixed with  Geltrex® Matrix (1:1) at 4 °C and sub-
cutaneously injected into the mice flanks (2 × per mouse). 
The mice tumors were measured with microcalipers 
three times a week using the equation [tumor volume 
 mm3 = (length × width2)/2]. 4 days after tumor implantation, 
200 µL of anti-Tn-PS A1 whole sera, or purified pIgGs from 
anti-Tn-PS A1 sera, or anti-PBS or Kt-IgM-8 (30 µg/mL) 
was i.p. injected once every week until the humane endpoint 
was reached. Each cohort consisted of four mice. Data were 
analyzed using GraphPad Prism and ANOVA was used for 
determining statistical significance.

Kt‑IgM‑8 sequencing of heavy and light chains

Hybridoma cell line secreting Kt-IgM-8 was sent to Vander-
bilt University Antibody and Protein Resource core services 
for extraction of cDNA and sequencing of heavy and light 
chain Kt-IgM-8.

Glycan array

A glycan array was used to determine the binding spe-
cificities of Kt-IgM-8 and commercial anti-Tn IgM mAb 
Tn-218 (OriGene™ AM10039PU). Glycan array genera-
tion and antibody binding specificity were described as in 
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Prendergast et al. [36], except experimental buffers were 
tailored to IgMs rather than IgGs. Briefly, Tn and 70 related 
glycans were synthesized using a one-pot three-enzyme 
chemoenzymatic approach, structures were confirmed by 
1,2-diamino-4,5-methylenedioxybenzene (DMB)-HPLC, 
nuclear magnetic resonance spectroscopy (NMR) or mass 
spectrometry (MS) and printed and as described in the lit-
erature [36]. Synthesized glycans were diluted to a final 
concentration of 100 µM (300 mM phosphate buffer, pH 
8.4) and printed in 4 replicates. Epoxy slides were blocked 
(0.1 M Tris, 0.05 M ethanol amine, pH 9.0) for 1 h at 50 °C. 
Slides were washed with distilled water and then blocked 
(PBS with 1% OVA) for 1 h. Blocking buffer was aspirated 
and anti-Tn antibody was added at 10 µg/mL concentration 
diluted in blocking buffer for 1 h. Slides were then washed 
twice with PBS with 0.1%  TWEEN® 20, then once with PBS 
alone. Secondary antibody [cyanine 3 (Cy3) goat anti-mouse 
IgM, Jackson ImmunoResearch 115-165-075 or goat anti-
mouse IgM  AlexaFluor® 647 Southern Biotech 1021-31] 
was added at a final concentration of 5 µg/mL in PBS for 
1 h. Slides were washed with PBS buffer then distilled water 
and finally air dried before reading on the GenePix 4000B 
(Molecular Devices, LLC). Fluorescence intensities were 
measured, and background noise was subtracted using the 
GenePix Pro software. Intensity of Tn (GalNAcα) was com-
pared along with the remaining glycans on the array to deter-
mine binding selectivity. Binding was compared to 10 µg/
mL mouse monoclonal IgM anti-Tn antibody Tn-218 (Ori-
Gene™ Cat#AM10039PU-S) and 10 µg/mL IgM isotype 
control (Clone MM-30, BioLegend Cat#401601). Positive 
and negative controls consisted of a commercial Tn-binding 
lectin [40 µg/mL Vicia Villosa Lectin (VVL)-biotin, Vector 
Laboratories Cat#B-1235; and 5 µg/mL streptavadin-Cy3 
Jackson ImmunoResearch Cat#016-160-084] and IgM sec-
ondary only, respectively.

Results and discussion

PS A1 was chosen as an immune stimulant, because it is a 
ZPS capable of inducing T-cell immune responses for anti-
bodies avoiding unwanted Fab donor–acceptor interactions 
other than those of carbohydrates. After immunizing mice, 
spleen cells were homogenized to single cell suspensions 
and fused with the myeloma cell line Sp2/0-Ag14 [37]. The 
resulting hybridoma cell culture supernatants were screened 
to bind with the Tn antigen that was conjugated to BSA. The 
hybridoma cell supernatant that demonstrated the best bind-
ing events to Tn-BSA was chosen for scale-up procedures 
for in vitro and in vivo studies. The optimal working concen-
tration of Kt-IgM-8 (Fig. 2a, b) was determined by serially 
diluting Kt-IgM-8 (60–0.01 µg/mL) on 96-well plates coated 
with 4 µg/mL Tn-BSA. Optimal binding in the titration of 

the antibody to Tn was observed at 0.3 µg/mL with an OD 
of greater than 0.2. For a mIgM antibody, binding at such 
low concentrations to a carbohydrate rivals that of an mIgG 
antibody and indicates high avidity due to the pentavalent 
nature of the mIgM itself [38]. A commercial Tn-binding 
mIgM antibody, Tn-218, was then used for comparison and 
concentrations for antibody binding of the Tn antigen on 
ELISA (Fig. 2c) were tested. Kt-IgM-8 and Tn-218 were 
screened in parallel at an initial concentration of 30 µg/mL 
and serially diluted to a final concentration of 0.23 µg/mL. 
Surprisingly, the commercial Tn-218 only minimally recog-
nized the Tn sugar when Tn-BSA was used as the coating 
construct most likely due to the non-multimeric presentation 
of Tn in Tn-BSA. In contrast, Kt-IgM-8 showed enhanced 
binding towards Tn when the same coating construct was 
used (Fig. 2c). To expand on the specificity of Kt-IgM-8, a 
panel of TACA-related constructs was prepared in-house or 
purchased, which all displayed various Tn-like and Tn anti-
gens (α/β-Tn-Thr-BSA, α-Tn-BSA, α-TF-BSA, blood group 
A, and blood group B) for screening by ELISA (Fig. 2c). 
From this study, we observed that Kt-IgM-8 had no discern-
ible binding preference between α or β containing Tn-Thr 
glycosides [noted in red and green (Fig. 2d)]; however, there 
was a notable decreased binding event when α-TF-BSA con-
struct (TF = β-d-Galp-(1,3)-α-d-GalpNAc) was used [noted 
in purple (Fig. 2d)]. In addition, Kt-IgM-8 did not bind to 
PS A1 (used as control) or BSA (used as a blocking agent) 
on the ELISA plates (data not shown). Kt-IgM-8 did not 
recognize blood groups A or B below 30 µg/mL (OD ≤ 0.2), 
but did partially bind blood groups A and B at increased 
concentration [60 µg/mL (OD ≥ 0.2)]. This result suggested 
that Kt-IgM-8 will not likely promote hemolytic activity due 
to structure similarities of α-GalpNAc between Tn and blood 
groups A and B. Overall, Tn-PS A1 immunization produced 
an antibody with an enriched Tn antigen reactivity and it 
exceeded the monovalent Tn-binding events observed from 
other mAbs produced from protein sources such as com-
mercially available monoclonal Tn-218 (Fig. 2c).

Our next step in profiling Kt-IgM-8 was to determine if 
the antibody could bind to cancer cells known to express 
the Tn antigen on the cell surface by FACS. MCF-7 and 
HCT-116 were chosen as both have cell surface Tn antigen 
[39, 40] and they represent two of the most common forms 
of cancers [41]. This in vitro experiment suggests feasibility 
for additional immunotherapy in in vivo models. We chose 
mouse anti-IgM  AlexaFluor® 647 as the fluorescent second-
ary antibody to detect our primary mIgM (Kt-IgM-8) anti-
body in FACS. Kt-IgM-8 demonstrated the ability to bind 
both MCF-7 and HCT-116 tumor cells at 30 µg/mL (Fig. 3) 
with a shift in fluorescence of 49% in both cell lines. Collec-
tively, the presence and recognition of Tn by Kt-IgM-8, as 
confirmed by FACS (Fig. 3), further validate Tn selectivity 
that was initially demonstrated by ELISA.
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Fig. 2  Characterization and titrations of Kt-IgM-8 and Tn-218 in 
ELISA. a OD values of Kt-IgM-8 binding to Tn-BSA from concen-
trations 60–0.01  µg/mL. b OD values of Kt-IgM-8 binding to Tn-
BSA from concentrations 0.8–0.01  µg/mL. c Kt-IgM-8 and Tn-218 

binding to Tn-BSA from concentrations 30–0.01  µg/mL. d Cross 
reactivity of Kt-IgM-8 with other Tn-like or GalNAc-containing gly-
cans from concentrations 60–0.47 µg/mL

Fig. 3  Flow cytometry of Kt-IgM-8 binding to Tn expressing cancer cell lines. a MCF-7 and b HCT-116
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Antibody function was assessed using a 51Cr CDC assay 
with MCF-7s. Kt-IgM-8, anti-Tn-PS A1 whole sera, puri-
fied pIgGs from anti-Tn-PS A1 sera, anti-PS A1 sera, and 
control sera from PBS immunizations were used in com-
parison with CDC activity (Fig. 4). Both the anti-Tn-PS 
A1 whole sera and purified pIgGs from anti-Tn-PS A1 sera 
were used as cytotoxicity controls. The purified pIgGs from 
anti-Tn-PS A1 sera were essential in determining how effec-
tive IgGs from immunizations could be at initiating CDC in 
the absence of pIgMs. We observed that Kt-IgM-8 had the 
greatest CDC activity out of the tested antibodies at ~ 30% 
cytotoxicity and this was statistically significant compared 
to both anti-Tn-PS A1 sera (15%, p < 0.005) and purified 
pIgGs from anti-Tn-PS A1 sera (8%, p < 0.005). CDC activ-
ity was absent from anti-serums of PS A1 and PBS control 
immunized mice. From an immunotherapeutic perspective, 
Kt-IgM-8 can initiate CDC at a greater rate than what was 
determined from other immunizations as a correlation to 
the overall concentration of antibody used. Based on the 
observed data, we further hypothesized that a Tn-selective 
mIgM antibody would provide protection in in vivo tumor 
mouse models through complement-mediated cytotoxicity.

To test our hypothesis, we turned our attention to SCID 
mice which lack functional immune responses (both B and 
T lymphocytes), but maintain an intact complement pro-
tein system, allowing for implantation and study of human 
tumors for CDC models [42]. We focused on MCF-7s as 

a model system for studying breast cancer in SCID mice. 
MCF-7 tumor growth in SCID mice was determined by 
measuring tumor volume and immunotherapeutic efficacy 
was assessed by comparing tumor volume in the control 
mice (PBS). Figure 5 presents four different treatments: anti-
PBS as control, Kt-IgM-8 (Fig. 5a), anti-Tn-PS A1 whole 
sera (Fig. 5b), and purified pIgGs from anti-Tn-PS A1 sera 
(Fig. 5c). The humane endpoint of the experiment was deter-
mined when tumor volume approached 400 mm3. The con-
trol mice, treated with PBS (vehicle), should not convey any 
immunogenicity to protect against the tumors and have thus 
been used to determine the efficacy of each therapeutic. The 
anti-Tn-PS A1 whole sera provided the greatest protection 
against tumor growth at 52% compared to PBS (Fig. 5d). 
This might be because the anti-Tn-PS A1 whole sera, which 
contained both pIgGs and pIgMs, was more effective at 
recruiting complement in a CDC (Fig. 4) mode of action. 
The purified pIgGs from anti-Tn-PS A1 sera did not show 
a statistically significant reduction in tumor growth when 
compared to the PBS control mice. A large portion of pIgGs 
were shown to recognize PS A1, diminishing overall speci-
ficity towards Tn and consequently tumor reduction (data 
not shown). Kt-IgM-8 also demonstrated protection against 
tumors at a 39% compared to PBS (Fig. 5d), which defines 
the effectiveness of the treatment and their role in minimiz-
ing tumor growth.

The glycan array results signify preferential selectivity 
to the Tn antigen. Kt-IgM-8 was visualized to bind to the 
printed, monovalent Tn antigen (spot 47) more so than other 
glycans (for full list of array glycans see supplementary 
Table 1 and Prendergast et al.) [36]. However, Kt-IgM-8 
does also bind a limited number of sialylated glycans of 
the Neu5Gc type (1.3–2.6-fold lower than Tn binding, see 
Fig. 6) more often than the Neu5Ac type. Neu5Gc sialic 
acids are not normally expressed in humans, but can be con-
sumed through the diet, and their presence is enriched in 
tumorous and other diseased tissues [43]. Two secondary 
antibodies were used for this experiment (Cy3 and A647) in 
which glycan-binding trends were consistent, but differences 
in fluorescence intensity were observed. When compared to 
the commercially available anti-Tn IgM, Tn-218, Kt-IgM-8 
demonstrated superior binding to Tn on the glycan array. 
Tn-218 failed to bind the monovalent Tn antigen at similar 
or increased concentrations (5, 12.5, 25, and 50 µg/mL, data 
not shown). These results are promising as similar anti-Tn 
IgMs have struggled to preferentially bind monovalent Tn 
as presented on glycan array surfaces.

The variable regions of the heavy and light chains of Kt-
IgM-8 were sequenced as noted in supplementary Figs. 2 
and 3. The sequencing allows bioinformatic identification 
of variable regions that bind specifically to carbohydrate-
based antigens, which can give further insight into immune 
recognition. In addition, sequencing of the variable regions 

Fig. 4  CDC activity of Kt-IgM-8 on MCF-7 cells. Data are illustrated 
as mean ± sem. **p < 0.005, ***p < 0.0005; two tailed Student’s t test
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can be used for humanizing the Kt-IgM-8 by insertion of the 
heavy and light chains into human antibodies which can be 
used as diagnostic tools or immunotherapeutics.

Conclusions

In conclusion, the zwitterionic nature of PS A1 evokes a 
natural CD4+ immune response, which can assist in the pro-
duction of unique anti-glycan antibodies. To validate our 
approach to immunotherapy, we adapted PS A1 to accom-
modate the Tn antigen for cancer intervention. The ration-
ale for using an entirely carbohydrate immunogen [Tn-PS 
A1 (1)] was to focus the antibody recognition on glycosides 
to generate antibodies that have no binding preference to 
peptides or lipids. The pentavalent binding nature of mIgM 
Kt-IgM-8 in combination with our observations noted herein 

suggest that IgM antibodies may confer an advantage for this 
particular glycan antigen. Tn can be associated with a wide 
variety of peptide carriers and an immunotherapeutic that 
recognizes glycosides independent of this carrier can be a 
beneficial feature. Producing a mAb for glycosides with our 
entirely carbohydrate immunogen can lead to preferential Tn 
antigen binding, avoiding cross reactivity with peptides that 
are naturally occurring.

IgG antibodies may not always be the preferred thera-
peutic choice as they relate to sugar antigens, and IgM anti-
bodies may be a viable alternative to elicit CDC responses. 
Kt-IgM-8 also represents a biological tool that has demon-
strated in vitro complement activity and in vivo inhibition 
of tumor progression in an SCID mice model compared to 
PBS (vehicle) controls. Few commercially available anti-Tn 
antibodies have been used for generating in vivo data (MLS 
128, GOD3-2C4, and KM3413) all of which are of the IgG 

Fig. 5  Kt-IgM-8 displays tumor volume  (mm3) reduction of MCF-7 
tumors in SCID mice for 39 days. a Kt-IgM-8 treatment of MCF-7 
tumor growth in comparison with PBS control mice. b Anti-Tn-
PS A1 whole sera in comparison with PBS mice. c Purified pIgGs 

from anti-Tn-PS A1 sera in comparison with PBS mice. d Tumor 
volume at day 39. Data are illustrated as mean ± sem. **p < 0.005, 
***p < 0.001; ANOVA
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type [44–46]. For example, GOD3-2C4 IgG was the only 
anti-Tn antibody to be used in an adoptive transfer in vivo 
model in SCID mice, but in vitro activity was only assessed 
by antibody-dependent cellular cytotoxicity (ADCC), while 
CDC was not examined [44]. Kt-IgM-8 also represents a 
select few IgM antibodies that utilizes CDC to be used in 
passive immunotherapy preferentially targeting the carbo-
hydrate cancer antigen Tn. However, at the current stage of 
development, Kt-IgM-8 is unlikely to be a useful therapeutic 
agent due to its marginal carbohydrate specificity.
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