Early Post Renal Transplant Nutrition Care Case Study

RUOBIN WEI B.S.

DIETETIC INTERN 17'

CALIFORNIA STATE UNIVERSITY SAN BERNARDINO

SCRIPPS HEALTH

APRIL 12th, 2017

Overview

- Overview of Disease State
- Patient Profile
- Medical/Surgical Data
- Nutrition Assessment
- Nutrition Diagnosis
- Nutrition Intervention
- Monitoring and Evaluation
- Conclusion
- References

- Kidney Function

Normal Kidney

Filter waste

Fluid, electrolyte, and pH balance

Produce enzyme and hormone

Chronic Kidney Disease → ESRD

- BUN个, Creat个 Nitrogenous waste accumulation
- K个, Phos个
- GFR↓
- Edema
- Osteodystrophy
- Anemia

Kidney Transplant for ESRD

Advantages

- Potentially eliminates the need for dialysis
- Relatively liberalized diet
- Less fluid restrictions
- Improves quality of life

Disadvantages

- Immunosuppression
- Prone to infection
- Possible rejection of new kidney

- Common Nutrition Intervention for Early Post-Op

Nutrient (per day)	Acute Phase (up to 8 weeks following transplant and during acute rejection)			
Protein	1.3–2.0 g/kg; based on standard or adjusted body weight			
Calories	30–35 kcal/kg; may increase with post-operative complications			
Carbohydrates	Limit simple CHO with hyperglycemia			
Fats	To meet additional energy needs			
Potassium	2000–4000 mg if hyperkalemia exists			
Sodium	2000–4000 mg may be necessary			
Calcium	1200–1500 mg			
Phosphorus	DRI (supplements may be needed)			
Vitamins/minerals/trace elements	DRI			
Fluids	No restriction unless graft not functioning			

Source:

Clinical Practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease.
Am J Kidney Dis.
2003; 41(Suppl 3): s1–s91.

Common Nutrition Intervention for Early Post-Op

Protein

Energy

Fat

Water and sodium

Potassium

Calcium

Phosphorus

Magnesium

Iron

Zinc

Vitamins (recommended supplementation):

Pyridoxine HCI (B₆)

Ascorbic acid

Thiamin (B₁)

Folic acid

Vitamins A and K

Vitamin D

>1.2 g/kg (approximately 50% of high biologic value)

>35 kcal/kg

35% of total energy supply (high content of unsaturated lipids)

As tolerated by fluid balance

40-80 mmol

800-1,000 mg (supplements may be required)

8-17 mg/kg (phosphate binder is often needed)

200-300 mg

10−15 mg (supplements may be required)

15 mg (supplements may be required)

10 mg

100 mg

2 mg (not routinely)

1 mg (not routinely)

None

Individualized supplementation

Source:

Nutritional consequences of renal

transplantation.

Journal of Renal Nutrition.

2009;19(1):95-100.

- Common Nutrition Intervention for Early Post-Op
- Transplant diet Food safety
 - Well-cooked protein
 - Well washed raw fruits and vegetables
 - Pasteurized fruits, vegetables and diary
 - No berries, no black pepper
- Renal with dialysis diet Renal function
 - 2-3g Na, 2-3g K, 800-1000 Phos, >75g protein
- Low sodium diet Fluid balance
 - 2-2.4g Na

Patient Profile

- 55 yo African-American male, wife as caregiver
- H/O ESRD on home HD since 2008

- Deemed appropriate for renal transplant by medical team (3/7)
- Admitted for renal transplantation on 3/12
- Surgery Completed on 3/12

Medical/Surgical Data

- H/O DM2 with triopathy; HTN; HLD; ACD; Pancreatitis
- Hypercoagulability (several clotted catheters on the right side)
 - Central IV catheter to bilateral internal jugulars
 - Arteriovenous fistula to bilateral arms
 - Arteriovenous graft to left arms
- Recently broken right foot
- No H/O smoking, alcohol or drug use
- Therapeutic thoracentesis, and cholecystectomy in the past

Nutrition Assessment (3/13)—Anthropometrics

•Dry Wt: 229lb=104kg (per H&P)

Pre-Op Wt: 247lb=112kg (3/12/17 Per EMR)

•UBW: Fluctuating

•IBW: 172lb=78kg

•% IBW (dry): 133% (dry wt)

•Height: 71 inches=180cm

•BMI: 32Kg/m² (Class I Obesity)

Nutrition Assessment (3/13) – Laboratory Values

Labs	Normal Ranges	3/16/17	3/15/17	3/14/17	3/13/17	3/12/17	3/12/17	3/7/17
		0:01-12:00	0:01-12:00	0:01-12:00	0:01-12:00	12:01-24:00	0:01-12:00	0:01-12:00
Sodium	137-145 mmol/L	138	134L	134L	139	132L	137	
Potassium	3.5-5.1 mmol/L	4.0	4.3	4.9	5.6H	5.5H	5.6H	
Urea Nitrogen, Blood	9-20 mg/dL	43H	49H	33H	21H	34H	29H	
Creatinine, Serum	0.7-1.3 mg/dL	6.8H	7.3H	6.0H	5.9H	9.0H	8.4H	
GFR Calc, African	>60mL/mn/1.73	10L	9L	12L	12L	7L	8L	
Magnesium	1.6-2.3 mg/dL	2.1	1.9	1.8	1.9	2.0	1.7	2.3
Phosphorus	2.5-4.5 mg/dL	5.1H	6.0H	4.8H	4.7H		3.0	6.4H
Hemoglobin A1c	0-5.6%							7.8H
Glucose (Finger Stick)	70-125 mg/dL		145-	229-	164-	251H	168H	
			184H	258H	187H			

Nutrition Assessment (3/13) – Medication

- Tacrolimus Immunosuppressant (non-steroid), can increase renal labs
- Kayexalate Potassium binder
- Lantus, Humalog
- Bumex
- Albuterol
- Folic Acid
- MVT/mineral
- Protonix
- NaHCO3
- Bowel Protocol

Nutrition Assessment (3/13) – Nutrient Needs & Diet

•Energy: IBW (25-30kcal/kg)=1950-2350kcal

•Protein: IBW (1.2-1.4g/kg)= **95-110g** = 380-440kcal (19% total kcal)

•CHO: 1096kcal=274g=**18 CHO** Counting (51% total kcal)

•Fat: 645kcal=72g (30% total kcal)

•Fluid: per MD team

Diet PTA: Diabetic diet

• Diet In-house:

Pre-op: DM, Renal w/ Dialysis -> NPO

Post-op: CL -> Transplant, DM, Renal w/ Dialysis, Low Na

Nutrition Diagnosis (3/13) – High Risk

```
Inadequate Nutrient Intake
Related to
Poor appetite and increased needs post renal transplant;
Tall stature
As evidenced by
Average PO intake = 47% x 6 meals;
POD#1;
5'11"
```


Nutrition Intervention (3/13) – Early Post-Op

- Meals and Snacks: Food preferences; encourage PO intake
- Supplement: Consider oral nutrition supplement in house and at home
- Nutrition-Related Labs and Meds: RD to check electrolyte status, fluid status, and blood glucose
- **Diet Education**: when appropriate
- Coordination of Care

- Goal:
 - Avg. PO intake at least 75% of meals

Monitor & Evaluation (3/15)

- Intake: Avg. PO 47% x 6meals after transplantation
- Labs Improving: GFR↑, Creat↓, K↓
 - Goal Continued: Avg. PO intake at least 75% of meals

• Education:

- For now: Transplant, renal, diabetic, low sodium diet
- In the future: diabetic, low sodium diet, with food safety precautions
- New Goal: Check patient knowledge and understanding about early post-op diet restriction and limit of future diet liberalization

Conclusion

- Normal kidney function, CKD, ESRD, renal transplant
- Nutrition care plan for early post renal transplant patient

Renal transplant goal: renal labs WNL

References

- 1. Nelms, M., Sucher, K.P., Lacy, K. Nutrition therapy and pathophysiology. 3rd ed. Boston, MA: Cengage Learning; 2016.
- 2. Medical definition of nephrosclerosis. MedicineNet Web site. http://www.medicinenet.com/script/main/art.asp?articlekey=4533. Updated 2017. Accessed 4/11, 2017.
- 3. Mayo Clinic. Symptoms and causes. Chronic Kidney Disease Web site. http://www.mayoclinic.org/diseases-conditions/chronic-kidney-disease/symptoms-causes/dxc-20207466. Updated 2017. Accessed 4/11, 2017.
- 4. National Institute of Health. Kidney transplant. National Institute of Diabetes and Digestive Kidney Diseases Web site. https://www.niddk.nih.gov/health-information/kidney-disease/kidney-failure/kidney-transplant. Updated 2016. Accessed 4/11, 2017.
- 5. California Pacific Medical Center. Benefits of kidney transplantation. Sutter Health Web site. http://www.cpmc.org/advanced/kidney/patients/topics/benefits_transplant.html. Updated 2014. Accessed 4/10, 2017.
- 6. Teplan, V., Valkovsky, I., Teplan, V.Jr., Stollova, M., Vyhnanek, F., Andel, M. Nutritional consequences of renal transplantation. *Journal of Renal Nutrition*. 2009;19(1):95-100.
- 7. UC Davis Health. The evaluation process. UC Davis Transplant Center Web site. https://www.ucdmc.ucdavis.edu/transplant/learnabout/learn_eval_process.html. Updated 2017. Accessed 4/11, 2017.
- 8. National Institute of Health. Vascular access for hemodialysis. National Institute of Diabetes and Digestive and Kidney Diesease Web site. https://www.niddk.nih.gov/health-information/kidney-disease/kidney-failure/hemodialysis/vascular-access. Updated 2014. Accessed 4/11, 2017.
- 9. Pronsky, Z. M., Elbe, D., Ayoob, K. Food medication interactions. 18th ed. Birchrunville, PA: Crowe, J.P. Sr., Epstein, S.; 2015.
- 10. Einollahi,B., Nemati,E., Rostami,Z., Temimoori,M., Ghadian,A.R. Electrolytes disturbance and cyclosporine blood levels among kidney transplant recipients. International Journal of Organ Transplantation Medicine. 2012;4(4):166-175.
- 11. Sood, A., Hakim, D.N., Hakim, N.S. Consequences of recipient obesity on postoperative outcomes in a renal transplant: A systematic review and meta-analysis. *Experimental and Clinical Transplantation*. 2016;2:121-128.
- 12. National Kidney Fundation. Diet and transplantation. National Kidney Fundation Web site. https://www.kidney.org/atoz/content/nutritrans. Updated 2016. Accessed 4/10, 2017.
- 13. InsideScripps Web site. https://insidescripps.org/Pages/HomePage.aspx. Updated 2017. Accessed 4/11, 2017.
- 14. Overview of enteral nutrition. In: Mueller, C., Miller, S., Schwartz, D., Kovacevich, D., McClave, S., ed. The A.S.P.E.N. adult nutrition support core curriculum, 2nd edition. 2nd ed. Silver Spring, MD: A.S.P.E.N.; 2012:1-718. aspen@nutrition.org. Accessed 4/11/2017.
- 15. Chadban, S., Chan, M., Fry, K., Patwardhan, A., Ryan, C., Trevillian, P., Westgarth, F. Protein requirement in adult kidney transplant recipients. *Nephrology*. 2010;15:S68-S71.
- 16. Kidney transplantation. MedlinePlus Web site. https://medlineplus.gov/kidneytransplantation.html. Updated 2017. Accessed 4/11, 2017.
- 17. Orazio L., Chapman J., Isbel N.M., Campbell K.L. Nutrition care for renal transplant recipients: An evaluation of service delivery and outcomes. *Journal of Renal Care*. 2014;40(2):99-106.
- 18. Rho,M.R., Lim,J.H., Park,J.H., Han,S.S., Kim,Y.S., Lee,Y.H., Kim,W.G. Evaluation of nutrient intake in early post kidney transplant recipients. Clinical Nutrition Research. 2013;2:1-11.

