# Answer all the questions.

| 1 |     |      | st was investigating the reactions of benzene, phenol and cyclohexene with bromine.  Indeed that they all reacted with bromine but under different conditions. |
|---|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) |      | chemist found that when benzene reacts with bromine, a halogen carrier is required as a alyst.                                                                 |
|   |     |      | te an equation for this reaction.<br>do <b>not</b> need to show the halogen carrier in your equation.                                                          |
|   |     |      |                                                                                                                                                                |
|   |     |      |                                                                                                                                                                |
|   |     |      | [1]                                                                                                                                                            |
|   | (b) |      | chemist also found that when phenol or cyclohexene reacts with bromine, a haloger ier is <b>not</b> required.                                                  |
|   |     | (i)  | The chemist observed that bromine decolourises when it reacts with phenol.                                                                                     |
|   |     |      | What other observation would she have made?                                                                                                                    |
|   |     |      | Draw the structure of the organic product formed.                                                                                                              |
|   |     |      | Observation                                                                                                                                                    |
|   |     |      | Organic product:                                                                                                                                               |
|   |     |      |                                                                                                                                                                |
|   |     |      |                                                                                                                                                                |
|   |     |      |                                                                                                                                                                |
|   |     |      | [2]                                                                                                                                                            |
|   |     | (ii) | Cyclohexene also decolourises bromine.                                                                                                                         |
|   |     |      | Name the organic product formed.                                                                                                                               |

| (iii) | Explain the relative resistance to bromination of benzene compared to phenol and compared to cyclohexene. |
|-------|-----------------------------------------------------------------------------------------------------------|
|       | In your answer, you should use appropriate technical terms, spelt correctly.                              |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       | IJI                                                                                                       |

(c) Compound A, shown below, is being considered as an azo dye by a chemical company. A chemist planned a two-stage synthesis of compound A starting from an aromatic amine.

$$H_3C$$
 $N$ 
 $N$ 
 $OH$ 

compound A

The aromatic amine is first converted into a diazonium ion.

- Draw the displayed formula of the aromatic amine **and** of the diazonium ion.
- State the reagents and conditions for each stage in the synthesis of compound **A** from an aromatic amine.

| [5] |  |
|-----|--|

[Total: 14]

2

| Hydroxyethanal, HOCH <sub>2</sub> CHO, is sometimes referred to as the 'first sugar' as it is the simplest possible molecule that contains both an aldehyde group and an alcohol group. |                                                                                                                           |                                                                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                         | A biochemist investigated some redox reactions of hydroxyethanal and found that several different products were produced. |                                                                                                              |  |
| (a)                                                                                                                                                                                     | The                                                                                                                       | biochemist reacted hydroxyethanal with Tollens' reagent.                                                     |  |
|                                                                                                                                                                                         | (i)                                                                                                                       | State what the biochemist would see when hydroxyethanal reacts with Tollens' reagent.                        |  |
|                                                                                                                                                                                         |                                                                                                                           | [1]                                                                                                          |  |
|                                                                                                                                                                                         | (ii)                                                                                                                      | Write the structural formula of the organic product formed when hydroxyethanal reacts with Tollens' reagent. |  |
|                                                                                                                                                                                         |                                                                                                                           |                                                                                                              |  |
|                                                                                                                                                                                         |                                                                                                                           | [1]                                                                                                          |  |
| (b)                                                                                                                                                                                     | The reflu                                                                                                                 | e biochemist also reacted hydroxyethanal with acidified dichromate by heating under ux.                      |  |
|                                                                                                                                                                                         | Wri                                                                                                                       | te an equation for this oxidation.                                                                           |  |
|                                                                                                                                                                                         | Use                                                                                                                       | e [O] to represent the oxidising agent.                                                                      |  |
|                                                                                                                                                                                         |                                                                                                                           |                                                                                                              |  |
|                                                                                                                                                                                         |                                                                                                                           | [2]                                                                                                          |  |
| (c)                                                                                                                                                                                     | The                                                                                                                       | biochemist then reduced hydroxyethanal using aqueous NaBH <sub>4</sub> .                                     |  |
|                                                                                                                                                                                         | (i)                                                                                                                       | Write the structural formula of the organic product.                                                         |  |
|                                                                                                                                                                                         |                                                                                                                           | [1]                                                                                                          |  |
|                                                                                                                                                                                         | (ii)                                                                                                                      | Outline the mechanism for this reduction.                                                                    |  |
|                                                                                                                                                                                         |                                                                                                                           | Use curly arrows and show any relevant dipoles.                                                              |  |
|                                                                                                                                                                                         |                                                                                                                           |                                                                                                              |  |

| 3 | lpha-Amino acids are found in human sweat. A student had read that chromatography could be use to separate and identify the amino acids present in human sweat. |       |                                                                                                                                                                                    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a)                                                                                                                                                             |       | student used Thin-Layer Chromatography (TLC) to separate the $\alpha$ -amino acids in apple of human sweat and discovered that three different $\alpha$ -amino acids were present. |
|   |                                                                                                                                                                 | (i)   | Name the process by which TLC separates $\alpha$ -amino acids.                                                                                                                     |
|   |                                                                                                                                                                 |       | [1]                                                                                                                                                                                |
|   |                                                                                                                                                                 | (ii)  | The chromatogram was treated to show the positions of the separated $\alpha\text{-amino}$ acids.                                                                                   |
|   |                                                                                                                                                                 |       | Explain how the student could analyse the chromatogram to identify the three $\alpha\mbox{-amino}$ acids that were present.                                                        |
|   |                                                                                                                                                                 |       |                                                                                                                                                                                    |
|   |                                                                                                                                                                 |       |                                                                                                                                                                                    |
|   |                                                                                                                                                                 |       |                                                                                                                                                                                    |
|   |                                                                                                                                                                 |       | [2]                                                                                                                                                                                |
|   |                                                                                                                                                                 | (iii) | Several $\alpha$ -amino acids have structures that are very similar.                                                                                                               |
|   |                                                                                                                                                                 |       | Suggest why this could cause problems when using TLC to analyse mixtures of $\alpha\mbox{-amino}$ acids.                                                                           |
|   |                                                                                                                                                                 |       |                                                                                                                                                                                    |

(b) Some of the  $\alpha$ -amino acids found in human sweat are shown in the table below.

| α-amino acid  | R group                                             |
|---------------|-----------------------------------------------------|
| glycine       | Н                                                   |
| leucine       | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>   |
| isoleucine    | CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub> |
| alanine       | CH <sub>3</sub>                                     |
| valine        | CH(CH <sub>3</sub> ) <sub>2</sub>                   |
| lysine        | (CH <sub>2</sub> ) <sub>4</sub> NH <sub>2</sub>     |
| glutamic acid | (CH <sub>2</sub> ) <sub>2</sub> COOH                |

Table 1

(i) State the general formula of an  $\alpha$ -amino acid.

[1]

(ii) There are four stereoisomers of isoleucine.

One of the stereoisomers is shown below.



Draw 3D diagrams for the other three stereoisomers of isoleucine.



[3]

| α-amino acid  | R group                                             |
|---------------|-----------------------------------------------------|
| glycine       | Н                                                   |
| leucine       | CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>   |
| isoleucine    | CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub> |
| alanine       | CH <sub>3</sub>                                     |
| valine        | CH(CH <sub>3</sub> ) <sub>2</sub>                   |
| lysine        | (CH <sub>2</sub> ) <sub>4</sub> NH <sub>2</sub>     |
| glutamic acid | (CH <sub>2</sub> ) <sub>2</sub> COOH                |

Table 1

(c)  $\alpha$ -Amino acids form different ions at different pH values. Zwitterions are formed when the pH is equal to the isoelectric point of the  $\alpha$ -amino acid.

The isoelectric points of three  $\alpha$ -amino acids are given below:

Draw the structures of the ions formed by these  $\alpha$ -amino acids at the pH values below. Refer to **Table 1** above.

| alanine at pH = 6.0 | glutamic acid at pH = 10 | lysine at pH = 2.0 |
|---------------------|--------------------------|--------------------|
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |
|                     |                          |                    |

(d)  $\alpha$ -Amino acids can react to form polypeptides.

A short section of a polypeptide is shown below.

Name the  $\alpha$ -amino acid sequence in this section of the polypeptide. Refer to **Table 1**.

.....[1]

**(e)** Synthetic polyamides, such as nylon, contain the same link as polypeptides. Nylon is the general name for a family of polyamides.

A short section of a nylon polymer is shown below.

Draw the structures of **two** monomers that could be used to make this nylon.

[2]

[Total: 14]

4 An industrial chemist discovered five bottles of different chemicals (three esters and two carboxylic acids) that were all labelled  $C_5H_{10}O_2$ .

The different chemicals had the structural formulae below.

(a) The chemist used both infrared and <sup>13</sup>C NMR spectroscopy to identify the two carboxylic acids and to distinguish between them.

| How do both types of spectra allow the carboxylic acids to be identified and distinguished? |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
|                                                                                             |
| [3]                                                                                         |

**(b)** The chemist analysed one of the esters by <sup>1</sup>H NMR spectroscopy. The spectrum is shown below.



Analyse the splitting patterns and the chemical shift values to identify the ester. Give your reasoning.

| In your answer, you should use appropriate technical terms, spelt correctly. |
|------------------------------------------------------------------------------|
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
| [6                                                                           |
| [Total: 9                                                                    |

5 Aspirin and paracetamol are commonly available painkillers.

Aspirin and paracetamol can be prepared using ethanoic anhydride, (CH<sub>3</sub>CO)<sub>2</sub>O.

Some examples of the reactions of ethanoic anhydride are shown below.

(a) Draw the structure of a compound that could react with ethanoic anhydride to form aspirin.

[1]

| (b) | Eth   | anoic anhydride can react with 4-aminophenol to produce paracetamol.                                        |     |
|-----|-------|-------------------------------------------------------------------------------------------------------------|-----|
|     | (i)   | Write an equation, showing structural formulae, for this formation of paracetamol.                          |     |
|     |       |                                                                                                             | ΓO  |
|     | /ii\  | An impurity with molecular formula C. H. NO, is also formed                                                 | [2  |
|     | (ii)  | An impurity with molecular formula $C_{10}H_{11}NO_3$ is also formed.  Draw the structure of this impurity. |     |
|     |       |                                                                                                             |     |
|     |       |                                                                                                             | [1] |
|     | (iii) | Explain why it is necessary for pharmaceutical companies to ensure that drugs medicines are pure.           | and |
|     |       |                                                                                                             |     |
|     |       |                                                                                                             |     |
|     |       |                                                                                                             | [1  |
| (c) |       | me the functional groups in aspirin and in paracetamol.                                                     |     |
|     | •     | orin                                                                                                        |     |
|     | par   | acetamol                                                                                                    | [2  |

(d) A student carried out some reactions with samples of aspirin and paracetamol in the laboratory. Their structures are repeated below.

The student tried to react each of the reagents A, B and C with aspirin and paracetamol.

- Reagent **A** reacted with aspirin **and** with paracetamol.
- Reagent **B** reacted **only** with aspirin.
- Reagent C reacted only with paracetamol.

Suggest possible identities of reagents  ${\bf A},\,{\bf B}$  and  ${\bf C}$  and the organic products that would be formed.

(i) Reagent A:

Organic product with aspirin:

Organic product with paracetamol:

[3]

| (ii)  | Reagent <b>B</b> :                |
|-------|-----------------------------------|
|       | Organic product with aspirin:     |
|       |                                   |
|       |                                   |
|       |                                   |
|       | [2]                               |
| (iii) | Reagent <b>C</b> :                |
|       | Organic product with paracetamol: |
|       |                                   |
|       |                                   |
|       |                                   |

**END OF QUESTION PAPER** 

[2]

[Total: 14]