Question			Answer	Marks	Guidance
					Throughout Q1 IGNORE variations in caps and small letters
1	(a)	(i)	Fe \checkmark	1	ALLOW name: iron DO NOT ALLOW ions, e.g. Fe^{2+}
1	(a)	(ii)	Ti $\checkmark \mathrm{Ni} \checkmark$	2	ALLOW names: titanium and nickel DO NOT ALLOW ions
1	(a)	(iii)	Cor	1	ALLOW name: cobalt ALLOW Co^{2+}
1	(a)	(iv)	$\mathrm{Mn} \checkmark$	1	ALLOW name: manganese ALLOW $\mathrm{Mn}_{3} \mathrm{O}_{4}$
1	(a)	(v)	$\mathrm{Cr} \checkmark$	1	ALLOW name: chromium
1	(b)		deep-blue solution: $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \checkmark$ yellow solution: $\mathrm{CuCl}_{4}{ }^{2-} \checkmark$ pale-blue precipitate: $\mathrm{Cu}(\mathrm{OH})_{2} \checkmark$	3	DO NOT ALLOW $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4\right]^{2+}$ OR $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ [] not required ALLOW round brackets around any atom e.g. ALLOW $\left[\mathrm{CuCl}_{4}\right]^{2-} ; \mathrm{Cu}\left(\mathrm{C}_{4}\right)^{2-}$ DO NOT ALLOW $\left[\mathrm{Cu}(\mathrm{Cl})_{4}\right]^{2-}$ OR $\left[\mathrm{Cu}^{2+}(\mathrm{Cl})_{4}\right]^{2-}$ ALLOW Cu(OH) $)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{OR}\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
1	(c)	(i)	octahedral \checkmark	1	
1	(c)	(ii)	$\mathrm{NiF}_{6}{ }^{4-} \mathrm{OR}\left[\mathrm{NiF}_{6}\right]^{4-} \checkmark$	1	4- charge required ALLOW $\left[\mathrm{Ni}(\mathrm{F})_{6}\right]^{--} ;$ALLOW $\mathrm{NiF}_{6}{ }^{-4}$ ALLOW round brackets DO NOT ALLOW $\mathrm{F} l$ for F DO NOT ALLOW $\left[\mathrm{Ni}\left(\mathrm{F}^{-}\right)_{6}\right]^{4-}$ OR $\left[\mathrm{Ni}^{2+}\left(\mathrm{F}^{-}\right)_{6}\right]^{4-}$

Question

Question			Answer	Marks	Guidance
2	(a)	(i)	M1 Shape On one graph (can be either), shape: slight rise/flat, then vertical, then slight rise/flat \checkmark M2 pH at start for acid Weak acid pH curve starts at higher pH and below $\mathrm{pH} 7 \checkmark$ M3 End point On both graphs, vertical section approximately $25 \mathrm{~cm}^{3}$ alkali have been added M4 pH when alkaline On both graphs, vertical section is still vertical through a ruler line aligned with the top of the pH axis label on left-hand axis \checkmark	4	FULL ANNOTATIONS MUST BE USED Use ruler tool for 4th marking point, e.g. $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ with $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ For M4, IGNORE final pH M3 For M1 and M2, IGNORE small gap before curve starts Note: If pH curves wrong way round (i.e. adding acid to alkali), ONLY M3 ($25 \mathrm{~cm}^{3}$) can be awarded
2	(a)	(ii)	pH range (of the indicator) matches vertical section/rapid pH change OR end point/colour change matches vertical section/rapid pH change	1	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point/colour change matches equivalence point IGNORE colour change matches end point Colour change is the same as end point
2	(b)	(i)	(enthalpy change for) the formation of $\mathbf{1} \mathbf{~ m o l e} \mathbf{H}_{2} \mathbf{O}$ from reaction of an acid/ $/ \mathrm{H}^{+}$with an alkali/base $/ \mathrm{OH}^{-}$	1	ALLOW (enthalpy change for) the reaction of $1 \mathrm{~mol} \mathrm{H}^{+}$ with 1 mol of OH^{-} DO NOT ALLOW formation of $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ from 1 mole of acid and/or 1 mole of alkali DO NOT ALLOW formation of 1 mol $\mathrm{H}_{2} \mathrm{O}$ from an acid and its conjugate base

Question			Answer	Marks	Guidance
2	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=\mathbf{- 5 7 . 5}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks energy change $=70.0 \times 4.18 \times 16.5$ $=4827.9(\mathrm{~J})$ OR $4.8279(\mathrm{~kJ}) \checkmark$ amount of $\mathrm{H}_{2} \mathrm{O}$ formed $=2.4(0) \times \frac{35.0}{1000}=0.084(0) \mathrm{mol} \checkmark$ $\Delta H_{\text {neut }}=-\frac{4.8279}{0.084(0)}=-57.475 \mathrm{OR}-57.48 \mathrm{OR}-57.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	3	FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible using working below IGNORE any sign shown ALLOW 4830 AND 4828 (J) ALLOW amount of HCl OR amount of NaOH (same value) - sign required $\text { ALLOW ECF from } \frac{\text { calculated energy change }}{\text { calculated moles } \mathrm{H}_{2} \mathrm{O}}$ ALLOW 3 significant figures up to calculator value correctly rounded Common errors Use of 289.5 K can give up to 2 marks by ECF: $=70.0 \times 4.18 \times 289.5=84.71 \mathbf{x}$ amount of $\mathrm{H}_{2} \mathrm{O}$ formed $=2.4(0) \times \frac{35.0}{1000}=0.084(0) \mathrm{mol}$ $\Delta H_{\text {neut }}=-\frac{84.71}{0.084(0)}=-1008 \mathrm{OR}-1010\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ Use of 35 can give up to 2 marks by ECF: $=35.0 \times 4.18 \times 16.5=2413.95(\mathrm{~J}) \mathbf{x}$ amount of $\mathrm{H}_{2} \mathrm{O}$ formed $=2.4(0) \times \frac{35.0}{1000}=0.084(0) \mathrm{mol}$ $\Delta H_{\text {neut }}=-\frac{2.41395}{0.084(0)}=-28.7375 \mathrm{OR}-28.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark}$

Question			Answer		Marks	Guidance
2	(b)	(iii)	Same energy is spread over larger volume \checkmark $11^{\circ} \mathrm{C} \checkmark$		2	ALLOW same energy heats greater volume /mass ALLOW the following alternatives for 'energy': Heat, $q, m c \Delta T$, enthalpy change, ΔH ALLOW use to ' $105 \mathrm{~cm}^{3} / 105 \mathrm{~g}$ ' as evidence of 'greater volume/ mass' ALLOW use of same energy value as in 2(b)(ii) as evidence for 'same energy' May need to refer to previous part, 2(b)(ii) IGNORE more energy heats a greater volume \qquad ASSUME units are ${ }^{\circ} \mathrm{C}$ unless told otherwise
				Total	11	

| Question | | Answer | Marks | Guidance |
| :---: | :---: | :---: | :--- | :--- | :--- |
| $\mathbf{3}$ | (a) | (i) | solution: (enthalpy change for)
 1 mole of a compound/substance/solid/solute dissolving \checkmark | IGNORE ‘energy released' OR ‘energy required'
 For dissolving, ALLOW forms aqueous/hydrated ions
 DO NOT ALLOW dissolving elements
 IGNORE ionic OR covalent |
| IGO | | | | |

Question			Answer	Marks	Guidance
3	(a)	(ii)	For 1st two marking points (Charge and Size), IGNORE 'atomic' and 'atoms' and assume that Mg or Na refer to ions, e.g. ALLOW Mg has a smaller (atomic) radius Charge Magnesium ion $/ \mathrm{Mg}^{2+}$ has greater charge OR Mg^{2+} has greater charge density Size Magnesium ion OR Mg^{2+} is smaller \checkmark Attraction Note: Correct particles required for this mark i.e. DO NOT ALLOW Mg; Mg atoms; Na ; Na atoms Mg^{2+} has a stronger attraction/force/ bonding to $\mathrm{H}_{2} \mathrm{O} / \mathrm{O}^{\delta-} \checkmark$	3	Note: Charge density can be used to credit the charge mark but not size mark ORA Sodium ion $/ \mathrm{Na}^{+}$has smaller charge OR Na^{+}has smaller charge density ORA: Sodium ion OR Na^{+}is larger IGNORE smaller charge density ('charge mark above') IGNORE idea of close packing of ions Note: Response must refer to attraction/bonding with $\mathrm{H}_{2} \mathrm{O}$ or this must be implied from the whole response ALLOW Mg^{2+} has a stronger ion-dipole attractions ORA: Na^{+}has weaker attraction/bonding to $\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW a response implying that ionic bonds (between ions) OR covalent bonds OR hydrogen bonds are formed

Question			Answer	Marks	Guidance
3	(a)	(iii)		2	Correct species AND state symbols required for both marks Mark each marking point independently ALLOW response on lower line: $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ (i.e. OH^{-}hydrated before Mg^{2+})
3	(a)	(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - 2694 ($\mathrm{kJ} \mathrm{mol}^{-1}$) award 2 marks $\begin{aligned} & \text { Lattice enthalpy }\left(\mathrm{Mg}(\mathrm{OH})_{2}\right) \\ & =[-1926+(2 \mathrm{x}-460)]-(-152) \text { OR }-2846+152 \checkmark \\ & =-2694 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors ALLOW for 1 mark: -2234: use of OH^{-}rather than $2 \times \mathrm{OH}^{-}$ (+)2694: signs all reversed -2998: sign wrong for 152 (+)1158: sign wrong for 1926 -854: sign wrong for 2×460 (+)2998: sign wrong for 2846 IF ALL 3 relevant values from the information at the start of Q3 have NOT been used, award zero marks unless one number has a transcription error, where 1 mark can be awarded ECF

Question			Answer	Marks	Guidance
3	(b)	(i)	- ΔH positive (Intermolecular) bonds/forces are being broken - $\quad \Delta S$ Increase in disorder/ randomness/ number of arrangements (of particles/molecules/energy) \checkmark - Comparison of ΔS (QWC) In a gas, molecules/particles are much more disordered/ random (than in liquids and solids) \checkmark	3	ALLOW hydrogen bonds DO NOT ALLOW breaking of ionic OR covalent bonds IGNORE a response comparing bonds made and bonds broken (boiling involves just breaking bonds) ALLOW liquids are more disordered than solids OR gases are more disordered than liquids ALLOW in a gas, molecules are much further apart (than in liquids and solids) IGNORE ΔS is much greater (in question)
3	(b)	(i)	$\begin{aligned} & \Delta S=\Sigma S(\text { products })-\Sigma S(\text { reactants }) \\ & =70.0-48.0 \text { OR } 22(.0) \text { OR } 0.022\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)^{v} \\ & T=\frac{6.01}{0.022}=273(\mathrm{~K}) \end{aligned}$ OR $\Delta G=6.01-273 \times 0.022 \checkmark$ $\Delta G=0 \text { OR } 0=\Delta H-T \Delta S \text { stated anywhere } \checkmark$	3	FULL ANNOTATIONS MUST BE USED NO UNITS required ALLOW 273.18 (K) OR 273.2 (K) ASSUME units are K unless told otherwise ALLOW $\Delta G=6.01-6.006=+4 \times 10^{-3}$ ALLOW $4 \times 10^{-3} \sim 0$ ALLOW 4×10^{-3} is very close to zero
			Total	16	

Question			Answer	Marks	Guidance
4	(a)		Experimental: 2 marks vary $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$ while keeping $\left[I^{-}\right]$constant \checkmark vary $\left[I^{-}\right]$while keeping $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$ constant \checkmark Obtaining rate from time 1 mark Rate $\propto 1 / t$ OR rate $=$ conc/time \checkmark Rate-concentration relationship - QWC 1 mark rate-concentration graph gives straight line through origin/0,0 OR when concentration doubles, rate doubles OR rate is proportional to concentration \checkmark	4	FULL ANNOTATIONS MUST BE USED ALLOW for 1 mark: 'keep one concentration constant whilst varying the other' OR vary the concentration of each reactant in turn, e.g. vary $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$ and then vary $\left[I^{-}\right]$ ALLOW rate $=1 / t$ OR amount/time ALLOW expressions communicating rate $\propto 1 / t$ ALLOW rate = gradient/tangent of a concentration-time graph AND measured at $t=0$ ALLOW 'conc and rate increase by same factor/amount' OR 'change in concentration is same as change in rate ALLOW 'when concentration doubles, time halves' IGNORE constant half-life from conc-time graph Half life is from continuous method, not in initial rates
	(b)		$\begin{aligned} & \text { rate }=k\left[I^{-}\right]\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right] \text { OR } k=\frac{\text { rate }}{\left[\left[^{-}\right]\left[\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\right]\right.} \\ & \text { OR } \frac{1.2 \times 10^{-3}}{\left(8.0 \times 10^{-2}\right) \times\left(4.0 \times 10^{-3}\right)} \checkmark \\ & =3.75 \mathrm{OR} 3.8 \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \checkmark \end{aligned}$	3	Correct numerical answer subsumes previous marking point ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ NO ECF from incorrect rate equation or k expression

Question		Answer	Marks	Guidance
(c)	(i)	Equation 1: $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Fe}^{3+} \checkmark$ Equation 2: $2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Fe}^{2+}$	2	ALLOW correct multiples IGNORE state symbols ALLOW 1 mark for 2 correct equations in wrong order: i.e. $\quad 2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Fe}^{2+}$ $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{Fe}^{3+}$ ALLOW \rightleftharpoons sign shown instead of arrow as long as equation is shown the 'right way around'
	(ii)	Fe^{3+} could react with I^{-}ions first \checkmark	1	ALLOW equations in (i) could take place in the other order IGNORE responses that compare E values
		Total	10	

Quest	Answer	Marks	Guidance
(b)	Pressure: higher pressure shifts (equilibrium position) to the right AND right-hand side has fewer (gaseous) moles \checkmark Temperature: higher temperature shifts (equilibrium position) to left AND (forward) reaction is exothermic / ΔH is -ve / gives out heat OR reverse reaction is endothermic / ΔH is +ve / takes in heat \checkmark K_{c} decreases AND (forward) reaction is exothermic \checkmark Comparison Relative effect of pressure and temperature is not known \checkmark	4	IGNORE responses in terms of rate Note: ALLOW suitable alternatives for 'to right' e.g. towards $\mathrm{CH}_{3} \mathrm{OH}$ OR towards products OR in forward direction OR increases yield of $\mathrm{CH}_{3} \mathrm{OH} /$ products ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' ALLOW equilibrium shifts to the right AND a statement that the concentrations on the top of K_{c} expression increases less than the bottom ALLOW K_{c} decreases AND reverse reaction is endothermic Note: exothermic/endothermic part of AND statement may be anywhere within the response Pressure and temperature send the equilibrium in opposite directions is not sufficient IGNORE 'temperature and pressure cancel each other out'
	Total	10	

Question			Answer	Marks	Guidance
6	(a)		Circuit: complete circuit with voltmeter and salt bridge linking two half-cells Half cells: Pt AND H ${ }^{+} / \mathrm{HCl}$ (solution) AND H_{2} gas (introduced via enclosed container around Pt) \checkmark Fe AND Fe ${ }^{2+}$ (solution) \checkmark Conditions: 1 mol dm ${ }^{-3}$ solutions AND $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND 1 atm/100 kPa/101 kPa/1 bar pressure	4	Voltmeter must be shown AND salt bridge must be labelled ALLOW any correct circuit for a cell ALL labels required In H_{2} half cell, DO NOT ALLOW just 'acid' ALL conditions required ALLOW if $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ mentioned for just one solution Look also on diagram in addition to answer lines DO NOT ALLOW 1 mol for concentration
	(b)	(i)	$\begin{aligned} & \text { oxygen electrode: } \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})^{\checkmark} \\ & \text { hydrogen electrode: } \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-} \checkmark \end{aligned}$	2	ALLOW multiples for each equation State symbols NOT required - IGNORE even if wrong If oxygen and hydrogen equations are written on the wrong lines ALLOW 1 mark if both correct ALLOW \rightleftharpoons sign shown instead of arrow as long as equation is shown the 'right way around' ALLOW one mark if both acid equations are given i.e. oxygen electrode: $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ AND hydrogen electrode: $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
		(ii)	$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$	1	ALLOW multiples, e.g. $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols DO NOT ALLOW if $\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{OH}^{-} \mathrm{OR} \mathrm{e}^{-}$are shown on both sides
		(iii)	1.23 (V) \checkmark	1	This is the ONLY correct answer

Quest	Answer	Marks	Guidance
(c)	A fuel cell reacts a fuel $/ \mathrm{H}_{2}$ with oxygen to produce a voltage/electrical energy \checkmark	1	ALLOW a fuel cell requires constant supply of a fuel/ $/ \mathrm{H}_{2}$ (and oxygen)/reactants OR operates continuously as long as a fuel/ H_{2} (and oxygen) are added DO NOT ALLOW storage cells can be recharged (Not all storage cells can be recharged)
(d)	Fossil fuels used to make hydrogen OR fossil fuels required to make fuel cell	1	Response requires link between fossil fuels / carboncontaining compounds and manufacture of the fuels cell or H_{2} i.e. energy required to make H_{2} is not sufficient
(e)	Correctly calculates amount of $\mathrm{Cr}=1.456 / 52.0=\mathbf{0 . 0 2 8 (0)} \checkmark$ NOTE: The remaining marks are ONLY available if a 3:2 molar ratio has been used 3 mol X reacts with $2 \mathrm{~mol} \mathrm{Cr}^{3+}$ OR $\mathbf{3} \mathbf{~ m o l ~ X} \longrightarrow \mathbf{2 ~ m o l ~ C r} \checkmark$ $\begin{aligned} & \text { Correctly calculates amount of } \mathbf{X} \\ & =\text { amount of } \mathrm{Cr} \times 1.5 \\ & =0.028(0) \times 1.5=\mathbf{0 . 0 4 2 (0)} \checkmark \end{aligned}$ Correctly calculates Molar mass $/ A_{r}$ of \mathbf{X} $=1.021 / 0.042(0)=24.3\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND X identified as $\mathrm{Mg} \checkmark$	4	FULL ANNOTATIONS MUST BE USED ALLOW equation: $2 \mathrm{Cr}^{3+}+3 \mathbf{X} \longrightarrow 3 \mathbf{X}^{2+}+2 \mathrm{Cr}$ Note: 3rd marking point subsumes the 2nd marking point ALLOW magnesium OR Mg^{2+} Mg with no evidence of how 24.3 had been calculated does not score this mark ALLOW ECF from incorrect amount of Cr for 2nd, 3rd and 4th marks Common error 3:2 ratio inverted between 2nd and 3rd marks: 3 marks: 3rd mark ECF: $0.028(0) \div 1.5=0.0187$ (mol) \checkmark Molar mass of $X=54.7\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND $X=\mathrm{Mn} \checkmark$
	Total	14	

Question			Answer	Marks	Guidance
7	(a)		$\mathrm{CaCO}_{3}+2 \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2}+\mathrm{CO}_{2} \checkmark$	1	ALLOW multiples
	(b)	(i)	weak acid: partly dissociates \checkmark $\mathrm{HSO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{3}^{2-} \downarrow$	2	ALLOW ionisation for dissociation \rightleftharpoons sign is required ALLOW multiples; state symbols not required DO NOT ALLOW equation with Ca^{2+} added to each side
		(ii)	$\mathrm{Mg}+\mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2} \longrightarrow \mathrm{MgSO}_{3}+\mathrm{CaSO}_{3}+\mathrm{H}_{2}$ $\mathrm{Mg}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \checkmark$	2	ALLOW multiples State symbols not required ALLOW as products: $\mathrm{MgCa}\left(\mathrm{SO}_{3}\right)_{2}+\mathrm{H}_{2}$ DO NOT ALLOW $\begin{aligned} & \mathrm{Mg}+\mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Ca}^{2+}+2 \mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \\ & \text { ALLOW } \mathrm{Mg}+2 \mathrm{HSO}_{3}^{-} \longrightarrow \mathrm{Mg}^{2+}+2 \mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \end{aligned}$
		(iii)	$\mathrm{HSO}_{3}{ }^{-}$can accept a proton $/ \mathrm{H}^{+}$and donate a proton $/ \mathrm{H}^{+}$ OR Base accepts a proton $/ \mathrm{H}^{+}$AND Acid donates a proton $/ \mathrm{H}^{+} \checkmark$ $\begin{aligned} & \mathrm{HSO}_{3}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}^{2-} \checkmark \\ & \mathrm{HSO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \checkmark \end{aligned}$ Two correct equations linked to acid and base behaviour \checkmark This could simply be labels (Acid AND base) for each equation, i.e. $\mathrm{HSO}_{3}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}{ }^{2-} \quad$ Acid $\mathrm{HSO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \quad$ Base	4	ASSUME 'It' applied to HSO_{3}^{-} ALLOW equations with \rightleftharpoons $\text { ALLOW } \mathrm{HSO}_{3}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ Note: Final mark can only be awarded if both equations are correct

Question	Answer	Marks	Guidance
(ii)	student is incorrect AND acid releases all H^{+}ions OR more acid dissociates \checkmark	1	Statement AND reason required for the mark ALLOW incorrect AND equilibrium shifts to right Note: The key idea is that more H^{+}ions are produced by more dissociation A comment that all the H^{+}ions react is just repeating information in the question
	Total	16	

Question			Answer	Marks	Guidance
8	(a)		$\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{2} \checkmark$	1	ALLOW $4 s^{0}:\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{0}$ ALLOW subscripts for superscripts ALLOW S, P, D (i.e. upper case)
8	(b)		(Only) 5 electrons in 4s and 3d sub-shells/orbitals \checkmark	1	ALLOW 3d sub-shell is empty OR no d electrons left ALLOW 6th electron in a 3p sub-shell/orbital ALLOW too much attraction on $3 p$ electrons OR a lot of energy required to remove $3 p$ electrons IGNORE only 5 electrons in outer shell IGNORE full outer shell/noble gas electron configuration IGNORE no 3d sub-shell Note: Key comment about 3d sub-shell being empty OR non-removal/greater attraction of 3p electrons
8	(c)	(i)	KMnO_{4} is purple/pink AND $\mathrm{V}^{\mathrm{n+}} / \mathrm{V}^{2+}$ is violet \checkmark	1	ALLOW KMnO_{4} AND $\mathrm{V}^{n+} / \mathrm{V}^{2+}$ have similar colours ALLOW KMnO_{4} is purple and 'the solution' is violet Assumption is that 'the solution' is $\mathrm{V}^{2+}(\mathrm{aq})$ ALLOW any reasonable description of purple/mauve/violet colours DO NOT ALLOW just ' KMnO_{4} is purple/pink' IGNORE reference to Mn^{2+} being (pale) pink

Question			Answer	Marks	Guidance
8	(c)	(ii)	Marks are for correctly calculated values. Working shows how values have been derived. $\begin{aligned} & n\left(\mathrm{KMnO}_{4}\right)=\frac{2.25 \times 10^{-2} \times 13.2}{1000}=2.97 \times 10^{-4}(\mathrm{~mol}) \\ & n(\mathrm{~V}) \end{aligned}$ Factor of 5: $\quad \frac{2.48 \times 10^{-3}}{5}=4.96 \times 10^{-4}(\mathrm{~mol})$ OR $5 \times 2.97 \times 10^{-4}=1.485 \times 10^{-3}(\mathrm{~mol}) \checkmark$ ratio $\frac{\mathrm{n}\left(\mathrm{V}^{\mathrm{n+}}\right)}{\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)}=\frac{4.96 \times 10^{-4}}{2.97 \times 10^{-4}}=\frac{1.67}{1}$ OR 1.67 OR $\frac{5}{3}$ OR $1 \mathrm{~mol} \mathrm{MnO}_{4}$ reacts with $1.67 \mathrm{~mol} \mathrm{~V}^{n+} \checkmark$ $5: 3$ ratio seen AND $n=2$ Correct equation with all species on both sides cancelled: $\begin{aligned} 5 \mathrm{~V}^{2+}(\mathrm{aq}) & +3 \mathrm{MnO}_{4}^{-}(\mathrm{aq}) \\ 5 \mathrm{VO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}+6 \mathrm{H}^{+}(\mathrm{aq})$ $5 \mathrm{~V}^{2+}+3 \mathrm{MnO}_{4}^{-}$on left AND $5 \mathrm{VO}_{3}^{-}+3 \mathrm{Mn}^{2+}$ on right \checkmark Complete equation correct	7	FULL ANNOTATIONS MUST BE USED ALLOW 2.48×10^{-3} up to calculator value of $2.475442043 \times 10^{-3}$, correctly rounded ALLOW $4.95 \times 10^{-4}(\mathrm{~mol})$ from $2.475442043 \times 10^{-3}$ ALLOW ratio $\frac{\mathrm{n}\left(\mathrm{V}^{\mathrm{n}+}\right)}{\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)}=\frac{2.48 \times 10^{-3}}{1.485 \times 10^{-3}}=\frac{1.67}{1}$ OR 1.67 OR $\frac{5}{3}$ ALLOW inverse ratio DO NOT ALLOW $n=2$ without some justification e.g.: $3 \mathrm{~mol} \mathrm{MnO}_{4}^{-}$reacts with $5 \mathrm{~mol} \mathrm{~V}^{2+}$; V changes oxidation number by 3 OR 3 electrons transferred to V IGNORE state symbols ALLOW any attempted equation using $n=2,3$ OR 4. See correct eqn for $n=2$ and equations on next page

Question			Answer	Marks	Guidance
8	(c)	(i)	Cont.		$\begin{aligned} & \text { From } \mathrm{V}^{4+}: \\ & 5 \mathrm{~V}^{4+}(\mathrm{aq})+ \\ & \quad \mathrm{MnO}_{4}^{-}(\mathrm{aq})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \\ & \quad \rightarrow 5 \mathrm{VO}_{3}^{-}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+22 \mathrm{H}^{+}(\mathrm{aq}) \end{aligned}$ $5 \mathrm{~V}^{4+}+\mathrm{MnO}_{4}{ }^{-}$on left AND $5 \mathrm{VO}_{3}{ }^{-}+\mathrm{Mn}^{2+}$ on right \checkmark Complete equation correct $\begin{aligned} & \text { From } V^{3+}: \\ & 5 \mathrm{~V}^{3+}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \quad \rightarrow 5 \mathrm{VO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq}) \checkmark \checkmark \end{aligned}$ $5 \mathrm{~V}^{3+}+2 \mathrm{MnO}_{4}^{-}$on left AND $5 \mathrm{VO}_{3}^{-}+2 \mathrm{Mn}^{2+}$ on right \checkmark Complete equation correct \checkmark
			Total	10	

