Question 1: N/A

Question 2: N/A

Question 3: N/A

Question	Marking Guidance	Mark	Comments
4(a)	$\begin{bmatrix} H_3C - C - O - CH_3 \\ 0 \end{bmatrix}^{+\bullet}$ $OR \begin{bmatrix} C_3H_6O_2 \end{bmatrix}^{+\bullet}$	1	penalise missing brackets. ng ester, no further mark.
	H ₃ C−C + Must be displayed + H + H + O−C−H + H (1) Radical dot must be lignore lone pair(s) addition to single e	on O Ignore	radical with brackets as H

4(b)(i)	AlCl ₃ or FeCl ₃	1	If wrong no further marks.
	$CH_3COCI + AICI_3 \longrightarrow CH_3CO + AICI_4$	1	Correct equation scores 2 - contrast with 4(b)(iii) Allow + on C or O in equation.
4(b)(ii)	Electrophilic substitution	1	Ignore Friedel crafts.
	M1	3	 + must be on C of RCO here M1 arrow from within hexagon to C or to + on C Gap in horseshoe must approximately be centred around C1 and not extend towards C1 beyond C2 and C6 + not too close to C1 M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure, i.e. + on H in intermediate loses M2 not M3 ignore base removing H for M3
4(b)(iii)	$(CH_3CO)_2O + C_6H_6 \rightarrow C_6H_5COCH_3 + CH_3COOH$	1	Correct equation scores 1 – contrast with 4(b)(i)
	OR $(CH_3CO)_2O) + CH_3COOH$		Not allow molecular formula for ethanoic anhydride or ethanoic acid.

Question	Marking Guidance	Mark	Comments
5(a)(i)	2-hydroxypropanoic acid OR 2-hydroxypropan(-1-)oic acid		Do not penalise different or missing punctuation or extra spaces. Spelling must be exact and order of letters and numbers as here. Can ignore -1- before –oic, but penalise any other numbers here.
5(a)(ii)	$C_{12}H_{22}O_{11} + H_2O \rightarrow 4CH_3CH(OH)COOH$ \emph{OR} $C_{12}H_{22}O_{11} + H_2O \rightarrow 2CH_3CH(OH)COOH + C_6H_{12}O_6$	1	Allow $4C_3H_6O_3$ Allow $2C_3H_6O_3$
5(b)(i)	Nucleophilic addition	1	
	M4 for lp, arrow and H+ CH_3 $CH_$	4	 M1 lp and minus must be on C M1 and M4 include lone pair and curly arrow. M2 not allowed independent of M1, but allow following some attempt at attack on carbonyl C allow M1 for correct attack on C+ + rather than δ+ on C=O loses M2 M3 is for correct structure including minus sign but lone pair is part of M4 Allow arrow in M4 to H of H-CN with arrow forming cyanide ion.
5(b)(ii)	Equal mixture of enantiomers / (optical) isomers	1	
5(b)(iii)	(Plane) polarized light	1	If missing no further mark.
	(Polarised light) rotated by single enantiomer but unaffected by racemate	1	Both needed; not allow bend, twist etc.

5(c)(i)	_	$CH_3CH(OH)COOH + NaOH \rightarrow CH_3CH(OH)COONa + H_2O$ $\textit{OR} \ CH_3CH(OH)COOH + OH^- \rightarrow CH_3CH(OH)COO^- + H_2O$			Not ambiguous mol formulae for product - must show COONa or CO ₂ Na or COO ⁻ or CO ₂
5(c)(ii)	$[H^{+}] = K_a$ OR $pH = pK_a$		1		
,,,,	pH =	3.86		1	Allow more than 2 decimal places but not fewer.
5(c)(iii)	M1	buffer		1	Ignore acidic but penalise alkaline or basic.
	Any t	wo out of the three marks M2 , N	13 & M4		
	M2 Large lactate concentration in buffer OR sodium lactate completely ionised				
	M3	added acid reacts with/is removed by lactate ion or A $^-$ or sodium lactate or salt \mathbf{OR} equation $\mathbf{H}^+ + \mathbf{A}^- \rightarrow \mathbf{HA}$		Max 2	Ignore reaction of H ⁺ with OH ⁻ Ignore reference to equilibrium unless it is shown.
	M4 ratio [HA]/[A ⁻] stays almost constant			Ignore H ⁺ or pH remains constant.	
5(d)(i)	5(d)(i) CH ₃ CH ₃		No marks if ester link missing		NB Correct answer scores 2
			Correct ester link allow —COO—	1	Ignore <i>n</i> here (compare with 5(d)(iv). Ignore brackets.
			All rest correct with trailing bonds	1	If OH or COOH on either or both ends, lose one, ie dimer scores 1
					If more than two repeating units, lose 1
5(d)(ii)	(Poly	(Poly)ester ie allow ester		1	Not terylene. Ignore spaces and brackets in answer.

5(d)(iii)	H ₃ C	1	Allow any <u>cyclic C₆H₈O₄</u>
5(d)(iv)	—CH ₂ —CH— OR —CH ₂ —CH— C ₆ H ₅	1	Penalise <i>n</i> here (compare with 5(d)(i) Ignore brackets. Not allow Ph for phenyl.
5(d)(v)	In landfill, no air or UV, to assist decay OR not enough water or moisture (to hydrolyse polyester)	1	Allow landfill has/contains: no or few bacteria / micro-organisms / enzymes compared with compost heap OR less oxygen OR lower temperature.

Question	Marking Guidance	Mark	Comments
6(a)	H 	1	Allow –NH ₃ ⁺ and ⁺ NH ₃ –
6(b)	H H ₃ C—C—COOCH ₃ I NH ₂	1	Allow protonated form, i.e. $-NH_3^+$ or $^+NH_3^-$
	COO H-C-CH ₂ COO NH ₂	1	Allow – CO ₂
6(d)	COOH COOH	1	Allow zwitterion with any COO ⁻ Allow use of "wrong" COOH COOH COOH CH ₂ H ₂ N—C-CH ₂ —C—N—C—COOH H O H O H O H H O H COOH CH C

Question	Marking Guidance	Mark	Comments
7(a)(i)	CDCl ₃ or CD ₂ Cl ₂ or C ₆ D ₆ or CCl ₄	1	Not D ₂ O Allow CD ₃ CI
7(a)(ii)	4 or four	1	
7(a)(iii)	Triplet or 3 or three	1	
7(a)(iv)	1,4-dichloro-2,2-dimethylbutane	1	Do not penalise different or missing punctuation or extra spaces.
			Spelling must be exact and order of letters and numbers as here.
7(b)(i)	3 or three	1	
7(b)(ii)	190-220 (cm ⁻¹)	1	Allow a single number within the range.
			OR a smaller range entirely within this range.
7(b)(iii)	hexane-2,5-dione	1	Do not penalise different or missing punctuation or extra spaces.
			Spelling must be exact and order of letters and numbers as here.
			NB so must have middle e

Question	Marking Guidance	Mark	Comments
8(a)	(nucleophilic) addition-elimination	1	
	$\begin{array}{c} M2 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_2 \\ CH_2 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_3 \\ CH_3$	4	 Allow attack by :NH₂CH₂CH₂CH₃ M2 not allowed independent of M1, but allow M1 for correct attack on C+ + rather than δ+ on C=O loses M2 If CI lost with C=O breaking, max1 for M1 M3 for correct structure with charges but lone pair on O is part of M4 3 arrows in M4 can be shown in two separate steps. If M3 drawn twice, mark first answer eg ignore missing + if missed off second structure Only allow M4 after correct / very close M3 For M4, ignore RNH₂ removing H⁺ but lose M4 for CI⁻ removing H⁺ in mechanism,
	N-propylethanamide must be this name even if wrong amine used	1	but ignore HCI shown as a product. NOT N-propylethaneamide

8(b)(i)	NH ₂	Not allow ambiguous C ₃ H ₇ NH ₂ BEWARE No mark for the original amine CH ₃ CH ₂ CH ₂ NH ₂	1	Label and structure must both be correct for each type to score the mark.
	H ₃ C—N—CH ₂ CH ₃ secondary	Allow C ₂ H ₅	1	Penalize wrong number of carbons but otherwise correct, first time only.
	H ₃ C—N—CH ₃ tertiary		,	
	CH ₃		1	
8(b)(ii)	Absorption at 3300-3500 (cm ⁻¹) in spectrum		1	Allow trough, peak, spike.
				Ignore absorption at 750 – 1100 for C—C bond in secondary - this is within fingerprint region.
				Allow any number in this range.
				If range missing, no further marks.
				If range linked to tertiary, no further marks.
	N—H (bond) (only) present in secondary amin	ne or not present in tertiary	1	
	OR			
	This peak or N—H absorption (only) present in or not present in spectrum of tertiary amine	in spectrum of secondary amine		

8(c)(i)	M1 Route A : stage 1		KCN Aqueous or ethanolic		1	Apply list principle for extra reagents or catalysts NOT HCN NOT KCN/acid Not KCN/HCN
					1	M2 only scores after correct M1 ignore warm; acid here loses M1 & M2
	МЗ	Route A Intermediate	CH₃CH₂CN or propanel	nitrile	1	If M3 intermediate wrong, max 2 for M1 & M2 ie no mark for stage 2
			Name alone must be ex M1 but mark on if name			But if M3 intermediate close, eg "nitrile" or wrong nitrile, can award marks in stage 2
			correct formula gains M1 (ignore name if close)			If stage 1 correct and intermediate is missing, can award marks in stage 2
			contradiction of name a	nd formula loses mark		stage 1 wrong & intermediate missing, no marks.
	M4	Route A: stage 2	H ₂ H loses M4 but mark on	LiAIH ₄	1	Apply list principle for extra reagents or catalysts. M5 only scores after correct M4 Not NaBH ₄ not Sn or Fe / HCI Allow (dil) acid after but not with LiAIH ₄ Penalise conc acid.
	M5		Ni or Pt or Pd	ether	1	
	M6	Route B	NH ₃		1	With acid loses M6 & M7 Apply list principle for extra reagents or catalysts.
	M7		Excess NH ₃		1	Ignore conc, ignore high P, ignore solvent.
8(c)(ii)	Route A disadv		Toxic /poisonous KCN cyanide or CN or HCN		1	Allow H ₂ flammable/explosive etc. Not just dangerous.
			OR lower <u>yield</u> because steps	2		Ignore time reasons.
	Route	e B disadv	Further reaction/substit	ution likely	1	Allow impure product.

Question	Marking Guidance		Mark	Comments
9(a)	M1 Lone pair on N labelled b more available / more able to be donated than lone pair on N labelled a		1	Ignore N(b) more readily accepts protons. Ignore N(b) is stronger base.
	M2 Ip or electrons or electron density on N labelled a: delocalized into (benzene) ring		1	QoL
	M3 Ip or electrons or electron density on N labelled <i>b</i> : methyl/alkyl groups <u>electron releasing or donating</u> or (positive) inductive effect or push electrons or electron density		1	QoL
9(b)	$C_{19}H_{24}N_2$		1	Any order.
	11		1	

Question	Marking Guidance	Mark	Comments
10(a)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Allow –CONH- or - COHN - Mark two halves separately lose 1 each for missing trailing bonds at one or both ends or error in peptide link or either or both of H or OH on ends Not allow –(C ₆ H ₁₂)– Ignore n
10(a)(ii)	M1 in polyamides - H bonding	1	
	 M2 in polyalkenes - van der Waals forces M3 Stronger forces (of attraction) in polyamides Or H bonding is stronger (must be a comparison of correct forces to score M3) 	1	Penalise forces between atoms or van der Waals bonds Do not award if refer to stronger bonds

10(b)(i)	(nucleophilic) addition elimination M2 M3	1	Minus sign on NH ₂ loses M1 M2 not allowed independent of M1, but allow M1 for correct attack on C+
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	+ rather than δ+ on C=O loses M2 If CI lost with C=O breaking, max 1 for M1 M3 for correct structure with charges but Ip on O is part of M4 only allow M4 after correct/ very close M3 For M4, ignore NH ₃ removing H ⁺ but lose M4 for CI ⁻ removing H ⁺ in mechanism, but ignore HCI as a product
10(b)(ii)	N-methylpropanamide	1	Not N-methylpropaneamide
10(c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Allow –CONH- or - COHN -
10(d)(i)	2-amino-3-hydroxypropanoic acid	1	

10(d)(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	allow –CO ₂ ⁻ allow NH ₂ –
10(d)(iii)	Penalise use of aspartic acid once in d(iii) and d(iv) $ \begin{array}{c} \text{CH}_2\text{OH} \\ \text{HCCOOH} \\ \text{-NH}_3 & \text{(Cl \bar{\ })} \end{array} $	1	allow –CO ₂ H allow [†] NH ₃ – don't penalize position of + on NH ₃
10(d)(iv)	Penalise use of aspartic acid once in d(iii) and d(iv) $ \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{OOH} \\ \text{+} \\ \text{N(CH}_3)_3 \end{array} \text{(Br)} \end{array} $	1	allow –CO ₂ ⁻ must show C-N bond don't penalize position of + on N(CH ₃) ₃

Question	Marking Guidance	Mark	Comments
11(a)	Benzene-1,2-dicarboxylic acid	1	Allow 1,2-benzenedicarboxylic acid
11(b)	H H ——————————————————————————————————	1	Must show all bonds including trailing bonds Ignore <i>n</i>
11(c)(i)	$2 C_2H_5OH$ H_2O	1 1	NB Two ethanols but only one water
11(c)(ii)	6 or six	1	
11(c)(iii)	COOCH ₂ CH ₃	1	Ignore overlap with O to the left or H to the right, but must only include this one carbon. either or allow both (as they are identical)

11(d)	COOCH 2CH3 COOCH 2CH3 COOCH 2CH3 COOCH 2CH3	1 LHS	Allow + on C or O in COOCH 2CH3
	$\label{eq:ch2CH3} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	1 RHS	Dot must be on O in radical
11(e)(i)	Rate = k[DEP]	1	Must have brackets but can be ()
11(e)(ii)	Any two of • experiment repeated/continued <u>over a long period</u> • repeated by independent body/other scientists/avoiding bias • investigate breakdown products • results made public	2 Max	Not just repetition Ignore animal testing